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Abstract

In this paper a simple and efficient distributed version of
the recently introduced Antipole Clustering algorithm for
general metric spaces is proposed. This combines ideas
from the M-Tree, the Multi-Vantage Point structure and the
FQ-Tree to create a new structure in the “bisector tree”
class, called the Antipole Tree. Bisection is based on the
proximity to an “Antipole” pair of elements generated by a
suitable linear randomized tournament. The final winners
(A,B) of such a tournament are far enough apart to ap-
proximate the diameter of the splitting set. A simple linear
algorithm computing Antipoles in Euclidean spaces with
exponentially small approximation ratio is proposed. The
Antipole Tree Clustering has been shown to be very effec-
tive in important applications such as range and k-nearest
neighbor searching, mobile objects clustering in centralized
wireless networks with movable base stations and multiple
alignment of biological sequences. In many of such applica-
tions an efficient distributed clustering algorithm is needed.
In the proposed distributed versions of Antipole Clustering
the amount of data passed from one node to another is either
constant or proportional to the number of nodes in the net-
work. The Distributed Antipole Tree is equipped with addi-
tional information in order to perform efficient range search
and dynamic clusters management. This is achieved by
adding to the randomized tournaments technique, method-
ologies taken from established systems such as BFR and
BIRCH*. Experiments show the good performance of the
proposed algorithms on both real and synthetic data.

1 Introduction

Mining and indexing are basic problems in knowledge
discovery in general metric spaces. Much efforts have
been spent both in clustering algorithms (see BIRCH [73],
DBSCAN [27], CLIQUE [3], BIRCH* [32], WaveClus-
ters [65], CURE [38], and CLARANS [56]), and in the
development of new indexing techniques (see, for in-
stance, MVP-Tree [13], M-Tree [24], SLIM-Tree [67], FQ-
Tree [6], R-tree [39], R*-tree [10], List of Clusters [21],
SAT [55]; the reader is also referred to [22] for a survey on
this subject). For the special case of Euclidean spaces, one
can see [2, 35, 12], X-Tree [11], and CHILMA [66].

Let (M , dist) be a finite metric space, let S be a subset
of M and suppose the aim is to split it into the minimum
possible number of clusters whose radii should not exceed
a given threshold σ [42, 37, 29, 61]. The Antipole Tree [19]
belongs to the class of “bisector trees” [22, 16, 57], which
are binary trees whose nodes represent sets of elements to
be clustered. Moreover, it combines and extends ideas from
the M-Tree, MVP-Tree, and FQ-Tree structures. Its con-
struction begins by first allocating a root r and then select-
ing two splitting points c1, c2 in the input set, which become
the children of r. Subsequently, the points in the input set
are partitioned according to their proximity to the points c1,
c2. Then one recursively constructs the tree rooted in ci as-
sociated with the partition set of the elements closer to ci,
for i = 1, 2. A good choice for the pair (c1, c2) of splitting
points consists in maximizing their distance. Antipole Tree
Clustering uses a simple approximate algorithm based on
tournaments of the type described in [9]. The tournament is
played as follows. At each round, the winners of the previ-
ous round are randomly partitioned into subsets of a fixed
size τ and their 1-medians are discarded.

Rounds are played until one is left with less than 2τ el-
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ements. The farthest pair of points in the final set is the
Antipole pair of elements.

The Antipole Tree Clustering has been shown to be
very effective in important applications such as range and
k-nearest neighbor searching [19], mobile objects cluster-
ing in centralized wireless networks with movable base
stations [30] and multiple alignment of biological se-
quences [60, 59]. In many of such applications an efficient
distributed clustering algorithm is needed. For example in
pure Ad-Hoc wireless networks with movable base stations,
objects clustering is dynamically executed by the base sta-
tions network. Data management of a sensors network may
require distributed data clustering. Finally, multiple align-
ment of large sets of biological sequences may be out of
the range of sequential systems such as ClustalW. In nowa-
days applications data may be located in different comput-
ers which are connected to each other through a local or
wide area networks. Clustering or indexing by sending the
data to a central data is often impossible. Much effort has
been done in both clustering and indexing in distributed and
parallel systems (see Section 2).

