
Exploring the Design Space of an Optimized Compiler Approach for Mesh-Like

Coarse-Grained Reconfigurable Architectures

Gregory Dimitroulakos1, Michalis D. Galanis2 and Costas E. Goutis3

123VLSI Design Laboratory, Electrical and Computer Engineering Department, University of Patras,
Patras, Greece

{dhmhgre1,mgalanis2,goutis3}@ee.upatras.gr

Abstract
In this paper we study the performance improvements

and trade-offs derived from an optimized mapping
approach applied on a parametric coarse grained
reconfigurable array architecture. The processing
elements’ local register files and the processing elements’
interconnection network is exploited for caching memory
data values with data reuse opportunities. The data reused
values are transferred through the processing elements’
interconnection network hence, relieving the bus from the
burden of transferring these values. A novel mapping
algorithm is also proposed that uses a modulo scheduling
technique. This algorithm targets on a flexible architecture
template which permits experimental exploration over
different architecture alternatives. The experimental
results showed that the operation parallelism was
significantly improved by our mapping approach.
Additionally, we have outlined the relation that exists
between the performance improvements and the memory
access latency, the interconnection network and the
processing elements’ register file size.

1. Introduction

Coarse-Grained Reconfigurable Array (CGRA)
architectures [1]-[4] have been proposed for accelerating
computation intensive parts of algorithms residing in
several scientific domains. These kinds of applications
have high amounts of operation and data parallelism. The
large number of PEs available in CGRAs can be used to
exploit this parallelism and thus accelerating the
applications’ loops. CGRA architectures consist of a large
number of Processing Elements (PEs) organized in a 2-
Dimensional (2D) array and connected with a configurable
interconnect network. This type of reconfigurable
architecture is increasingly gaining interest because it is
simple to be constructed and it can be scaled up, since
more PEs can be added in the mesh-like interconnect. Each
PE typically contains a Functional Unit (e.g. ALU, etc.), a
small local memory and a configuration cache.

An increase in the operation parallelism results in a
respective increase in the rate by which data are fetched
from memory called -data memory bandwidth- which is a
major bottleneck in exploiting the inherent parallelism [5].

Hence, a mapping methodology for CGRAs which tackles
the memory bandwidth problem is necessary. Additionally,
a study to show how the improvements, in performance,
are affected from the architectural characteristics is
significant as well. Such a study can provide valuable
knowledge about the effect of design parameters on the
quality of the resulting architecture, its performance,
storage needs, and flexibility. Pursuing such a study
requires a flexible architecture template, together with a
resource aware scheduling technique.

In this paper a new mapping approach is proposed for
mapping applications to CGRAs. It is based on a modulo
scheduling technique where the scheduling, data allocation
and spilling are performed in a single step. Moreover, the
high bandwidth foreground memory which is constituted
from the PEs’ register files and the interconnections
among them is exploited for the purpose of storing
variables with data reuse opportunities. The data reused
values are transferred through the CGRA’s interconnection
network instead of using the bus. Moreover, since the
optimization of the memory bandwidth problem is
becoming increasingly important, this work investigates
experimentally how the three important architecture’s
parameters (memory access latency, interconnection
topology and register file size) affect the efficiency of such
and optimized approach in respect to the operation
parallelism (ILP) and performance. For this reason the
scheduling algorithm targets on a parametric architecture
template having its characteristics drawn from popular
CGRAs.

The rest of the paper is organized as follows: in section
2, the previous work is presented. Section 3 presents the
architecture template to which the methodology targets.
Section 4 describes the proposed methodology, while the
experimental results are presented in section 5. Finally,
conclusions are outlined in section 6.

2. Related Work

Many CGRA architectures have been proposed in the
past few years [1]-[4] accompanied with an equal number
of mapping methodologies. Typically the applications
which belong to the application domain of CGRAs are
characterized by high data transfer rate between the
processor and the memory. Only a few approaches ([4],

1-4244-0054-6/06/$20.00 ©2006 IEEE

[6], [7], [8], and [9]) have been followed to tackle the
problem of the limited memory bandwidth in CGRAs for
exploiting the hardware parallelism.

In [6] a CGRA architecture was presented. Each PE
has two input and two output registers while its operation
is data-driven. The PEs’ interconnection network has
direct unidirectional connections among neighbouring PEs.
The mapping methodology for this architecture is based on
a simulated annealing algorithm in which the routing of
data is considered during the operations’ placement phase.
For reducing the memory bandwidth requirements this
mapping algorithm uses a global register file for storing
frequently reused data values.

The PACT-XPP [2] is a hierarchical array of coarse-
grain processing array elements. A series of vertical and
horizontal buses establish communication among the PEs
while for storing the intermediate data values shared
memory banks exist on the left and the right side of each
array’s row. To reduce the number of memory accesses,
the compiler [7] only reads one element per iteration and
generates shift registers to store the data reuse values when
array references inside loops read subsequent element
positions.

In [8] a generic template for a wide range of CGRAs
was presented. A three-level mapping algorithm is used to
generate loop pipelines fit into the CGRA. First, on the
PE-level mapping stage, microperation trees are mapped to
single PEs without the need of reconfiguration. Then the
PE-level mappings are grouped together on line-level in
such a way, that the number of required memory accesses
not exceed the capacity of the memory interface belonging
to the line. On the plane-level phase, the line-level
mappings are put into the 2D array.

In [4] an array architecture is proposed in which each
PE contains instruction memory data memories, an
arithmetic logic unit, registers and configurable logic. The
static RAM distributed across PEs alleviates the memory
bandwidth bottleneck and provides shorter latency to each
memory module. The placement of operations in the PEs
precedes the scheduling phase as a separate step while the
scheduling of operations is performed by a list scheduling
algorithm.

In [9] we had proposed a list scheduling technique to
reduce the data transfer bottleneck by using the local PE
storage and the CGRA’s interconnection network. The
current work achieves better improvements with the
proposed modulo scheduling technique. Moreover, it
handles more effectively the register allocation problem
and the routing of data values by introducing a new set of
heuristics. Hence, we consider our current work as an
enhanced version of our previous work.

