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Abstract 
In this paper we study the performance improvements 

and trade-offs derived from an optimized mapping 
approach applied on a parametric coarse grained 
reconfigurable array architecture. The processing 
elements’ local register files and the processing elements’ 
interconnection network is exploited for caching memory 
data values with data reuse opportunities. The data reused 
values are transferred through the processing elements’ 
interconnection network hence, relieving the bus from the 
burden of transferring these values. A novel mapping 
algorithm is also proposed that uses a modulo scheduling 
technique. This algorithm targets on a flexible architecture 
template which permits experimental exploration over 
different architecture alternatives. The experimental 
results showed that the operation parallelism was 
significantly improved by our mapping approach. 
Additionally, we have outlined the relation that exists 
between the performance improvements and the memory 
access latency, the interconnection network and the 
processing elements’ register file size. 

1. Introduction 

Coarse-Grained Reconfigurable Array (CGRA) 
architectures [1]-[4] have been proposed for accelerating 
computation intensive parts of algorithms residing in 
several scientific domains. These kinds of applications 
have high amounts of operation and data parallelism. The 
large number of PEs available in CGRAs can be used to 
exploit this parallelism and thus accelerating the 
applications’ loops. CGRA architectures consist of a large 
number of Processing Elements (PEs) organized in a 2-
Dimensional (2D) array and connected with a configurable 
interconnect network. This type of reconfigurable 
architecture is increasingly gaining interest because it is 
simple to be constructed and it can be scaled up, since 
more PEs can be added in the mesh-like interconnect. Each 
PE typically contains a Functional Unit (e.g. ALU, etc.), a 
small local memory and a configuration cache.  

An increase in the operation parallelism results in a 
respective increase in the rate by which data are fetched 
from memory called -data memory bandwidth- which is a 
major bottleneck in exploiting the inherent parallelism [5]. 

Hence, a mapping methodology for CGRAs which tackles 
the memory bandwidth problem is necessary. Additionally, 
a study to show how the improvements, in performance, 
are affected from the architectural characteristics is 
significant as well. Such a study can provide valuable 
knowledge about the effect of design parameters on the 
quality of the resulting architecture, its performance, 
storage needs, and flexibility. Pursuing such a study 
requires a flexible architecture template, together with a 
resource aware scheduling technique. 

In this paper a new mapping approach is proposed for 
mapping applications to CGRAs. It is based on a modulo 
scheduling technique where the scheduling, data allocation 
and spilling are performed in a single step. Moreover, the 
high bandwidth foreground memory which is constituted 
from the PEs’ register files and the interconnections 
among them is exploited for the purpose of storing 
variables with data reuse opportunities. The data reused 
values are transferred through the CGRA’s interconnection 
network instead of using the bus. Moreover, since the 
optimization of the memory bandwidth problem is 
becoming increasingly important, this work investigates 
experimentally how the three important architecture’s 
parameters (memory access latency, interconnection 
topology and register file size) affect the efficiency of such 
and optimized approach in respect to the operation 
parallelism (ILP) and performance. For this reason the 
scheduling algorithm targets on a parametric architecture 
template having its characteristics drawn from popular 
CGRAs.  

The rest of the paper is organized as follows: in section 
2, the previous work is presented. Section 3 presents the 
architecture template to which the methodology targets. 
Section 4 describes the proposed methodology, while the 
experimental results are presented in section 5. Finally, 
conclusions are outlined in section 6. 

2. Related Work 

Many CGRA architectures have been proposed in the 
past few years [1]-[4] accompanied with an equal number 
of mapping methodologies. Typically the applications 
which belong to the application domain of CGRAs are 
characterized by high data transfer rate between the 
processor and the memory. Only a few approaches ([4], 
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[6], [7], [8], and [9]) have been followed to tackle the 
problem of the limited memory bandwidth in CGRAs for 
exploiting the hardware parallelism.  

In [6] a CGRA architecture was presented. Each PE 
has two input and two output registers while its operation 
is data-driven. The PEs’ interconnection network has 
direct unidirectional connections among neighbouring PEs. 
The mapping methodology for this architecture is based on 
a simulated annealing algorithm in which the routing of 
data is considered during the operations’ placement phase. 
For reducing the memory bandwidth requirements this 
mapping algorithm uses a global register file for storing 
frequently reused data values. 