In this paper a distributed version of the Antipole Tree
Clustering algorithm is proposed. In the case of Euclidean
spaces a simple distributed approximate diameter compu-
tation is performed by computing the enclosing box. The
furthest pair of points in the enclosing box is the Antipole
pair. This requires linear time computation in each node and
a constant amount of transmitted data which is proportional
to the number of nodes. The number of items passed from
one node to another is proportional to the number of carte-
sian reference axes used in the enclosing box computation.
On the other hand the approximation error exponentially de-
creases with such number. Finally, in general metric spaces
the global Antipole pair is computed by taking the farthest
pair of elements among the winners of all local nodes tour-
naments.

The proposed distributed version of the Antipole Tree
Clustering may be used to compute range searches. In or-
der to do that, clusters and centroids may be used to prune
the process using triangle inequality. Each node in the tree
must contain, for each cluster, the centroid and the radius of
the cluster portion contained in nodes belonging to the sub-
tree rooted in that node. To maintain such structure bound-
ary elements in each cluster must be stored. Moreover, such
tree is shown to be adaptable to perform dynamic clustering
management by adding the most central elements in each
cluster fragment. This choice has been suggested by estab-
lished systems such as BIRCH* [32] and BFR [28] .

The paper is organized as follows. In the next Section,
a briefly review of relevant previous work is given. The
Antipole Tree Clustering is described in Section 3. Here,
for the first time an analysis of the approximation ratio of
the algorithm in Euclidean space is given. In Section 4 the

distributed version of the Antipole Tree Clustering is intro-
duced for both Euclidean and general metric spaces. Sec-
tion 5 describes a procedure for searching on the Distrib-
uted Antipole Tree. In Section 6 clustering management is
described. In Section 7 experiments on large datasets are re-
ported. Finally, Section 8 concludes the paper and suggests
future research directions.

2 Related Works

Large scale clustering is one of the widely used mining
and indexing techniques.

Antipole Tree belongs to the class of hierarchical clus-
tering algorithms such as BIRCH [73], BIRCH* [32] and
CURE [38]. BIRCH [73] uses a threshold on the clusters
radius and organizes the data in a CF-tree. Such tree is
used to guide data points insertions. BIRCH* [32] extends
BIRCH to general metric spaces. Each leaf node stores the
centroid, the radius, the size of the cluster and the rowsum
of the centroid. rowsum is the summation of the square
distances from a point to each element of the cluster. In
order to maintain cluster the p farthest (resp. closest) ele-
ments to the centroid and their rowsum are stored. Each
internal node stores representative elements of its subtrees
clusters. The p farthest elements are candidates to be the
new centroids of two clusters merging. On the other hand,
the p elements closest to the centroids are candidates to be
the new centroids when dynamic insertion is executed. In
Euclidean spaces, an interesting algorithm is BFR (Bradley-
Fayyad-Reina) [28]. It is a generalization of k-means [52].
Each cluster has a core of points (discard set) definitively
belonging to it. There are also partial aggregation of points
(compression set) which will be assigned to the closest clus-
ter. Each aggregation of points (discard or compression) is
represented by the following statistics: the size of the clus-
ter, the vector of the summations of each coordinate and
the vector of the summations of the square of each coordi-
nate. Such information is sufficient to compute the center of
gravity and the standard deviation (radius). This is enough
to evaluate the area in which most of the points in the cluster
are located. Other revelent cluster algorithms are for exam-
ple DBSCAN [27], CLIQUE [3], WaveClusters [65], and
CLARANS [56]. A survey is given in [40].

In [71, 26] parallel versions of DBSCAN and k-means
algorithms are proposed, respectively. Both algorithms pro-
ceed in the same way. Data are clustered in a central site
and distributed among all processors. Central site data may
be organized in suitable data structure such as R*-tree [10].
Parallel algorithms for hierarchical clustering are proposed
in [58].

In distributed environments, data are located in differ-
ent independent sites and can not be collected to a cen-
tral site. On the other hand, the central site can aggregate



partial information coming from nodes to perform global
computation such as clustering. The outcome of the cen-
tral site elaboration are then broadcasted to all nodes which
may compute local clusters fragments. In [5, 45] a distrib-
uted density-based clustering algorithm which makes use
of DBSCAN [27] is proposed. In [69] a distributed ver-
sion of the k-means clustering is presented. In this context
each agent contains a subset of the attributes of n entities.
The goal is to obtain k clusters of entities maintaining pri-
vacy and security. This means that, for each entity, every
agent knows its cluster and only those attributes associated
with that agent. Other distributed density based algorithms
are proposed in [70, 48]. Similar distributed clustering ap-
proaches which take into account constraints on the type of
information that nodes may share are proposed in [46, 34].