3. CGRA architecture description

In this section, the generic reconfigurable template
used for the proposed mapping methodology is described.

As shown in Fig.1a it consists of 4 basic parts; (a) a 2D
array of PEs connected via an interconnection network, (b)
a data memory interface which includes a set of buses, a
scratch-pad memory and the main memory module (c) the
configuration memory and (d) the execution control unit.
The design specification of the 2D array and the data
memory interface is generic as to include as much as
possible characteristics from existing CGRAs and
parametric as to model a large number of alternatives of
such architectures. Table 1 illustrates the design
parameters for the considered CGRA architecture
template.

Table 1. CGRA architecture design parameters
Component

CGRA Interconnection Network

Description

structure

interconnection width

interconnection latency

Pair wise connections (PEx,PEy)

2x bits x { 3, 4, 5,…}

0 cycles

PE microarchitecture

operand bitwidth

Register files’ size

context RAM size

fast reconfiguration overhead

context RAM fill latency (1 configuration)

Data Memory Interface

2x bits x { 3, 4, 5,…}

2x words x { 1, 2, 3,…}

2
x
 x { 1, 2, 3,…} configuration contexts

0 cycles

x { 1, 2, 3,…} cycles

PE-Buses Connections

Scratch Pad’s Access Latency

Main Memory Module Access latency
Bus Bitwidth

Operation Set {add, multiplication, ALU}

Per Operation Latency x { 1, 2, 3,…} cycles

Number of Buses x { 1, 2, 3,…} buses

x { 1, 2, 3,…} cycles

x { 1, 2, 3,…} cycles

Pair wise connections (PEx,Busy)

2x x { 3, 4, 5,…} bits

Number of Scratch-Pad’s ports x { 1, 2, 3,…} ports

Bus Multiplexing Pair wise connections (Scratch Pad’s portx,Busy)

Register Files Input Ports x { 1, 2, 3,…} ports

Register Files Output Ports x { 3, 4, 5,…} ports

Memories’ Size x words

The PE interconnection network is defined as a set of
pairwise PE to PE connections. In more detail, depending
on the PE communication network description different
network configurations can be instantiated. For example,
each PE can be connected only to its nearest neighbours as
in [6] while there are cases, like in [10], where there are
also direct connections among all PEs across a column and
a row (Fig.1b). The interconnection network with the PEs’
local register files acts as a high-bandwidth foreground
memory, since during each cycle several data transfers can
take place through different paths in the CGRA. We call it
to hereafter as the Distributed Foreground Memory
(DFM). Our methodology exploits this capability for
reducing the memory accesses thus, reducing the data
transfer bottleneck.

Additionally, each PE consists of one Functional Unit
(FU), which it can be configured to perform a specific
word-level operation in each cycle. The operations
supported by the FU are: ALU, multiplication, and shifts.
For storing intermediate values between computations and
values fetched from memory, a local register file exists
inside a PE. Furthermore, the FU in the proposed CGRA
template supports predicate operation [11]. Predicated
register files exist inside the FU for storing predicated
values. Thus, loops containing conditional statements are
supported by the CGRA template through the “if-
conversion” process [12]. Moreover, both the predicated

register files and the local register files are rotating register
files [13] (Fig.1d) for realizing the necessary register
renaming mechanism for modulo scheduling. Finally, the
number of input/output ports of the PE’s local register files
is included in the PE microarchitecture description shown
in Table 1.

Fig.1d shows an example of PE architecture where it
is assumed that it is connected with 4 neighbouring PEs
(PE 1-4). The FU has three inputs and two outputs. The
multiplexers are used to select each input operand that can
come from three different sources: a) from the same PE, b)
from the memory buses and c) from another PE. This PE
architecture permits an operation’s execution to take place
without using the register files if the input operands arrive
simultaneously with the operation issue time. Also, the
output of each FU can be routed to other PEs through its
local register files. Finally, the Context Cache stores the
context words that determine how the FU, the register
files, the decoders and the multiplexers are configured.

Furthermore, the CGRA’s data memory interface
consists of: (a) The memory buses. In the architecture
studied in this paper the PEs residing in a row, share a

common bus connection to the scratch-pad memory
(Fig.1a). This also happens in existing CGRA architectures
such as [8] and [10]. Furthermore, an Address Generation
Unit (AGU) (Fig.1c) is attached to each bus for the
addressing. Thus, the mapped loop can access a variable
existing in the scratch-pad or main memory by generating
the proper address.

(b) The scratch pad memory [14]. The scratch pad
memory serves as a local memory for quickly loading data
in the CGRA’s PEs. However, the data values are
transferred in the CGRA through the buses which have
limited bandwidth if we compare them with the bandwidth
requirements for executing applications to CGRAs. Thus,
the bandwidth bottleneck in this type of architecture exists
in the communication path that connects the CGRA and
the memories. Our mapping method stores values with
data reuse opportunities in the DFM. Then these variables
are transferred using the internal interconnection network
instead of using the bus.

(c) The main memory module can be a typical
SDRAM chip.

Function Unit

Rotating

Register

File

MUX

DEC

MUXMUX

2 words

RF_InPorts -1

PE1 PE2PE3PE4

PE3
PE4

RF_OutPorts

buffer buffer

BUS 1..n

MUX

PE1
PE2

RF_OutPorts +2

RF_InPorts

Rotating

Predicated

 Register File
RF_OutPorts

RF_InPorts

data outpred out

MUX

Data values

MUX

Predicated bit values

RF_InPorts -1

MUX

BUS 1..n

DEC

PE1 PE2PE3PE4 BUS 1..n

BUS 1..n

buffer

b

u

f

f

e

r

Context

Cache

Context

Pointer

F
ro

m
 c

o
n

fig
u

ra
tio

n

m
e
m

o
r
y

Configuration

memory

Main data

memory

S
cratch

 P
ad

 M
em

o
ry

PE

AGU

AGU

AGU

AGU

Memory

Interface

Execution Control Unit

X

(a)

(d)

+/-

MR PointerConstantAR Pointer

Effective Address

Address
Registers

Modify

Registers

(c)