The PACT-XPP [2] is a hierarchical array of coarse-
grain processing array elements. A series of vertical and 
horizontal buses establish communication among the PEs 
while for storing the intermediate data values shared 
memory banks exist on the left and the right side of each 
array’s row. To reduce the number of memory accesses, 
the compiler [7] only reads one element per iteration and 
generates shift registers to store the data reuse values when 
array references inside loops read subsequent element 
positions.  

In [8] a generic template for a wide range of CGRAs 
was presented. A three-level mapping algorithm is used to 
generate loop pipelines fit into the CGRA. First, on the 
PE-level mapping stage, microperation trees are mapped to 
single PEs without the need of reconfiguration. Then the 
PE-level mappings are grouped together on line-level in 
such a way, that the number of required memory accesses 
not exceed the capacity of the memory interface belonging 
to the line. On the plane-level phase, the line-level 
mappings are put into the 2D array. 

In [4] an array architecture is proposed in which each 
PE contains instruction memory data memories, an 
arithmetic logic unit, registers and configurable logic. The 
static RAM distributed across PEs alleviates the memory 
bandwidth bottleneck and provides shorter latency to each 
memory module. The placement of operations in the PEs 
precedes the scheduling phase as a separate step while the 
scheduling of operations is performed by a list scheduling 
algorithm. 

In [9] we had proposed a list scheduling technique to 
reduce the data transfer bottleneck by using the local PE 
storage and the CGRA’s interconnection network. The 
current work achieves better improvements with the 
proposed modulo scheduling technique. Moreover, it 
handles more effectively the register allocation problem 
and the routing of data values by introducing a new set of 
heuristics. Hence, we consider our current work as an 
enhanced version of our previous work. 

3. CGRA architecture description 

In this section, the generic reconfigurable template 
used for the proposed mapping methodology is described. 

As shown in Fig.1a it consists of 4 basic parts; (a) a 2D 
array of PEs connected via an interconnection network, (b) 
a data memory interface which includes a set of buses, a 
scratch-pad memory and the main memory module (c) the 
configuration memory and (d) the execution control unit. 
The design specification of the 2D array and the data 
memory interface is generic as to include as much as 
possible characteristics from existing CGRAs and 
parametric as to model a large number of alternatives of 
such architectures. Table 1 illustrates the design 
parameters for the considered CGRA architecture 
template.

Table 1. CGRA architecture design parameters 
Component

CGRA Interconnection Network 

Description 

structure

interconnection width

interconnection latency

Pair wise connections (PEx,PEy)

2x bits  x { 3, 4, 5,…} 

0 cycles

PE microarchitecture

operand bitwidth

Register files’ size

context RAM size

fast reconfiguration overhead

context RAM fill latency (1 configuration)

Data Memory Interface 

2x bits  x { 3, 4, 5,…}

2x words  x { 1, 2, 3,…}

2
x
 x { 1, 2, 3,…} configuration contexts

0 cycles

x { 1, 2, 3,…} cycles

PE-Buses Connections

Scratch Pad’s Access Latency

Main Memory Module Access latency
Bus Bitwidth

Operation Set {add, multiplication, ALU}

Per Operation Latency x { 1, 2, 3,…} cycles

Number of Buses x { 1, 2, 3,…} buses

x { 1, 2, 3,…} cycles

x { 1, 2, 3,…} cycles

Pair wise connections (PEx,Busy)

2x  x { 3, 4, 5,…} bits

Number of Scratch-Pad’s ports x { 1, 2, 3,…} ports

Bus Multiplexing Pair wise connections (Scratch Pad’s portx,Busy)

Register Files Input Ports x { 1, 2, 3,…} ports

Register Files Output Ports x { 3, 4, 5,…} ports

Memories’ Size x words

The PE interconnection network is defined as a set of 
pairwise PE to PE connections. In more detail, depending 
on the PE communication network description different 
network configurations can be instantiated. For example, 
each PE can be connected only to its nearest neighbours as 
in [6] while there are cases, like in [10], where there are 
also direct connections among all PEs across a column and 
a row (Fig.1b). The interconnection network with the PEs’ 
local register files acts as a high-bandwidth foreground 
memory, since during each cycle several data transfers can 
take place through different paths in the CGRA. We call it 
to hereafter as the Distributed Foreground Memory 
(DFM). Our methodology exploits this capability for 
reducing the memory accesses thus, reducing the data 
transfer bottleneck.