Mobile wireless networks management strongly requires
efficient distributed clustering [33, 50, 8, 51, 4, 4]. In these
models network topology may change. Moreover, often the
network must be self organizing and a leader node may not
be required.

Clustering is also a basic step in indexing large amount
of data to perform efficient search and management. The
Antipole Tree is a recently proposed structure which has
been shown to efficiently accomplish such tasks. The struc-
ture combines and extends ideas from the M-Tree [24, 23],
the Multi-Vantage Point structure [13] and the FQ-Tree [6].

The FQ-Tree [6], an example of a structure using pivots
(see [22] for an extended survey), organizes the items of a
collection ranging over a metric space into the leaves of a
tree data structure. FQ-Trees maintains a list of reference
objects and their distances from all objects in the data set.

M-Trees [24, 23] are dynamically balanced trees. Each
parent node corresponds to a cluster with a radius and every
child of that node corresponds to a subcluster with a smaller
radius.

VP-Trees [68, 72] organize items coming from a met-
ric space into a binary tree. The items are stored both in the
leaves and in the internal nodes of the tree. The items stored
in the internal nodes are the “vantage points”. The process-
ing of a query requires the computation of the distance be-
tween the query point and some of the vantage points.

The Multi-Vantage-Point tree [13] is an intellectual de-
scendant of the vantage point tree and the GNAT [14] struc-
ture. The fundamental idea is that, given a point p, one
can partition all objects into m partitions based on their dis-
tances from p, where the first partition consists of those
points within distance d1 from p, the second consists of
those points whose distance is greater than d1 and less than
or equal to d2, etc.

Another relevant recent work, due to Chávez et al. [21],
proposes a structure called List of Clusters. Such list is con-
structed in the following way: starting from a random point,
a cluster with bounded diameter (or limited number of ob-

jects) centered in that random point is constructed. Then
such a process is iterated by selecting a new point, for ex-
ample the farthest from the previous one, and constructing
another cluster around it. The process terminates when no
more points are left.

In all the above methods, triangle inequality is used to
prune the tree during the search. Antipole Tree uses a sim-
ilar idea except that the reference objects are the centroids
of clusters.

Concerning Euclidean spaces a widely used data struc-
ture, R-Tree, was proposed in [39]. The objects are en-
closed in minimum bounding rectangles. The hierarchical
division of the space in rectangles is represented in the tree.
Given a query Q, during the search, subtrees corresponding
to rectangles which do not intersect Q are pruned. Other
relevant results on indexing data structures are presented
in [15, 25, 31, 36, 64, 63, 67, 55].

Several works have been done in distributed indexing
structure. In [43] parallel Quadtree is used to join distrib-
uted data. In [47] a distributed version of the R-tree in
multi-disk machine is proposed. Equal distribution of nodes
in the disks is achieved. In [49] a parallel version of R-tree
with data distributed among several computers is proposed.
One selected processor stores only R-tree internal nodes.
Leaves are stored in the remaining computers. An extension
in which processors are allowed to contain internal nodes is
proposed in [62]. Versions which support join operations
on the base of the spatial access to objects were proposed
in [62, 54, 53].

3 The Antipole Tree Clustering in Euclidean
and General Metric Spaces

The Antipole Clustering [19] of bounded radius σ is per-
formed by a recursive top-down procedure starting from the
given finite set of objects S and checking at each step if a
given splitting condition Φ is satisfied. If this is not the case,
then splitting is not performed, the given subset is a cluster,
and a centroid having distance approximatively less than σ
from every other object in the cluster is computed by the
procedure described in Section 3.1.

Otherwise, if Φ is satisfied then a pair of objects (A,B)
of S called the Antipole pair is generated by the algorithm
described in Section 3.2. It is used to split S into two subsets
SA and SB obtained by assigning each object O of S to the
subset containing the endpoint of the Antipole (A, B) clos-
est to O. The splitting condition Φ states that dist(A, B) is
greater than the cluster diameter threshold corrected by the
error coming from the Euclidean case analysis described
in Section 3.3. The tree obtained by the above procedure
is called an Antipole Tree (the pseudo-code is reported in
Fig. 1). All nodes are annotated with the Antipole endpoints



and the corresponding cluster radius; each leaf contains also
the 1-median of the corresponding final cluster.