MUX MUX
PE

PE

(b)

PE1

PE2 PE3

PE4

PEx

Address Generation Unit

Figure 1. a) CGRA Architecture Template, b) AGU architecture, c) Examples of PE interconnection

scenarios, d) PE architecture template

The configuration memory (Fig.1a) of the CGRA
stores the whole configuration for setting up the CGRA for
the execution of the application’s critical loops. Context
Caches distributed in the CGRA inside the PEs are used
for the fast reconfiguration of the CGRA. The Context
Cache stores a few configuration contexts locally, which
can be loaded on cycle-by-cycle basis. The configuration
contexts can also be loaded from the configuration
memory at the cost of extra delay if the Context Cache is

not large enough to store the configuration for the loop
body. For transferring the configuration contexts from the
configuration memory to the PEs’ Context Caches a set of
buses is used. Each of them can be shared either among
PEs residing in the same row either in the same column. A
special purpose register called Context Counter is used to
point to the current configuration context. Finally, at the
initialization phase the configuration contexts are loaded

from the configuration memory into the Context Caches in
the same way as it happens in an FPGA device.

4. Proposed Mapping methodology

4.1. Proposed Methodology Description

Fig.2a shows the structure of the developed mapping
methodology for CGRAs. The input is the application’s
description in C language. The first methodology step
concerns the application of source level code
transformations for increasing the locality of memory
references as described in [15]. In this way, for a given
size of DFM more data reused values can exploit it instead
of using the buses. Hence, better improvements can be
achieved from the mapping phase. Afterwards, the loop
normalization transformation [12] is utilized for
normalizing the candidate loops. Also, loop unrolling is
performed for increasing the ILP in the mapping phase.
Since the unlimited unrolling can lead to resource
congestion situations a feedback in our methodology script
refers to the exploration performed for finding the best
value of the unroll factor in terms of the ILP.

For creating the code’s Intermediate Representation
(IR) we have utilized the front-end of the SUIF2 compiler
infrastructure [16]. We have used existing and we have
developed new SUIF2 passes for performing analysis and
transformations on the application’s loops. More
specifically, data-flow analysis is used to identify live-in
and live-out variables and data dependence analysis to
determine the data dependencies and data reuse
opportunities. Also, transformations like dead code
elimination, common sub-expression elimination and if-
conversion transformations have also been utilized.
Moreover, to create the Data Dependence Graph (DDG)
we represent the application’s loop in static single
assignment form to minimize the Anti- and Output
dependences. The considered analysis and transformations
flow are enclosed in the dashed line of Fig.2a.

Finally, the DDG of the loop body, with extra
information concerning the data reuse opportunities is the
application’s representation for the mapping phase. We
call this graph Data Dependence Reuse Graph (DDRG).
The DDRG is generally a cyclic directed graph G(V, E,
ER), where: V is the set of DDRG nodes representing the
operations of the loop body. Each DDRG node is
annotated with the type of operation, its priority and the
memory operations it requires. E is the set of data edges
showing data dependencies among operations. Each
dependence edge E is annotated with the type of
dependence as well as with the dependence distance. The
dependence distance equals the number of iterations the
dependence spans. Finally, ER are non-directional edges
showing when data reuse exists among the DDRG nodes.
The ER edges are further annotated with the names of
variables that are common to the operations that connect

and the data reuse dependence distance which equals the
number of iterations between subsequent uses of the
common variable. Also, we call, the subset of operations in
the DDRG that have E edges sinking into a specific node
v, Data-Dependence-Predecessors (DDPs) for that node.

The CGRA graph which is also an input to the
mapping phase is an undirected graph, GA(V, EI) where V
is the set of PEs of the CGRA and EI are the
interconnections among them. The CGRA architecture
description also includes the parameters, shown in Table 1.

4.2. Proposed Mapping Algorithm Fundamentals

The proposed modulo scheduling algorithm is based
on the two stage hierarchical reduction technique described
in [17], which can be applied to VLIW processors and with
graphs with dependence cycles. According to this
algorithm all loop iterations have identical schedules
which are initiated at regular time intervals in a way that
honours the data dependences and resources constraints.
The time interval between the start of two successive
iterations is called initiation interval II and represents the
degree by which iterations overlap to each other.

Our CGRA architecture has principally 6 types of
explicitly scheduled resources [18] that must be considered
during the scheduling phase. These are 1) the PEs, 2) the
buses, 3) the CGRA interconnections, 4) the PE’s register
files, 5) the register files input/output ports and 6) the
AGUs. According to [18] a schedule is valid if there are no
conflicts between this category of resources. To indicate
the usage of a particular resource a data structure called
Modulo Reservation Table (MRT) [19] is employed and it
has the characteristics of a complex reservation table [19].
If scheduling an operation at some particular time involves
the use of resource R at time T, then location ((T mod
II),R) of the table is used to record it.

Also, the scheduling strategy followed for a CGRA
architecture is different in respect to the one followed for a
VLIW. This is mostly due to the routing of data values
through the CGRA interconnection network. In CGRAs
the operations’ issue (execution) time can be determined
only after they are mapped to a specific PE. This is due to
the operands’ routing delay (see section 4.3.1) which is
generally different for mapping the operation on different
PEs. Hence, the closure of dependence constraints which is
calculated prior scheduling in [17] for assuring the
satisfaction of dependence constraints cannot be used since
the execution time for each operation is not considered
fixed as explained above.

During the scheduling phase two types of constraints
have to be considered for deriving a valid schedule. The
first is the resource constraint which is satisfied by
reserving, for executing each operation, MRT time slots
which don’t cause resource conflict with other already
scheduled operations. The second is the data dependence
constraint. This constraint is honoured by two means: 1)

An operation is ready to execute when its input operands
from predecessor operations which have zero dependence
(intra-iteration dependences) distance are available 2)
When an operation is scheduled before its predecessor

from which it is dependent with dependence distance
greater than zero (inter-iteration dependences) the
predecessor’s output variables should be available at the
successor’s operation inputs at the time that is issued.