Additionally, each PE consists of one Functional Unit 
(FU), which it can be configured to perform a specific 
word-level operation in each cycle. The operations 
supported by the FU are: ALU, multiplication, and shifts. 
For storing intermediate values between computations and 
values fetched from memory, a local register file exists 
inside a PE. Furthermore, the FU in the proposed CGRA 
template supports predicate operation [11]. Predicated 
register files exist inside the FU for storing predicated 
values. Thus, loops containing conditional statements are 
supported by the CGRA template through the “if-
conversion” process [12]. Moreover, both the predicated 



register files and the local register files are rotating register 
files [13] (Fig.1d) for realizing the necessary register 
renaming mechanism for modulo scheduling. Finally, the 
number of input/output ports of the PE’s local register files 
is included in the PE microarchitecture description shown 
in Table 1. 

Fig.1d shows an example of PE architecture where it 
is assumed that it is connected with 4 neighbouring PEs 
(PE 1-4). The FU has three inputs and two outputs. The 
multiplexers are used to select each input operand that can 
come from three different sources: a) from the same PE, b) 
from the memory buses and c) from another PE. This PE 
architecture permits an operation’s execution to take place 
without using the register files if the input operands arrive 
simultaneously with the operation issue time. Also, the 
output of each FU can be routed to other PEs through its 
local register files. Finally, the Context Cache stores the 
context words that determine how the FU, the register 
files, the decoders and the multiplexers are configured.  

Furthermore, the CGRA’s data memory interface 
consists of: (a) The memory buses. In the architecture 
studied in this paper the PEs residing in a row, share a 

common bus connection to the scratch-pad memory 
(Fig.1a). This also happens in existing CGRA architectures 
such as [8] and [10]. Furthermore, an Address Generation 
Unit (AGU) (Fig.1c) is attached to each bus for the 
addressing. Thus, the mapped loop can access a variable 
existing in the scratch-pad or main memory by generating 
the proper address. 

(b) The scratch pad memory [14]. The scratch pad 
memory serves as a local memory for quickly loading data 
in the CGRA’s PEs. However, the data values are 
transferred in the CGRA through the buses which have 
limited bandwidth if we compare them with the bandwidth 
requirements for executing applications to CGRAs. Thus, 
the bandwidth bottleneck in this type of architecture exists 
in the communication path that connects the CGRA and 
the memories. Our mapping method stores values with 
data reuse opportunities in the DFM. Then these variables 
are transferred using the internal interconnection network 
instead of using the bus.  

(c) The main memory module can be a typical 
SDRAM chip. 
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Figure 1. a) CGRA Architecture Template, b) AGU architecture, c) Examples of PE interconnection 

scenarios, d) PE architecture template 

The configuration memory (Fig.1a) of the CGRA 
stores the whole configuration for setting up the CGRA for 
the execution of the application’s critical loops. Context 
Caches distributed in the CGRA inside the PEs are used 
for the fast reconfiguration of the CGRA. The Context 
Cache stores a few configuration contexts locally, which 
can be loaded on cycle-by-cycle basis. The configuration 
contexts can also be loaded from the configuration 
memory at the cost of extra delay if the Context Cache is 

not large enough to store the configuration for the loop 
body. For transferring the configuration contexts from the 
configuration memory to the PEs’ Context Caches a set of 
buses is used. Each of them can be shared either among 
PEs residing in the same row either in the same column. A 
special purpose register called Context Counter is used to 
point to the current configuration context. Finally, at the 
initialization phase the configuration contexts are loaded 



from the configuration memory into the Context Caches in 
the same way as it happens in an FPGA device. 

4. Proposed Mapping methodology 

4.1. Proposed Methodology Description 

Fig.2a shows the structure of the developed mapping 
methodology for CGRAs. The input is the application’s 
description in C language. The first methodology step 
concerns the application of source level code 
transformations for increasing the locality of memory 
references as described in [15]. In this way, for a given 
size of DFM more data reused values can exploit it instead 
of using the buses. Hence, better improvements can be 
achieved from the mapping phase. Afterwards, the loop 
normalization transformation [12] is utilized for 
normalizing the candidate loops. Also, loop unrolling is 
performed for increasing the ILP in the mapping phase. 
Since the unlimited unrolling can lead to resource 
congestion situations a feedback in our methodology script 
refers to the exploration performed for finding the best 
value of the unroll factor in terms of the ILP. 