In Euclidean spaces, the construction of the Antipole
Tree differs from the one reported in Fig. 1 in the Antipole
pair computation (see Section 3.3). This is obtained by
replacing the procedure APPROX ANTIPOLE with the
procedure APPROX DIAGONAL of Fig. 5. Moreover,
the centroid of each cluster is the center of the enclosing
box (see Section 3.3).

The Antipole Tree Clustering Algorithm

BUILD(S, σ)
1 Q ← APPROX ANTIPOLE(S);
2 if Q = ∅ then // splitting condition Φ fails
3 T.Centroid ← APPROX 1 MEDIAN(S);
4 T.Radius ← maxx∈S dist(x, Cluster .C)
5 T.Cluster ← S;
6 return T ;
7 end if;
8 {A,B}← Q;
9 SA ← {O ∈ S|dist(O, A) < dist(O, B)};

10 SB ← {O ∈ S|dist(O, B) ≤ dist(O, A)};
11 T.left ← BUILD(SA,σ);
12 T.right ← BUILD(SB ,σ);
13 return T ;
14 END BUILD.

Figure 1. The Antipole Tree Clustering algo-
rithm.

3.1 1-Median computation in general
metric spaces

In this Section, a randomized algorithm for the approx-
imate 1-median selection [17] is reported. It is an im-
portant subroutine in the Antipole Tree construction. It is
based on a tournament played among the elements of the
input set S. At each round, the objects which passed the
preceding turn are randomly partitioned into subsets, say
X1, . . . , Xk. Then, each subset Xi is locally processed by
a procedure which computes its exact 1-median xi. The ob-
jects x1, . . . , xk move to the next round. The tournament
terminates when a single object x is left, that is the final
winner. The winner approximates the exact 1-median in S.
Fig. 2 contains the pseudocode of this algorithm. The local
optimization procedure 1-MEDIAN (X) returns the exact
1-median in X . A running time analysis (see [17] for de-
tails) shows that above procedure takes time t

2n + o(n) in
the worst-case. An optimization in terms of precision of
1-median computation can be found in [18].

The approximate 1-Median selection algorithm

1-MEDIAN (X)
1 for each x ∈ X do
2 Sx ←

P
y∈X dist(x, y);

3 Let m ∈ X be an element
such that Sm = minx∈X(Sx);

4 return m

APPROX 1 MEDIAN (S)
1 while |S| > threshold do
2 W ← ∅;
3 while |S| ≥ 2τ do
4 Choose randomly a subset T ⊆ S, with |T | = τ ;
5 S ← S \ T ;
6 W ← W ∪ {1-MEDIAN (T )};
7 end while;
8 S ← W ∪ {1-MEDIAN (S)};
9 end while;

10 return 1-MEDIAN (S);

Figure 2. The 1-Median selection algorithm.

3.2 The Approximate Diameter (An-
tipole) Computation in General Met-
ric Spaces

The diameter computation problem or furthest pair prob-
lem is to find the pair of points (A,B) in S such that
dist(A,B) ≥ dist(x, y), ∀x, y in S.

As observed in [44], a metric space where all distances
among objects are set to 1 except for one (randomly cho-
sen) which is set to 2, can be constructed. In this case any
algorithm that tries to give an approximation factor greater
than 1/2 must examine all pairs, so a randomized algorithm
will not necessarily find that pair.

Nevertheless, a good outcome in nearly all cases is ex-
pected. A randomized algorithm [19] inspired by the one
proposed for the 1-median (see Section 3.2) is reported. In
this case, each subset Xi is locally processed by a procedure
LOCAL WINNER which computes its exact 1-median xi

and then returns the set Xi, obtained by removing the el-
ement xi from Xi. The elements in X1 ∪ X2 . . . ∪ Xk

are used in the subsequent step. The tournament terminates
when a single set is left, X , from which the final winners
(A,B), as the furthest objects in X , are obtained. The pair
(A,B) is called the Antipole pair and their distance repre-
sents the approximate diameter of the set S.

The pseudocode of the Antipole algorithm
APPROX ANTIPOLE, similar to that of the 1-Median
algorithm, is given in Fig. 3. Given an input set of size
n ∈ N, a constant tournament size τ ≥ 3, and a threshold
ϑ = o(

√
n), the Antipole selection algorithm performs

τ(τ−1)
2 n + o(n) distance computations. A faster (but

less accurate) variant of APPROX ANTIPOLE is given
in [19, 18].