(a) (b)

DDRG

Estimate Initiation

Interval II

Find Ready To

Execute Operations

Adequate resources

found
Storage

Congestion

NO

Increase Initiation

Interval II

Spill Variable

YES

Restart

Scheduler

Resource

Congestion

Or

Dependence

Violation

YES

Exctract CGRA

Configuration

Build Condensed DDRG

Assign Priorities

NO

Calculate Costs

Identify efficient

place decistion

Scheduler

Initialization Phase

Perform Initial Data

Mapping

Are there

any

dependence

cycles

ready?

YES

NO

Schedule dependence

cycle with the highest

priority
Schedule regular

operation with the

highest priority

NO

NO
Does the

regular

operation

belong to a

dependence

cycle ?

YES

YES

Perform

Backtracking

Are there

any

variables

to spill?

Are there

any

operations

left

unscheduled

?

Are all the

dependence

cycle’s

operations

scheduled?

Schedule

operation

Source Level Trafos

for Enhancing

Locality

Loop Normalization

SUIF 2

Analysis & Trafos

C Input

SUIF2 MIR

DDRG

Mapping to CGRA
CGRA

Description

Configuration of

the CGRA

Loop Unrolling

Figure 2. a) Mapping methodology flow for CGRAs and b) Mapping Algorithm

Another important issue is the data allocation strategy
followed. More specifically, we perform the scheduling,
register allocation and spilling phase in a single step as it
was done for the first time in modulo scheduling (for
VLIWs processors) in a state of the art technique [20]. It is
essential, for having an efficient schedule in a CGRA
architecture, the decisions for storage allocation to be
performed during the scheduling process. This is due to the
fact that the place where the operations’ execution takes
place as well as the availability of storage resources at a
certain PE cannot be estimated before scheduling because
different scheduling decisions produce a different data
mapping. Additionally, as it was showed in [20] from the
combination of the scheduling, register allocation and
spilling phase into one step, which is done for VLIW
processors, very efficient schedules can be derived.
Finally, instead of using the module variable expansion
technique used in [17] for the register allocation we use
hardware support in terms of rotating register files.

Finally, a data structure is employed for realizing the
mapping of variables to storage locations. This data
structure records the producer and consumer operations for
each variable as well as the storage place after a variable

production and consumption action respectively. In this
way, when a variable has multiple accesses during its
lifetime the scheduler can determine the variable’s storage
location in the time intervals between its consecutive
accesses. Thus it is possible to spill the use of a variable
[20] instead of spilling the variable itself. The latter
approach requires that a load operation is necessary for all
variable’s uses when it is spilled. In the first case however
only the necessary uses are loaded while the others can be
satisfied from the DFM. In architectures with a distributed
register file system such as CGRAs this feature gives a
large flexibility to the scheduler. Apart from the flexibility,
as it is shown in [20], this technique can significantly
reduce the unnecessary memory accesses that are
generated from spilling.

4.3. Proposed Mapping Algorithm Description

The algorithm firstly identifies the dependence cycles
and it condenses them to a single node building the
condensed DDRG which is acyclic. The operations in this
graph are considered ready to execute when all DDPs with
zero dependence distance have finished their execution.
Next, the priorities of the operations in the condensed

DDRG are estimated. Two types of priorities are assigned
to each operation. These are: 1) the mobility [21] and 2)
the height [21]. The two priorities ensure that operations
residing in the critical path are placed higher in the ready
to execute operations’ priority list. Hence, a higher
possibility of faster and more efficient execution in terms
of resource reservations is achieved.

The initiation interval is calculated next, as II =
max(IIdep,IIrec) (1) [19], where IIdep is the initiation interval
imposed by the dependence constraints while IIrec is the
initiation interval imposed by the resource constraints.
Afterwards, the data mapping is initialized. At this point
the algorithm places the live-in and live-out variables in
the scratch-pad memory while the computations’
intermediate variables are assumed to be stored at the PE
where they will be generated. In the following it is also
assumed that a variable which exists in the CGRA it exists
also in the scratch pad so as to satisfy the property of a
memory hierarchy.

After the scheduler’s initialization phase (Fig.2b), the
mapping algorithm schedules the operations one by one,
scheduling each time, from the ready to execute operations
the one which has the highest priority. The scheduler
shows preference to the dependence cycles when they are
ready since they are more demanding in terms of
constraints [17] in respect to single operations. However,
for operations with the same granularity (e.g. both single
operations) the priorities as described previously are used
for defining the sequence of instructions for scheduling.

The aim of the proposed mapping algorithm is to find
a cost-effective place and time slot for all operations of the
scheduled application. The PE selection for executing an
operation, and the way the input operands are fetched to
the specific PE will be referred to hereafter as a Place
Decision (PD) for that specific operation. Each PD has a
different impact on the operation’s execution time and the
way this operation’s execution influences the effectiveness
of PDs of future scheduled operations. The operation’s
execution time is determined from the operation’s latency,
the path delay which is necessary to fetch the operation’s
operands and the availability of resources. Therefore, large
path delay or lack of free resources causes the operation’s
execution interval to be inflated. Furthermore, larger
execution time requires more resources to be reserved for
scheduling an operation. Hence, PDs which wastefully
consume the CGRA resources cause future schedule
instructions to have less cost-effective PD. So, a set of
costs, which is described in section 4.3.1, is assigned to
each PD to incorporate the aforementioned factors that
influence the scheduling of the operations. The algorithm
for each operation calculates the costs and examines its
schedulability for a possible execution to all CGRA’s PEs
and chooses the most efficient PD (see section 4.3.1).

The scheduling of an operation in a specific PE
finishes normally if the required resources exist.

Depending on the availability of resources different actions
are performed by the scheduler. In case where the register
file size inside a PE is not adequate for finding a valid
execution time slot for an operation in the CGRA the
algorithm spills the appropriate variables for scheduling
the operation. If the variable corresponds to a live-in
variable or an intermediate variable already spilled then
this variable is overwritten and spilling is not required. If
the variable corresponds to an intermediate variable which
haven’t yet been spilled then a store operation is required.
Thus, variables generated from operations can be spilled at
most once while live-in variables which exist in the CGRA
can be overwritten by other variables and loaded from the
scratch-pad when necessary.