For creating the code’s Intermediate Representation 
(IR) we have utilized the front-end of the SUIF2 compiler 
infrastructure [16]. We have used existing and we have 
developed new SUIF2 passes for performing analysis and 
transformations on the application’s loops. More 
specifically, data-flow analysis is used to identify live-in 
and live-out variables and data dependence analysis to 
determine the data dependencies and data reuse 
opportunities. Also, transformations like dead code 
elimination, common sub-expression elimination and if-
conversion transformations have also been utilized. 
Moreover, to create the Data Dependence Graph (DDG) 
we represent the application’s loop in static single 
assignment form to minimize the Anti- and Output 
dependences. The considered analysis and transformations 
flow are enclosed in the dashed line of Fig.2a. 

Finally, the DDG of the loop body, with extra 
information concerning the data reuse opportunities is the 
application’s representation for the mapping phase. We 
call this graph Data Dependence Reuse Graph (DDRG). 
The DDRG is generally a cyclic directed graph G(V, E,
ER), where: V is the set of DDRG nodes representing the 
operations of the loop body. Each DDRG node is 
annotated with the type of operation, its priority and the 
memory operations it requires. E is the set of data edges 
showing data dependencies among operations. Each 
dependence edge E is annotated with the type of 
dependence as well as with the dependence distance. The 
dependence distance equals the number of iterations the 
dependence spans. Finally, ER are non-directional edges 
showing when data reuse exists among the DDRG nodes. 
The ER edges are further annotated with the names of 
variables that are common to the operations that connect 

and the data reuse dependence distance which equals the 
number of iterations between subsequent uses of the 
common variable. Also, we call, the subset of operations in 
the DDRG that have E edges sinking into a specific node 
v, Data-Dependence-Predecessors (DDPs) for that node.  

The CGRA graph which is also an input to the 
mapping phase is an undirected graph, GA( V, EI) where V
is the set of PEs of the CGRA and EI are the 
interconnections among them. The CGRA architecture 
description also includes the parameters, shown in Table 1.  

4.2. Proposed Mapping Algorithm Fundamentals 

The proposed modulo scheduling algorithm is based 
on the two stage hierarchical reduction technique described 
in [17], which can be applied to VLIW processors and with 
graphs with dependence cycles. According to this 
algorithm all loop iterations have identical schedules 
which are initiated at regular time intervals in a way that 
honours the data dependences and resources constraints. 
The time interval between the start of two successive 
iterations is called initiation interval II and represents the 
degree by which iterations overlap to each other. 

Our CGRA architecture has principally 6 types of 
explicitly scheduled resources [18] that must be considered 
during the scheduling phase. These are 1) the PEs, 2) the 
buses, 3) the CGRA interconnections, 4) the PE’s register 
files, 5) the register files input/output ports and 6) the 
AGUs. According to [18] a schedule is valid if there are no 
conflicts between this category of resources. To indicate 
the usage of a particular resource a data structure called 
Modulo Reservation Table (MRT) [19] is employed and it 
has the characteristics of a complex reservation table [19]. 
If scheduling an operation at some particular time involves 
the use of resource R at time T, then location ((T mod 
II),R) of the table is used to record it.  

Also, the scheduling strategy followed for a CGRA 
architecture is different in respect to the one followed for a 
VLIW. This is mostly due to the routing of data values 
through the CGRA interconnection network. In CGRAs 
the operations’ issue (execution) time can be determined 
only after they are mapped to a specific PE. This is due to 
the operands’ routing delay (see section 4.3.1) which is 
generally different for mapping the operation on different 
PEs. Hence, the closure of dependence constraints which is 
calculated prior scheduling in [17] for assuring the 
satisfaction of dependence constraints cannot be used since 
the execution time for each operation is not considered 
fixed as explained above. 

During the scheduling phase two types of constraints 
have to be considered for deriving a valid schedule. The 
first is the resource constraint which is satisfied by 
reserving, for executing each operation, MRT time slots 
which don’t cause resource conflict with other already 
scheduled operations. The second is the data dependence 
constraint. This constraint is honoured by two means: 1) 



An operation is ready to execute when its input operands 
from predecessor operations which have zero dependence 
(intra-iteration dependences) distance are available 2) 
When an operation is scheduled before its predecessor 

from which it is dependent with dependence distance 
greater than zero (inter-iteration dependences) the 
predecessor’s output variables should be available at the 
successor’s operation inputs at the time that is issued.  
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Figure 2. a) Mapping methodology flow for CGRAs and b) Mapping Algorithm 

Another important issue is the data allocation strategy 
followed. More specifically, we perform the scheduling, 
register allocation and spilling phase in a single step as it 
was done for the first time in modulo scheduling (for 
VLIWs processors) in a state of the art technique [20]. It is 
essential, for having an efficient schedule in a CGRA 
architecture, the decisions for storage allocation to be 
performed during the scheduling process. This is due to the 
fact that the place where the operations’ execution takes 
place as well as the availability of storage resources at a 
certain PE cannot be estimated before scheduling because 
different scheduling decisions produce a different data 
mapping. Additionally, as it was showed in [20] from the 
combination of the scheduling, register allocation and 
spilling phase into one step, which is done for VLIW 
processors, very efficient schedules can be derived. 
Finally, instead of using the module variable expansion 
technique used in [17] for the register allocation we use 
hardware support in terms of rotating register files. 