The approximate Antipole selection algorithm

LOCAL WINNER(T )
1 return T \ 1-MEDIAN(T );
2 END LOCAL WINNER

FIND ANTIPOLE(T )
1 return P1, P2 ∈ T such that

dist(P1, P2) ≥ dist(x, y)
∀x, y ∈ T ;

2 END FIND ANTIPOLE

APPROX ANTIPOLE(S)
1 while |S| > threshold do
2 W← ∅;
3 while S ≥ 2τ do
4 Choose randomly a subset T ⊆ S : |T | = τ ;
5 S ← S \ T ;
6 W ← W ∪ {LOCAL WINNER(T )};
7 end while
8 S ← W ∪ {LOCAL WINNER(S)};
9 end while

10 return FIND ANTIPOLE(S);
11 END APPROX ANTIPOLE

Figure 3. The pseudocode of Antipole Algo-
rithm. τ is the tournament size.

3.3 Sequential Approximate Diameter
Computation in Euclidean Spaces

In this Section, an approximation algorithm for the ap-
proximate diameter computation of a finite set of points in
the Euclidean plane is proposed. Several studies in the lit-
erature [1, 7, 41, 20] have provided efficient algorithms for
the approximate diameter computation in multidimensional
Euclidean Spaces. The proposed approach can be regarded
as the binary search version of [1]. For the sake of sim-
plicity, let’s start with a finite set of points in the plane
S. The endpoints of an approximate diameter constitute
the Antipole. An Antipole of S is computed as follows.
Let (PXm , PXM

), (PYm , PYM
) be the four points of S hav-

ing minimum and maximum Cartesian coordinates: the so
called minimum area bounding box BBox. Notice that such
four points belong to the convex hull of the set S and all of S
is included in the rectangle bounded by (PXM

.x− PXm .x)
and (PYM

.y − PYm .y). The two endpoints (A,B) of the
diameter of such four points constitute the Antipole. Let
Diagonal be the longest diagonal in BBox and Diameter
be the exact diameter of S. The Antipole distance (called
Pseudo Diameter) is not less than Diagonal/

√
2. This

yields Pseudo Diameter
Diameter ≥ 1√

2
proving that the approxima-

tion ratio in the plane is 1− 1/
√

2.
Next, a generalization of this method is reported. It

gives an approximation algorithm able to obtain an expo-
nentially arbitrary low approximation ratio δ for the real di-

Figure 4. These pictures show the worst
cases in the first three iterations of the algo-
rithm.

APPROX DIAGONAL(S, δ)
1 Let BBox = {PXm , PXM

, PYm , PYM
}

be the minimum bounding box of S;
2 V ← {{S}};
3 for i = 1 to d π

4×arccos(1−δ) − 1e do

4 V ′ = ROTATE SET
�

V, π

2i+1

�
;

5 Let BBox π
2i+1

= {PXm , PXM
, PYm , PYM

}
be the minimum bounding box of the rotated sets in V ′;

6 V = Set catalog of V ′;
7 BBox = BBox ∪ BBoxi;
8 end for
9 return FIND ANTIPOLE(BBox);

Figure 5. Algorithm for the Pseudo-Diameter
Computation.

ameter (see the pseudocode in Fig. 5). A π/4 rotation of
the Cartesian coordinates is performed. It implies a bisec-
tion of the axes, and compute the maximum and minimum
coordinate points for such two new axes. 8 points are ob-
tained. Let (A, B) be the diameter of this set. It is easy
to see (middle picture in Fig. 4) that dist(A, B)/ cos π

8 >
Diameter. By iterating the bisecting process d times,
dist(A,B)/ cos π

2d+2 > Diameter. Therefore the approx-
imation ratio introduced by the algorithm is:

δ =
|Diameter − Pseudo Diameter|

Diameter
≤

∣∣∣1− cos
π

2d+2

∣∣∣ .

Hence, the following conclusion holds:

Theorem 3.1 Let S be a set of points in the plane
and let 0 < δ ≤ 1 − √

2/2. Then a call to
APPROX DIAGONAL(S, δ) returns an Antipole
pair (A,B) (Pseudo Diameter) which approximates the
diameter with a error bounded by δ. ¥

4 Distributed Antipole Construction in
Euclidean and General Metric Spaces

In this Section, a distributed version of the Antipole
Clustering algorithm (see Section 3) is proposed.