Also, for the spilling, the algorithm builds a list of
candidate variables which are alive during the time interval
of a register conflict at a certain PE. These variables are
ordered according to their demands in registers during that
interval. Then the algorithm spills one variable at a time
until a valid schedule is reached. For each spilled variable
the algorithm backtracks to the operation to which the
variable belongs in order to introduce the necessary store
operation and continues the scheduling process. During the
backtracking step, the operations which are dependent on
the operation for which the store is introduced are removed
from the schedule and put in the unscheduled operations’
list with the same priority. Finally, if there are no variables
left to be spilled, the algorithm fails for the current
initiation interval and the scheduling phase restarts with an
increased value of the initiation interval by one.

Additionally, in case where some other resource is not
adequate for finding a feasible execution time slot or in
case where dependences are violated, the mapping
algorithm increases the initiation interval by one and
restarts the scheduling process. Finally, the algorithm
finishes and produces the CGRA configuration when all
operations are scheduled.

4.3.1. Mapping Costs

For finding an efficient PD for each operation, a set of
costs was employed. This set of costs is calculated for a
possible execution of the operation in each PE in the
CGRA. The first one, called delay cost, refers to the
operation’s earliest possible schedule time if it is placed
for execution to a certain PE. As shown in eq. (3), it is the
sum of the RTime plus the maximum of the times tf
required to fetch the operation’s (Op) input operands to a
specific PEx, where P is the set with the operation’s input
operands. The RTimeOp equals the maximum of the times
where each of the Op’s DDPs with zero dependence
distance (DDPOp) finished executing (tfOpi) (eq.2).

()1,..,
max ,0 where Op Op i Opii DDPOp

RTime tf Op DDP== ∈ (2)

() ()[]1,..,, max ,0x Op P ii PDelay Cost PE Op RTime tf== + (3)

When the operands come from memory, then tf equals
the memory latency while when they come from a PE in
the CGRA equals the time tr of routing them to PEx.
Hence, by denoting with PEP[i] the PE where the routed
operand P[i] resides, by tinit_route the time at which the
routing initiates and by tinit_fetch the clock cycle that follows
RTime where the bus is available to fetch the requested
data, we have

,[] _PE PE tP i x init route
tr →

[]P itf =

tinit_fetch + memory latency [] mP i P∈

[] rP i P∈

,

,

(4)

where Pm is the subset of P with the operands which are
fetched from memory, while Pr=P-Pm, is the subset of P
with the operands which are routed to the destination
PEx.As shown in eq.(4) the time tr depends on the tinit_route

since the availability of the interconnections and storage
locations needed for routing an operand depends on the
clock cycle where routing initiates.

Furthermore, in this set of costs the interconnection
cost is also included. It refers to the interconnection
resources that need to be reserved for scheduling an
operation in a specific PE. When an input operand is
routed, the interconnection overhead refers to the
interconnections that must be reserved, in order to route
the operands to the destination PE. Higher interconnection
overhead causes future scheduled operations to have a
higher possibility to conflict. As shown in eq. (5), the
interconnection cost for a PD is the sum of the CGRA
interconnections which are used for routing the operation’s
input operands.

() ,xInterconnection Cost PE Op =

[]()
1,...

xP ir
i Pr

PathLength PE PE

=
→∑

0, rP = ∅

rP ≠ ∅

(5)

A greedy approach was adopted for calculating the
time tr (eq.(4)) and the number of interconnections (eq.(5))
required for routing an operand. For each operand the
shortest paths, which connect the source and destination
PE, are identified. From this set of paths, the one with the
minimum routing delay is selected. The length and delay
of the selected path gives the delay and interconnection
costs through eq.(3) and eq.(5), respectively.

Moreover, a new cost is introduced to address the
following problem: Independent operations whose results
are used directly or indirectly as input operands to an
operation should be placed spatially close in the CGRA.
This is depicted in Fig.3a. Although operations A and B
are independent to each other, their results are used as
direct inputs for the operation C. Hence, they should be
placed spatially close. However, as it is shown in Fig.3b
operations’ A,B,C,D,E and F results would also be used
indirectly to produce the input operands of operation L. If
the scheduler places the operations as close as possible in

the end many parallel operations would execute
sequentially due to resource conflicts. For this reason a
well balanced approach is required to address this problem.

A B

C

(a)

A B

G

C D

H

K

L

E F

I

(b)

Figure 3. Two sample graphs illustrating the

trade-off addressed by the relativity cost.

We have addressed this trade-off by a new cost named
relativity cost. In order to calculate this cost we analyze the
graph for finding independent node pairs whose results are
used indirectly or directly to initiate the execution of other
descendant operations. We record for each operation of the
independent operation pairs its height from the closest
common descendant operation. The sum of heights of the
pair’s nodes equals the relativity cost. For example in
Fig.3b the common descendant operation for the two
independent operations A and B is operation G. This
operation pair has relativity cost equal 2. In the end, the
scheduler attempts to place the pair’s nodes as close as
possible if the value of the relativity cost is below a certain
threshold. In our experiments, the value 2 was employed as
a threshold as it was proven that it gives the best results in
terms of ILP.
 In addition, we have introduced the PE utilization
factor which is calculated from eq.6 and is defined as the
ratio of the cycles where a PE is occupied divided by the
initiation interval. This heuristic helps operations to spread
into the CRA avoiding a possible resource congestion.

PE Occupation cycles
PE Utilization Factor =

II

 (6)

Also, as already described in our previous work [9]
there are two ways of accessing a variable that is present
both in the CGRA and the scratch pad memory. We follow
the procedure described in [9] two identify which of the
two ways is the most beneficial. When the way of
accessing the data reused values is determined the selected
PD for executing the operation is selected as follows: The
adopted PD for each operation is the one with the
minimum delay cost. In case where there are identical PDs
in respect to the delay cost the one with the minimum
interconnection cost is adopted. Also, if there are identical
PDs in respect to these two costs the PD with the minimum
relative cost is adopted. Finally, if there are identical PDs
in respect to the aforementioned three costs the PD with
the minimum value of the PE Utilization Factor is chosen.