Finally, a data structure is employed for realizing the 
mapping of variables to storage locations. This data 
structure records the producer and consumer operations for 
each variable as well as the storage place after a variable 

production and consumption action respectively. In this 
way, when a variable has multiple accesses during its 
lifetime the scheduler can determine the variable’s storage 
location in the time intervals between its consecutive 
accesses. Thus it is possible to spill the use of a variable 
[20] instead of spilling the variable itself. The latter 
approach requires that a load operation is necessary for all 
variable’s uses when it is spilled. In the first case however 
only the necessary uses are loaded while the others can be 
satisfied from the DFM. In architectures with a distributed 
register file system such as CGRAs this feature gives a 
large flexibility to the scheduler. Apart from the flexibility, 
as it is shown in [20], this technique can significantly 
reduce the unnecessary memory accesses that are 
generated from spilling.  

4.3. Proposed Mapping Algorithm Description 

The algorithm firstly identifies the dependence cycles
and it condenses them to a single node building the 
condensed DDRG which is acyclic. The operations in this 
graph are considered ready to execute when all DDPs with 
zero dependence distance have finished their execution. 
Next, the priorities of the operations in the condensed 



DDRG are estimated. Two types of priorities are assigned 
to each operation. These are: 1) the mobility [21] and 2) 
the height [21]. The two priorities ensure that operations 
residing in the critical path are placed higher in the ready 
to execute operations’ priority list. Hence, a higher 
possibility of faster and more efficient execution in terms 
of resource reservations is achieved. 

The initiation interval is calculated next, as II = 
max(IIdep,IIrec) (1) [19], where IIdep is the initiation interval 
imposed by the dependence constraints while IIrec is the 
initiation interval imposed by the resource constraints. 
Afterwards, the data mapping is initialized. At this point 
the algorithm places the live-in and live-out variables in 
the scratch-pad memory while the computations’ 
intermediate variables are assumed to be stored at the PE 
where they will be generated. In the following it is also 
assumed that a variable which exists in the CGRA it exists 
also in the scratch pad so as to satisfy the property of a 
memory hierarchy. 

After the scheduler’s initialization phase (Fig.2b), the 
mapping algorithm schedules the operations one by one, 
scheduling each time, from the ready to execute operations 
the one which has the highest priority. The scheduler 
shows preference to the dependence cycles when they are 
ready since they are more demanding in terms of 
constraints [17] in respect to single operations. However, 
for operations with the same granularity (e.g. both single 
operations) the priorities as described previously are used 
for defining the sequence of instructions for scheduling. 

The aim of the proposed mapping algorithm is to find 
a cost-effective place and time slot for all operations of the 
scheduled application. The PE selection for executing an 
operation, and the way the input operands are fetched to 
the specific PE will be referred to hereafter as a Place 
Decision (PD) for that specific operation. Each PD has a 
different impact on the operation’s execution time and the 
way this operation’s execution influences the effectiveness 
of PDs of future scheduled operations. The operation’s 
execution time is determined from the operation’s latency, 
the path delay which is necessary to fetch the operation’s 
operands and the availability of resources. Therefore, large 
path delay or lack of free resources causes the operation’s 
execution interval to be inflated. Furthermore, larger 
execution time requires more resources to be reserved for 
scheduling an operation. Hence, PDs which wastefully 
consume the CGRA resources cause future schedule 
instructions to have less cost-effective PD. So, a set of 
costs, which is described in section 4.3.1, is assigned to 
each PD to incorporate the aforementioned factors that 
influence the scheduling of the operations. The algorithm 
for each operation calculates the costs and examines its 
schedulability for a possible execution to all CGRA’s PEs 
and chooses the most efficient PD (see section 4.3.1). 

The scheduling of an operation in a specific PE 
finishes normally if the required resources exist. 