Let assume n be the number of nodes storing a finite
set S of m objects belonging to an Euclidean or general
metric space. Suppose that, there is a specific interconnec-
tion topology. Nodes communicates through messages and
each message is correctly transmitted to a unique succes-
sor (which may have several predecessors). There is one
designated final node f aggregating the results of all local
computations. f will also broadcasts the result of this ag-
gregation to all nodes. Clustering is locally performed on
the basis of the broadcasted data. This will produce a final
set of clusters piecewise distributed among the nodes.

The Distributed Antipole Clustering (DAC) algorithm
proceeds as follows.

4.1 Distributed Antipole Construction in
Euclidean spaces

Each node j computes the enclosing box
{P j

Xm
, P j

XM
, P j

Ym
, P j

YM
} of its local set of points Sj .

Each local enclosing box is passed to the successor node
which will merge all received enclosing boxes with its
local enclosing box. This merging is nothing else than the
enclosing box of the enclosing boxes. It is immediate to
see that the final node f will contain the global enclosing
box {PXm , PXM , PYm , PYM }. f computes the farthest
pair (global Antipole) of points (A,B) in this enclosing
box. If dist(A,B) is smaller than the cluster threshold
then a termination message is broadcasted to all nodes.
Otherwise, cluster splitting is performed in the following
way. (A,B) is broadcasted to all nodes. Each node will
split the local data using the global Antipole (A,B). The
algorithm proceeds recursively until splitting is no longer
performed.

4.2 Distributed Approximate Diameter
(Antipole) Computation in General
Metric Spaces

If objects belong to a general metric space equipped
with a distance function then a slightly different procedure
must be used. Each node j computes the Antipole pair
(Aj , Bj) of its local set of objects Sj by the procedures AP-
PROX ANTIPOLE (see Fig. 3). Each local Antipole pair is
passed to the successor node which will add its local An-
tipole pair to the set of all received Antipole pairs. The fi-
nal node f will computes the farthest pair (global Antipole)
(A,B) of objects in the set of all local Antipole pairs. The
algorithm will proceed as in the Euclidean space.

5 Efficient Distributed Searching in Metric
Spaces

Range and k-nearest neighbor searching are core prob-
lems in knowledge discovery. In order to efficiently per-
form these searches clusters and centroids may be used to
prune the process using triangle inequality. More precisely
if |dist(q, c)−r| > t then every element x in the cluster with
centroid c and radius r has distance more than the threshold
t from the query q. Symmetrically, if dist(q, c) + r <= t
then every element x in this cluster is part of the query an-
swer. Otherwise if |r − t| =< dist(q, c) < r + t all the
elements in the cluster must be checked to see whether they
belong or not to the query answer.

Suppose that distributed data are clustered by the above
Antipole Tree algorithm. In order to do efficient search each
node in the tree must contain, for each cluster, the centroid
and the radius of the portion contained in nodes belonging
to the subtree rooted in that node.

Euclidean case. In Euclidean spaces, local and global
cluster centroids are simply centers of local and global en-
closing boxes. Similarly, local and global cluster radiuses
are semi-diagonals of the local and global enclosing boxes.
Each node j, for each cluster Ci, contains:

1. the local portion Cj
i of the cluster Ci;

2. the local centroid cj
i and radius rj

i of Cj
i ;

moreover, if j is not a leaf:

3. the centroid cJ
i and radius rJ

i of the union of all por-
tions of Ci stored in nodes belonging to the subtree J
rooted in j, Cj

i included.

Searching is performed in the following way. Starting from
the final site f (see Section 3), nodes j in the interconnec-
tion topology are visited. For each cluster Ci, the following
three cases may occur.

• If |dist(q, cJ
i )− rJ

i | > t (resp. dist(q, cJ
i )+ rJ

i <= t)
holds, then total pruning (resp. inclusion) of the por-
tion of Ci stored in J with root j is performed. In this
case cluster CJ

i will be ignored in the successive visit
of J .

• Otherwise, if |dist(q, cj
i )−rj

i | > t (resp. dist(q, cj
i )+

rj
i <= t) holds, then total pruning (resp. inclusion) of

the local portion Cj
i of Ci is executed.

• Otherwise, all the objects in Ci must be examined to
check whether or not they belong to the query answer.

The search proceeds until each cluster has been entirely
visited.