5. Experimental Results

5.1. Experimental Setup

In this section, we present the experimental results
from applying the proposed mapping methodology steps
on a representative CGRA architecture. We have
developed in C++ a prototype compiler framework and a
simulation environment for verifying our scheduler
operation and performing experiments. The experimental
setup considers a CGRA of 16 PEs connected in a 4x4
array. In the experiments two scenarios are considered
concerning the PEs’ interconnection topologies. The first
one (A1) refers to the case where PEs are directly
connected to all other PEs in the same row and same
column, as in a quadrant of Morphosys [10] (Fig.1b). The
second one (A2) refers to the case where each PE is
connected only to its nearest neighbours [6] (Fig.1b). The
A1 has more available internal bandwidth than A2 due to
its richer interconnection topology.

Table 2. Application’s characteristics

Additionally, each PE has a register file of size 16
words with two input ports and four output ports. There is
one FU in each PE that can execute any operation in one
clock cycle. The granularity of the FU is 16-bit, which is
the word size. The direct connection delay among the PEs
is zero cycles. Furthermore, two buses per row are
dedicated for transferring data to the PEs from the scratch-
pad memory. Each bus transfers one word per scratch
pad’s memory cycle. Additionally, we assume that the
CGRA’s Context Caches have size of 16 context words.
Finally, in order to delineate the impact of the memory
access latency to the performance and operation
parallelism we assume for our measurements that the
memories access latencies are constant for each scenario.

We have used 16 characteristic DSP applications
written in C code. The first set consists of 13 programs
drawn from the Texas Instruments DSP benchmark suite
[22]. Their characteristics are given in Table 2. More
specifically, the second column refers to the number of
operations in the application’s loop body, the third one
refers to the times the applications’ loops have been
unrolled, the fourth one refers to the number of iterations
of the applications’ loops, while the fifth one contains a
brief description for each application.

5.2. Experimentation

5.2.1. Performance Improvements

Fig.4 and 5 show the performance comparison for
mapping the designs on the CGRA, with and without
exploiting data reuse opportunities. We consider 4
scenarios concerning the memory access latency. Also, the
measurements in Fig.4 correspond to the A1 architecture,
while Fig.5 refers to the A2 case. Above the bars, the
percentages of performance improvements are shown.

In the A1 case for memory latency 1 cycle half of the
algorithms run faster when data reuse opportunities are
exploited. In that case, the improvements range from 0% to
49%. For larger values of the memory latency the
improvements become larger. On average the performance
is improved by 37,1% if we consider all scenarios for the
value of the memory latency. For the A2 architecture
alternative, smaller improvements were achieved in
comparison to the A1 case. For memory latency 1 cycle in
the A2 architecture, the performance improvements range
from 0% to 32,6%, while, performance is improved by
32,6% on average in the A2 case.

In [19], it was stated that the demand each algorithm
has in respect to the CGRA’s resources determines the
initiation interval II from which the performance depends.
The CGRA resources that are exhaustively consumed
during the execution determine the value of the initiation
interval. We will call them to hereafter as critical
resources for better clarification. In our case, the
algorithms having the bus as critical resource and plenty of
data reuse opportunities showed significant improvements
even for 1 cycle access latency. Moreover, algorithms
which also have the CGRA interconnection network as a
critical resource showed higher improvements in the A1
architecture than in A2 and no improvement for memory
access latency 1 cycle.

Also, Fig.4 and 5 show that small performance
improvements were derived for memory access latency 1
cycle. Moreover, these improvements increase as the
memory latency increases. This is due to the fact that for
memory latency 1 clock cycle it is not always beneficial to
route the data reuse values through the internal
interconnection network. Moreover, this becomes more
obvious in the A2 case where due to the poorer PE
connectivity smaller improvements are achieved. In our
previous work [9] we have addressed this problem by
introducing a threshold (memory_thresh) for deciding
whether it is beneficial to route a data reuse value or
fetching it from memory. In this work we have used the
optimized value of this threshold for each application to
derive our measurements.

Fig.6a, shows the average IPC for all benchmarks with
and without data reuse exploitation for the two architecture
alternatives (A1 and A2) while in Fig.6b the improvements
of the average IPC are illustrated in respect to the memory
access latency. It is deduced that for memory latency
larger than 3 cycles the improvements for the two
architectures equalize. More specifically, the

improvements are 90% on the average. This happens
because the initiation interval is increased (due to the
increased memory access delay) to the point where the
interconnection network is not critical anymore. For
smaller values of the memory latency the CGRA
interconnection network becomes important especially for
the value of 2 cycles.

5.2.2. Storage Requirements

Fig.7 illustrates the impact of the register file size on
the average value of IPC, for all benchmarks, with and
without the data reuse exploitation for the A1 and A2
architectures. As illustrated, a small register file has higher
impact on the IPC as the memory latency increases. This is
because the higher value of memory latency increases the
demands in storage locations. Moreover, the average value

of IPC for small values of the register file size in the data
reuse case, drops faster. This is explained as follows:

When data reuse opportunities are exploited more data
values are stored in the DFM and this increases the
possibility of a storage conflict. Moreover, the spilling of
variables that inevitably happens, burdens the buses with
additional memory accesses and this reduces the ILP due
to bus conflicts.

Also, for small register files sizes the data reuse
exploitation case tend to behave similarly in respect to
performance with the case where data reuse opportunities
are not exploited. This is expected since the optimization
performed by the application of our methodology is based
on the ability of the DFM to store and route data reused
values. However, as it is shown even with a small register
file significant improvements can be achieved.