Depending on the availability of resources different actions 
are performed by the scheduler. In case where the register 
file size inside a PE is not adequate for finding a valid 
execution time slot for an operation in the CGRA the 
algorithm spills the appropriate variables for scheduling 
the operation. If the variable corresponds to a live-in 
variable or an intermediate variable already spilled then 
this variable is overwritten and spilling is not required. If 
the variable corresponds to an intermediate variable which 
haven’t yet been spilled then a store operation is required. 
Thus, variables generated from operations can be spilled at 
most once while live-in variables which exist in the CGRA 
can be overwritten by other variables and loaded from the 
scratch-pad when necessary. 

Also, for the spilling, the algorithm builds a list of 
candidate variables which are alive during the time interval 
of a register conflict at a certain PE. These variables are 
ordered according to their demands in registers during that 
interval. Then the algorithm spills one variable at a time 
until a valid schedule is reached. For each spilled variable 
the algorithm backtracks to the operation to which the 
variable belongs in order to introduce the necessary store 
operation and continues the scheduling process. During the 
backtracking step, the operations which are dependent on 
the operation for which the store is introduced are removed 
from the schedule and put in the unscheduled operations’ 
list with the same priority. Finally, if there are no variables 
left to be spilled, the algorithm fails for the current 
initiation interval and the scheduling phase restarts with an 
increased value of the initiation interval by one. 

Additionally, in case where some other resource is not 
adequate for finding a feasible execution time slot or in 
case where dependences are violated, the mapping 
algorithm increases the initiation interval by one and 
restarts the scheduling process. Finally, the algorithm 
finishes and produces the CGRA configuration when all 
operations are scheduled. 

4.3.1. Mapping Costs 

For finding an efficient PD for each operation, a set of 
costs was employed. This set of costs is calculated for a 
possible execution of the operation in each PE in the 
CGRA. The first one, called delay cost, refers to the 
operation’s earliest possible schedule time if it is placed 
for execution to a certain PE. As shown in eq. (3), it is the 
sum of the RTime plus the maximum of the times tf
required to fetch the operation’s (Op) input operands to a 
specific PEx, where P is the set with the operation’s input 
operands. The RTimeOp equals the maximum of the times 
where each of the Op’s DDPs with zero dependence 
distance (DDPOp) finished executing (tfOpi) (eq.2). 

( )1,..,
max ,0  where  Op Op i Opii DDPOp

RTime tf Op DDP== ∈  (2) 

( ) ( )[ ]1,..,, max ,0x Op P ii PDelay Cost PE Op RTime tf== +  (3) 



When the operands come from memory, then tf equals 
the memory latency while when they come from a PE in 
the CGRA equals the time tr of routing them to PEx.
Hence, by denoting with PEP[i] the PE where the routed 
operand P[i] resides, by tinit_route the time at which the 
routing initiates and by tinit_fetch the clock cycle that follows 
RTime where the bus is available to fetch the requested 
data, we have 

,[ ] _PE PE tP i x init route
tr →

[ ]P itf =

tinit_fetch  + memory latency [ ] mP i P∈

[ ] rP i P∈

,

,

(4)

where Pm is the subset of P with the operands which are 
fetched from memory, while Pr=P-Pm, is the subset of P
with the operands which are routed to the destination 
PEx.As shown in eq.(4) the time tr depends on the tinit_route

since the availability of the interconnections and storage 
locations needed for routing an operand depends on the 
clock cycle where routing initiates. 

Furthermore, in this set of costs the interconnection 
cost is also included. It refers to the interconnection 
resources that need to be reserved for scheduling an 
operation in a specific PE. When an input operand is 
routed, the interconnection overhead refers to the 
interconnections that must be reserved, in order to route 
the operands to the destination PE. Higher interconnection 
overhead causes future scheduled operations to have a 
higher possibility to conflict. As shown in eq. (5), the 
interconnection cost for a PD is the sum of the CGRA 
interconnections which are used for routing the operation’s 
input operands.  

( ) ,xInterconnection Cost PE Op =

[ ]( )
1,...

xP ir
i Pr

PathLength PE PE

=
→∑

0, rP = ∅

rP ≠ ∅

(5)

A greedy approach was adopted for calculating the 
time tr (eq.(4)) and the number of interconnections (eq.(5)) 
required for routing an operand. For each operand the 
shortest paths, which connect the source and destination 
PE, are identified. From this set of paths, the one with the 
minimum routing delay is selected. The length and delay 
of the selected path gives the delay and interconnection 
costs through eq.(3) and eq.(5), respectively. 