General metric spaces case. In general metric spaces,
local centroids can be computed by randomized tourna-
ments [19] and local radius can be evaluated. In order to
keep information about portion of clusters stored in subtrees
a technique developed in BIRCH* [32] for cluster merging
can be used. The idea is to try to minimize the number
of pairwise distance computations. Let rowsum(x) be the
summation of the square distances of object x from all ob-
jects in its cluster. Each node j, for each cluster Ci, con-
tains:

1. the local portion Cj
i of the cluster Ci;

2. the local centroid cj
i and radius rj

i of Cj
i ;

3. the set F j
i of the p farthest objects from cj

i in Cj
i to-

gether with the rowsumj
i of each element of F j

i ;

4. the cardinality N j
i of Cj

i ;

5. the rowsumj
i (c

j
i );

moreover, if j is not a leaf:

6. the centroid cJ
i and radius rJ

i of the union CJ
i of all

portions of Ci stored in nodes belonging to the subtree
J rooted in j, Cj

i included;

7. the set F J
i of the p farthest objects from cJ

i in CJ
i to-

gether with the approx rowsumJ
i of each element of

F J
i ;

8. the cardinality NJ
i of CJ

i ;

9. the approx rowsumJ
i (cJ

i ).

Items 1, 2 and 6 are used for range search as in the
Euclidean case. The remaining items are used for cluster
merging as follows. Suppose node j has predecessors l and
m. In order to merge two portions of a cluster Ci, CL

i and
CM

i , the rowsumJ
i of all x ∈ FL

i ∪ FM
i should be eval-

uated. An exact computation would be too expensive. To
overcome this problem an approximate evaluation can be
applied. In [32] the applicability of Pythagorean Theorem
to highly dimensional metric spaces is exploited. Let x and
yM

i be elements in FL
i and CM

i , respectively. Applying
Pythagorean Theorem to the triangles x,yM

i ,cL
i and cL

i , cM
i ,

yM
i it is possible to evaluate the approx rowsumJ

i of ele-
ments x in FL

i by the following expression:

approx rowsumJ
i (x) = approx rowsumL

i (x)+
+NM

i (dist2(x, cL
i ) + dist2(cL

i , cM
i ))+

+approx rowsumM
i (cM

i )
(1)

Similarly, let y and xL
i be elements in FM

i and CL
i , re-

spectively. Considering the triangles xL
i ,y,cM

i and cL
i , cM

i ,

xL
i yields to the following evaluation of approx rowsumJ

i

of elements y in FM
i :

approx rowsumJ
i (y) = approx rowsumM

i (y)+
+NL

i (dist2(y, cM
i ) + dist2(cL

i , cM
i ))+

+approx rowsumL
i (cL

i )
(2)

The element in CJ
i with minimum approx rowsumJ

i is
the new centroid cJ

i . The cardinality NJ
i = NL

i + NM
i .

The new centroid cJ
i is passed back to l and m. Each

of them recursively computes their p farthest objects from
cJ
i together with their approx rowsum. Each node q in this

recursion sets:

• rQ
i to be the maximum distance received;

• FQ
i to be the set of the p objects, among the received

2p, farthest from cJ
i ;

• the rowsum of elements in FQ
i are computed by ap-

proximation formulas 1 and 2 applied to the children
of q.

The total merging of all cluster fragments can be ob-
tained by iterating pairwise merging of subtrees and of local
cluster with subtrees.

Searching proceeds as in the Euclidean case.

6 Distributed Dynamic Clustering Manage-
ment in Metric Spaces

In this Section we will briefly describe how dynamic
maintenance of clusters in the above models is achieved.
New points are added to the original set and decision about
which clusters are assigned to each point must be taken.
This may imply update of clusters parameters.

Euclidean case. One very simple solution is the fol-
lowing. Starting with the final node f and following the
connection tree, each added element is assigned to a cluster
portion (local or subtree) according to center vicinity. This
may involve straightforward enclosing box, center and ra-
dius updating.

A more elaborate technique may use Bradley-Fayyad-
Reina (BFR) [28] methodology for dynamic management
of Euclidean clusters. In this case center of gravity and
standard variation of each cluster are maintained. Added
elements are assigned on the basis of Mahalanobis radius
evaluation of cluster vicinity.