0

100

200

300

400

500

600

700

800

900

1000

fc
p

x

c
o

n
v

m
a

tm
u

l

ff
t

ii
r

w
a

v
e
_

v
e
r

w
a

v
e_

h
o
r

la
ta

n
a
l

la
ts

y
n

th

v
o
lt

er
r
a

n
c

w
d

f

fd
c
t_

v
e
r

fd
ct

_
h

o
r

id
c
t_

v
e
r

id
ct

_
h

o
r

0

200

400

600

800

1000

1200

1400

1600

1800

2000

fc
p

x

c
o

n
v

m
a

tm
u

l

ff
t

ii
r

w
a

v
e
_
v

e
r

w
a

v
e
_

h
o

r

la
ta

n
a

l

la
ts

y
n

th

v
o

lt
e
r
r
a

n
c

w
d

f

fd
c
t_

v
e
r

fd
c
t_

h
o

r

id
c
t_

v
e
r

id
ct

_
h

o
r

0

500

1000

1500

2000

2500

3000

fc
p

x

c
o
n

v

m
a

tm
u

l

ff
t

ii
r

w
a

v
e_

v
er

w
a

v
e
_

h
o

r

la
ta

n
a

l

la
ts

y
n

th

v
o

lt
e
r
r
a

n
c

w
d

f

fd
c
t_

v
e
r

fd
c
t_

h
o

r

id
ct

_
v

e
r

id
c
t_

h
o

r 0

500

1000

1500

2000

2500

3000

3500

4000

fc
p

x

c
o

n
v

m
a
tm

u
l

ff
t

ii
r

w
a
v

e
_
v

e
r

w
a
v

e
_

h
o

r

la
ta

n
a
l

la
ts

y
n

th

v
o

lt
e
r
ra n
c

w
d

f

fd
c
t_

v
e
r

fd
c
t_

h
o

r

id
c
t_

v
e
r

id
c
t_

h
o

r

32.3%

0%

49%

33.3%

32,4%

41,6%

32,4%

23,6%
0%

0%

19,9% 39,2%

0% 0% 0%
0%

33%

66,3%

49,7%

30,7%

27,8%

44,1%

66%

24,6%
18,4%

65,9%

59,2% 46,4%

49,5%
49,6%

48,8%24%

32,8%

49,6%

46,5%

28%

25%

43,8%

65,5%

23,8%14%

49,2%

59,1% 50%

48,1%
48,6%

48,8%
24,8%

33,2%

81,5%

49,8%

33,2%

29,2%

44,3%

66,1%

24,8%

7%

66,1%

59,3%
44,9%

48,9%
49,6%

48,9%
24%

Memory Latency = 1 cycle
Memory Latency = 2 cycles

Memory Latency = 3 cycles Memory Latency = 4 cycles

C
y

cl
es

C
y

cl
es

C
yc

le
s

C
yc

le
s

With Reuse Exploitation Without Reuse Exploitation

Figure 4. Performance comparison with and without data reuse exploitation (A1).

0

100

200

300

400

500

600

700

800

900

1000

fc
p

x

co
n

v

m
a

tm
u

l

ff
t

ii
r

w
a

v
e_

v
e
r

w
a
v

e
_

h
o

r

la
ta

n
a

l

la
ts

y
n

th

v
o

lt
e
r
ra n
c

w
d

f

fd
ct

_
v

e
r

fd
ct

_
h

o
r

id
ct

_
v

e
r

id
c
t_

h
o

r

With Reuse Exploitation Without Reuse Exploitation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

fc
p

x

c
o

n
v

m
a

tm
u

l

ff
t

ii
r

w
a

v
e
_

v
er

w
a
v

e
_

h
o
r

la
ta

n
a

l

la
ts

y
n

th

v
o

lt
e
rr

a

n
c

w
d

f

fd
c
t_

v
e
r

fd
c
t_

h
o

r

id
ct

_
v

e
r

id
c
t_

h
o

r

0

500

1000

1500

2000

2500

3000

fc
p

x

c
o

n
v

m
a

tm
u

l

ff
t

ii
r

w
a

v
e
_
v

e
r

w
a

v
e
_

h
o

r

la
ta

n
a

l

la
ts

y
n

th

v
o
lt

e
r
r
a

n
c

w
d

f

fd
ct

_
v

e
r

fd
c
t_

h
o

r

id
c
t_

v
e
r

id
c
t_

h
o
r

0

500

1000

1500

2000

2500

3000

3500

4000

fc
p

x

c
o

n
v

m
a

tm
u

l

ff
t

ii
r

w
a

v
e
_

v
er

w
a

v
e
_

h
o

r

la
ta

n
a

l

la
ts

y
n

th

v
o

lt
er

r
a

n
c

w
d

f

fd
ct

_
v

e
r

fd
c
t_

h
o
r

id
c
t_

v
e
r

id
c
t_

h
o
r

Memory Latency = 1 cycle Memory Latency = 2 cycles

Memory Latency = 3 cycles Memory Latency = 4 cycles

C
y

cl
es

C
y

cl
es

C
y

cl
es

C
y

cl
es

32,2%

0%

24,4%

0%

32,6%

27,2%

24,5%

23,6%
1,9%

20% 19,8%

0%
0%

0%
0%

32,8%

66%

49,9%

30,4%

32,5%

43,7%

54,6%

23,0%
18,4%

54,2%

52,2%46,4%

47,7%

48,6%
40,4%

24,5%

33%

81,3%

49,9%

30,4%

32,5%

43,8%

54,6%

23%18,4%

54,2%

52,2%46,4%

47,7%
48,6%

40,4%25%

32,5%

49,5%

49,7%

26,4%

33,1%

42,2%

49,2%

23,6%14%

16,5%

20,2% 50,1%

11,4%34,2%
24,5%

23,7%0%

Figure 5. Performance comparison with and without data reuse exploitation (A2).