Moreover, a new cost is introduced to address the 
following problem: Independent operations whose results 
are used directly or indirectly as input operands to an 
operation should be placed spatially close in the CGRA. 
This is depicted in Fig.3a. Although operations A and B 
are independent to each other, their results are used as 
direct inputs for the operation C. Hence, they should be 
placed spatially close. However, as it is shown in Fig.3b 
operations’ A,B,C,D,E and F results would also be used 
indirectly to produce the input operands of operation L. If 
the scheduler places the operations as close as possible in 

the end many parallel operations would execute 
sequentially due to resource conflicts. For this reason a 
well balanced approach is required to address this problem. 

A B

C

(a)

A B

G

C D

H

K

L

E F

I

(b)

Figure 3. Two sample graphs illustrating the 

trade-off addressed by the relativity cost. 

We have addressed this trade-off by a new cost named 
relativity cost. In order to calculate this cost we analyze the 
graph for finding independent node pairs whose results are 
used indirectly or directly to initiate the execution of other 
descendant operations. We record for each operation of the 
independent operation pairs its height from the closest 
common descendant operation. The sum of heights of the 
pair’s nodes equals the relativity cost. For example in 
Fig.3b the common descendant operation for the two 
independent operations A and B is operation G. This 
operation pair has relativity cost equal 2. In the end, the 
scheduler attempts to place the pair’s nodes as close as 
possible if the value of the relativity cost is below a certain 
threshold. In our experiments, the value 2 was employed as 
a threshold as it was proven that it gives the best results in 
terms of ILP. 
 In addition, we have introduced the PE utilization 
factor which is calculated from eq.6 and is defined as the 
ratio of the cycles where a PE is occupied divided by the 
initiation interval. This heuristic helps operations to spread 
into the CRA avoiding a possible resource congestion. 

PE Occupation cycles
PE Utilization Factor =

II

 (6) 

Also, as already described in our previous work [9] 
there are two ways of accessing a variable that is present 
both in the CGRA and the scratch pad memory. We follow 
the procedure described in [9] two identify which of the 
two ways is the most beneficial. When the way of 
accessing the data reused values is determined the selected 
PD for executing the operation is selected as follows: The 
adopted PD for each operation is the one with the 
minimum delay cost. In case where there are identical PDs 
in respect to the delay cost the one with the minimum 
interconnection cost is adopted. Also, if there are identical 
PDs in respect to these two costs the PD with the minimum 
relative cost is adopted. Finally, if there are identical PDs 
in respect to the aforementioned three costs the PD with 
the minimum value of the PE Utilization Factor is chosen. 

5. Experimental Results 

5.1. Experimental Setup 



In this section, we present the experimental results 
from applying the proposed mapping methodology steps 
on a representative CGRA architecture. We have 
developed in C++ a prototype compiler framework and a 
simulation environment for verifying our scheduler 
operation and performing experiments. The experimental 
setup considers a CGRA of 16 PEs connected in a 4x4 
array. In the experiments two scenarios are considered 
concerning the PEs’ interconnection topologies. The first 
one (A1) refers to the case where PEs are directly 
connected to all other PEs in the same row and same 
column, as in a quadrant of Morphosys [10] (Fig.1b). The 
second one (A2) refers to the case where each PE is 
connected only to its nearest neighbours [6] (Fig.1b). The 
A1 has more available internal bandwidth than A2 due to 
its richer interconnection topology.  

Table 2.  Application’s characteristics 

Additionally, each PE has a register file of size 16 
words with two input ports and four output ports. There is 
one FU in each PE that can execute any operation in one 
clock cycle. The granularity of the FU is 16-bit, which is 
the word size. The direct connection delay among the PEs 
is zero cycles. Furthermore, two buses per row are 
dedicated for transferring data to the PEs from the scratch-
pad memory. Each bus transfers one word per scratch 
pad’s memory cycle. Additionally, we assume that the 
CGRA’s Context Caches have size of 16 context words. 
Finally, in order to delineate the impact of the memory 
access latency to the performance and operation 
parallelism we assume for our measurements that the 
memories access latencies are constant for each scenario. 

We have used 16 characteristic DSP applications 
written in C code. The first set consists of 13 programs 
drawn from the Texas Instruments DSP benchmark suite 
[22]. Their characteristics are given in Table 2. More 
specifically, the second column refers to the number of 
operations in the application’s loop body, the third one 
refers to the times the applications’ loops have been 
unrolled, the fourth one refers to the number of iterations 
of the applications’ loops, while the fifth one contains a 
brief description for each application.  