General metric spaces case. In the case of general
metric spaces, following the methodology of BIRCH* ex-
tended with randomized tournaments techniques, dynamic
clusters management proceeds as follows. Add to the para-
meters of each node an additional information giving the q
most ”central” elements in each cluster. These elements are



candidates to become the new center when new elements
are added to the cluster portion. This may happen since
rowsum of elements may change their ordering after new
elements insertion. On the other hand, if an element y is
added to CJ

i , rowsumJ
i (x) can be easily updated by just

adding dist2(x, y). Moreover, the rowsumJ
i of the newly

added element y may be estimated by applying Pythagorean
Theorem to the triangle y, cJ

i , z where dist(z, cJ
i ) = rj

i :

approx rowsumJ
i (y) = NJ

i (rj
i )

2 + NJ
i dist2(cJ

i , y)
(3)

Moreover, if dist(cJ
i , y) > rj

i then radius must be up-
dated.

Finally the initialization and propagation of the q most
”central” elements in each cluster is described. Initially, in
each local cluster fragment a randomized tournament for
centroid computation will produce the final q winners in-
cluding the approximate centroid. rowsum of these central
elements is computed.

Concerning propagation of these q elements, following
Section 5, the centroid of the father node is calculated using
the approx rowsum formulas 1 and 2. This centroid is
passed to the subtrees which will return the p farthest ele-
ments together with the q closest elements. As in Section 5,
the approx rowsum of these new elements are calculated
by 1 and 2.

Periodically the system can check if the radius of a cer-
tain cluster exceeds some given threshold, then a splitting
global Antipole procedure can be applied to that cluster, and
the relative updates are executed.

7 Experimental Analysis

In this section experimental results on some of the pro-
posed algorithms are presented. Experiments show a good
performance in terms of speed-up, scalability and network
traffic.

Simulation was implemented in C++ on a Pentium IV
3GH with 512MB RAM under Windows XP Professional
Edition Operating System. The simulator emulates a net-
work composed by a maximum of 10 workstations con-
nected to each other as a binary tree. An algorithm is com-
posed of sequential and parallel parts. The parallelism is
simulated by running each parallel part of the algorithm in
a different workstation. The parallel time is the maximum
running time taken over all workstations. The total running
time is obtained by summing the parallel and the sequential
time.

Analysis was performed on both synthetic (105 and 106

elements in R20) and real data (105 biosequences with av-
erage sequence length 80 taken from NCBI1 and 45 × 102

1http://www.ncbi.nlm.nih.gov/

words taken from Linux dictionary). Fig. 6 reports the error
of the approximate diameter computation compared to the
exact one. The error, which was evaluated by varying the
number of workstations, does not increase when the num-
ber of workstations increases. Comparison with the sequen-
tial Antipole Tree Clustering can be deduced by the sin-
gle workstation behavior. Experimental evidence of the se-
quential Antipole Tree performance in searching is reported
in [19].

Figs. 7, 8 and 9 report scalability, speed-up and net-
work traffic by using different input data, respectively. Each
workstation has the same input size. Therefore by increas-
ing the number of workstations the total amount of data lin-
early grows. Notice that an optimal scalable algorithm gives
a constant running time when the number of workstations
grows.

Speed-up and Network traffic were evaluated by fixing
the total amount of input data and by varying the number
of workstations. The speed-up is defined as the ratio be-
tween the running time of the sequential and the parallel
parts of the algorithm. The best theoretical speed-up (linear
speed-up) is equal to the number of workstations. However
in some cases the speed-up can be super-linear due to the
reduced use of memory.
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Figure 6. Error in Diameter Computation

8 Conclusions and Future work

A simple and efficient distributed version of the An-
tipole Clustering algorithm for general metric spaces was
presented. The Antipole Tree structure belongs to the “bi-
sector tree” class. It recursively partitions a set of objects
following vicinity to the endpoints of a pseudo-diametrical
pair called Antipole until cluster radius exceeds a given
threshold. The Antipole pair is computed by a suitable ran-
domized tournament. In the proposed distributed versions
elements are stored in network nodes and global clustering
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Figure 7. Scalability, speed-up and network
traffic on 106 points in R20

is achieved by merging local Antipole information. Parame-
ters describing local and subtrees clusters are stored in the
network nodes. This allows efficient searching and cluster
management. A mixture of randomized tournaments, BFR
and BIRCH* clusters dynamic maintenance techniques is
used. Experiments on both real and synthetic data show
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Figure 8. Scalability, speed-up and network
traffic on 45× 103 Linux words.

the good behavior of the proposed algorithms. Future work
will focus on the tuning of the cluster radius threshold with
respect to the number of processors and network topology.
Finally, adding vertical fragmentation to deal with partial
knowledge of attributes will be also considered.
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Figure 9. Scalability, speed-up and network
traffic on 105 biosequences.
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