0

2

4

6

8

10

12

14

REUSE A1

NO REUSE A1

REUSE A2

NO REUSE A2

L1 Access Latency (cycles)

A
v
e
r
a
g
e
 I

P
C

(a)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

A1

A2

L1 Access Latency (cycles) (b)

A
v
e
r
a
g
e
 I

P
C

 I
m

p
r
o
v
e
m

en
t%

1 2 3 4 5 6 7 8 9

Figure 6. a) Average IPC and b) average IPC improvements% in respect to memory access latency

0

2

4

6

8

10

12

14

2 3 4 6 8 10 12 14 16

Local RAM Size (Storage Locations/PE)

A
v

e
r
a

g
e

IP
C

Memory Latency = 1 cycle

0

2

4

6

8

10

12

14

2 3 4 6 8 10 12 14 16

Local RAM Size (Storage Locations/PE)

Memory Latency = 2 cycles

A
v

e
r
a

g
e

IP
C

0

2

4

6

8

10

12

14

2 3 4 6 8 10 12 14 16

Local RAM Size (Storage Locations/PE)

A
v

e
r
a
g

e

IP
C

Memory Latency = 3 cycles

0

2

4

6

8

10

12

14

2 3 4 6 8 10 12 14 16

Local RAM Size (Storage Locations/PE)

A
v

e
r
a

g
e

IP
C

Memory Latency = 4 cycles

REUSE A2

NO REUSE A2

NO REUSE A1

REUSE A1

REUSE A2

NO REUSE A2

NO REUSE A1

REUSE A1

REUSE A2

NO REUSE A2

NO REUSE A1

REUSE A1

REUSE A2

NO REUSE A2

NO REUSE A1

REUSE A1

Figure 7. Average IPC in respect to Local RAM Size

6. Conclusions

In this work an optimized mapping approach for
mapping applications to CGRAs was presented. A set of
heuristics was introduced for efficient mapping taking into
account the routing of data values through the
interconnection network. Finally, the parametric CGRA
architecture template was exploited so as to explore the
design space formed by the proposed methodology.

7. Acknowledgements

We thank the European Social Fund (ESF),
Operational Program for Educational and Vocational
Training II (EPEAEK II), and particularly the Program
HERAKLEITOS, for funding the above work1.

References

[1] R. Hartenstein, “A decade of reconfigurable computing: A

visionary retrospective”,Proc. of ACM/IEEE DATE ’01, pp. 642-649.

[2] Pact Corporation, “The XPP white Paper”, Technical report,
www.pactcorp.com, 2005.

[3] B. Mei, S. Vernalde, D. Verkest, R. Lauwereins, “Design

Methodology for a Tightly Coupled VLIW/Reconfigurable Matrix

Architecture, A Case Study”, in Proc. of DATE ’04, pp. 1224-1229.
[4] E. Waingold, M. Taylor, D. Srikrishna, et.al., “Baring it all to

Software: Raw Machines”, in IEEE Computer, vol. 30, no. 9, Sept

97, pp 86-93

[5] F. Catthoor, K. Danckaert, C. Kulkarni, et.al., “Data Accesses
and Storage Management for Embedded Programmable Processors”,

Kluwer Academic Publishers, 2002.

[6] Reiner W. Hartenstein and Rainer Kress, “A Datapath Synthesis
System for the reconfigurable datapath architecture”, in Proc. of

ASP-DAC, Article No.77, Sep. 1995

[7] J.M.P Cardoso and M. Weinhardt, “XPP-VC: A Compiler with

temporal partitioning for the PACT-XPP architecture” in Proc. of
FPL 02, LNCS 2438, Springer-Verlag, pp. 864-874, 2002

1

[8] J. Lee, K. Choi and Nikil Dutt, “Compilation Approach for
Coarse-grained Reconfigurable Architectures”, in IEEE Design &

Test of Computers, vol. 20, no. 1, pp. 26-33, Jan.-Feb., 2003.

[9] G. Dimitroulakos, M.D Galanis, C.E. Goutis, “Alleviating the

Data Memory Bottleneck in coarse grained reconfigurable arrays”,
Proc. IEEE ASAP Conf. July 2005 pp 161-168.

[10] H. Singh, L. Ming-Hau, L. Guangming, et.al., “MorphoSys: An

Integrated Reconfigurable System for Data-Parallel and

Communication-Intensive Applications”, in IEEE Trans. on
Computers, vol. 49, no. 5, pp. 465-481, May 2000.

[11] Scott A. Mahlke, David C. Lin, William Y. Chen,

et.al.,”Effective Compiler Support for Predicated Execution Using
the Hyperblock.”, Proc. 25th Microarchitecture,pp 45-54, 1992.

[12] K. Kennedy and R. Allen, “Optimizing Compilers for modern

architectures”, Morgan Kauffman Publishers, 2002.

[13] B.R. Rau, M. Lee, P. Tirumalai and M.S. Schlansker, “Register
Allocation for Software Pipelined Loops”, in Proc. of ACM

SIGPLAN PLDI, pp. 283-299, June 1992

[14]P. R. Panda, N. Dutt, and A. Nicolau, “Memory Issues in

Embedded Systems-on-Chip: Optimizations and Exploration”,
Kluwer Academic Publishers, 1999.

[15] P. R. Panda, F. Catthoor, N. D. Dutt, et.al., "Data and Memory

Optimization Techniques for Embedded Systems", in ACM Trans. on
Design Automation of Electronic Systems (TODAES), vol. 6, no.2,

pp. 149-206, April 2001.

[16] M. W. Hall et al., “Maximizing multiprocessor performance

with the SUIF compiler”, Computer, vol. 29, pp. 84-89, 1996.
[17]M.S.Lam, “Software pipelining: An effective scheduling

technique for VLIW machines”,Proc. of SIGPLAN '88, pp. 318-328.

[18] B.R. Rau, “Some Scheduling techniques and an easily

schedulable horizontal architecture for high performance scientific
computing”, Proc. 14th Ann. Microprogramming Workshop, pp. 183-

197, Oct. 1981.

[19] B.R. Rau, ”Iterative Modulo Scheduling: An algorithm for
software pipelining loops”, Proc. 27th Ann. Int'l Symp.

Microarchitecture, pp. 63-74, San Jose, Calif.,Dec. 1994.

[20] Javier Zalamea, Josep Llosa, Eduard Ayguade and Mateo

Valero, “Register Constrained Modulo Scheduling”, in IEEE Trans.
on Par. and Distr. Syst., Vol 15, No 5, May 2004, pp 417-430.

[21] G. De Micheli, “Synthesis and Optimization of Digital

Circuits”, McGraw-Hill, International Editions, 1994.
[22] Texas Instruments Inc., www.ti.com, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