5.2. Experimentation 

5.2.1. Performance Improvements

Fig.4 and 5 show the performance comparison for 
mapping the designs on the CGRA, with and without 
exploiting data reuse opportunities. We consider 4 
scenarios concerning the memory access latency. Also, the 
measurements in Fig.4 correspond to the A1 architecture, 
while Fig.5 refers to the A2 case. Above the bars, the 
percentages of performance improvements are shown.  

In the A1 case for memory latency 1 cycle half of the 
algorithms run faster when data reuse opportunities are 
exploited. In that case, the improvements range from 0% to 
49%. For larger values of the memory latency the 
improvements become larger. On average the performance 
is improved by 37,1% if we consider all scenarios for the 
value of the memory latency. For the A2 architecture 
alternative, smaller improvements were achieved in 
comparison to the A1 case. For memory latency 1 cycle in 
the A2 architecture, the performance improvements range 
from 0% to 32,6%, while, performance is improved by 
32,6% on average in the A2 case. 

In [19], it was stated that the demand each algorithm 
has in respect to the CGRA’s resources determines the 
initiation interval II from which the performance depends. 
The CGRA resources that are exhaustively consumed 
during the execution determine the value of the initiation 
interval. We will call them to hereafter as critical 
resources for better clarification. In our case, the 
algorithms having the bus as critical resource and plenty of 
data reuse opportunities showed significant improvements 
even for 1 cycle access latency. Moreover, algorithms 
which also have the CGRA interconnection network as a 
critical resource showed higher improvements in the A1 
architecture than in A2 and no improvement for memory 
access latency 1 cycle. 

Also, Fig.4 and 5 show that small performance 
improvements were derived for memory access latency 1 
cycle. Moreover, these improvements increase as the 
memory latency increases. This is due to the fact that for 
memory latency 1 clock cycle it is not always beneficial to 
route the data reuse values through the internal 
interconnection network. Moreover, this becomes more 
obvious in the A2 case where due to the poorer PE 
connectivity smaller improvements are achieved. In our 
previous work [9] we have addressed this problem by 
introducing a threshold (memory_thresh) for deciding 
whether it is beneficial to route a data reuse value or 
fetching it from memory. In this work we have used the 
optimized value of this threshold for each application to 
derive our measurements. 

Fig.6a, shows the average IPC for all benchmarks with 
and without data reuse exploitation for the two architecture 
alternatives (A1 and A2) while in Fig.6b the improvements 
of the average IPC are illustrated in respect to the memory 
access latency. It is deduced that for memory latency 
larger than 3 cycles the improvements for the two 
architectures equalize. More specifically, the 



improvements are 90% on the average. This happens 
because the initiation interval is increased (due to the 
increased memory access delay) to the point where the 
interconnection network is not critical anymore. For 
smaller values of the memory latency the CGRA 
interconnection network becomes important especially for 
the value of 2 cycles. 

5.2.2. Storage Requirements 

Fig.7 illustrates the impact of the register file size on 
the average value of IPC, for all benchmarks, with and 
without the data reuse exploitation for the A1 and A2 
architectures. As illustrated, a small register file has higher 
impact on the IPC as the memory latency increases. This is 
because the higher value of memory latency increases the 
demands in storage locations. Moreover, the average value 

of IPC for small values of the register file size in the data 
reuse case, drops faster. This is explained as follows: 

When data reuse opportunities are exploited more data 
values are stored in the DFM and this increases the 
possibility of a storage conflict. Moreover, the spilling of 
variables that inevitably happens, burdens the buses with 
additional memory accesses and this reduces the ILP due 
to bus conflicts.  

Also, for small register files sizes the data reuse 
exploitation case tend to behave similarly in respect to 
performance with the case where data reuse opportunities 
are not exploited. This is expected since the optimization 
performed by the application of our methodology is based 
on the ability of the DFM to store and route data reused 
values. However, as it is shown even with a small register 
file significant improvements can be achieved. 
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Figure 4. Performance comparison with and without data reuse exploitation (A1). 
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Figure 5. Performance comparison with and without data reuse exploitation (A2). 
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6. Conclusions  

In this work an optimized mapping approach for 
mapping applications to CGRAs was presented. A set of 
heuristics was introduced for efficient mapping taking into 
account the routing of data values through the 
interconnection network. Finally, the parametric CGRA 
architecture template was exploited so as to explore the 
design space formed by the proposed methodology.  
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