
Enhancing L2 Organization for CMPs with a Center Cell

Chun Liu Anand Sivasubramaniam Mahmut Kandemir Mary Jane Irwin
Dept. of Computer Science and Eng.,

The Pennsylvania State University,
University Park, PA 16802.

{chliu,anand,kandemir,mji}@cse.psu.edu

Abstract

Chip multiprocessors (CMPs) are becoming a popular
way of exploiting ever-increasing number of on-chip tran-
sistors. At the same time, the location of data on the chip
can play a critical role in the performance of these CMPs
because of the growing on-chip storage capacities and the
relative cost of wire delays. It is important to locate the data
at the right place at the right time in the on-chip cache hi-
erarchy. This paper presents a novel L2 cache organization
for CMPs with these goals in mind.

We first study the data sharing characteristics of a wide
spectrum of multi-threaded applications and show that,
while there are a considerable number of L2 accesses to
shared data, the volume of this data is relatively low. Con-
sequently, it is important to keep this shared data fairly close
to all processor cores for both performance and power rea-
sons. Motivated by this observation, we propose a small
Center Cell cache residing in the middle of the processor
cores which provides fast access to its contents. We demon-
strate that this cache organization can considerably lower
the number of block migrations between the L2 portions that
are closer to each core, thus providing better performance
and power.

1 Introduction

With deeper levels of integration, the relatively high cost
of going to off-chip memory is forcing chip designers to
provision large on-chip cache structures. For instance, the
IBM Power5 [9] has 1.9 MB L2 cache, and Intel’s Ita-
nium2 [18] is projected to have 24MB of on-chip L3 cache.
With such large caches, the uniformity of cache access
latency, which computer architects have traditionally as-
sumed, breaks down. The signals have to traverse longer
wires [17], making it more expensive to access some parts
of the cache compared to the others. Exposing this non-
uniformity of cache accesses to the micro-architecture is
becoming increasingly important, so that one can spatially
place the data items into these structures based on applica-
tion access patterns. This has led to recent investigations
into optimizing data placement for these large Non Uniform
Cache Architectures (NUCA) [19].

At the same time, Chip-Multiprocessors (CMPs) are be-
coming a popular and cost-effective technique for exploiting
the growing transistors on a single die. We already have sev-
eral dual core commercial offerings in the market from Intel,
AMD and IBM, and 8 cores from Sun’s Niagara project[15].

These multi-core architectures demand even more on-chip
cache real estate to sustain their processing needs, and the
need for larger on-chip L2/L3 (in this paper, without loss of
generality we assume that the L2 cache is the last level of
the hierarchy before going off-chip) is expected to become
more acute. One cannot escape the non-uniformity in ac-
cessing different portions of this space. The non-uniformity
is not just in accessing the different portions of the cache
from a single core, but also in the access times to a single
location from the different cores. This makes the design
of the L2 cache (where do we allocate the cache space on
chip? how should the cores and cache space be relatively lo-
cated?), and its usage (where should a data item be placed?
how do we move data items across this space spatially and
temporally?) extremely critical in CMPs.

The issue of data placement to locate frequently accessed
items in the cache cells with lower access times has been
explored in [19]. More recently, there have been propos-
als to exploit NUCA for CMPs. Chishti et al. [8] extend
their earlier idea [7] by replicating tags to facilitate look
up. However, there needs to be a protocol to maintain co-
herence between these replicas, and the global wires run-
ning these protocols are also going to be long. Beckmann
and Wood [5] propose a layout for cache space organiza-
tion where different portions are closer to different cores,
and suggest schemes for migrating the blocks between these
cores. While this scheme does not replicate the blocks (and
does not require coherence maintenance at the L2 level), the
center portion which is expected to eventually contain the
shared blocks (across the cores), is equally far from all the
cores. As our results will show, shared data accesses consti-
tute a substantial number of L1 misses, suggesting we might
want to keep the shared portion equally close to all the cores
(rather than equally far from all the cores).

Our approach on the other hand comes from studying
the characteristics of twenty two multi-threaded applica-
tions (including NAS parallel benchmarks, SpecOMP [1],
and commercial workloads such as Apache and SPECJbb
[20]). A detailed characterization of the L2 access patterns
of these applications reveals that a substantial number of
L2 accesses are to shared blocks, making it important to
place them equally close to all the cores. Further, while
the number of accesses is substantial, the number of blocks
themselves that are widely shared is rather low. These re-
sults suggest that we can provide a relatively small L2 space
(which we refer to as the Center Cell) - sized at 64KB - at
the center, with the processing cores around this region. The
rest of the L2 space, though shared, is partitioned among the
cores and is intended to mainly hold privately-accessed data
items. We present details on this shared L2 organization

1
1-4244-0054-6/06/$20.00 ©2006 IEEE

for a four-core CMP, together with statistics on the access
times to different portions of the L2 from each core. There
is a wide design space for exploitation of this organization
based on where to place data items, how to search for their
presence, how to migrate them based on access patterns (to
exploit non-uniformity in access latencies), and what to re-
place. After pointing out the design choices, this paper then
conducts a detailed evaluation of the proposed architecture
using the twenty two applications to show the performance
and power benefits of our approach.

The rest of this paper is organized as follows. Section
2 studies the applications and characterizes their L2 access
behavior. In Section 3, we present details of our Center
Cell based shared L2 organization, together with the design
choices for exploiting this architecture. An evaluation of
this architecture is conducted in Section 4. Section 5 dis-
cusses the related work on non-uniform cache architectures.
Finally, Section 6 summarizes the contributions of this pa-
per and identifies directions for future work.

2 Motivation

The first consideration in our search for a suitable L2 or-
ganization is finding a layout, based on application charac-
teristics. Specifically, we would like to understand the shar-
ing behavior of multithreaded applications at the L2 level,
to figure out how much data is really (and actively) shared.

2.1 Workloads

We use a large number of diverse multithreaded bench-
marks for this study:

• Scientific Applications: We use both NAS Parallel
Benchmarks (NPB 3.2) [2] and SpecOMP [10]. The
NAS Parallel Benchmarks, derived from computa-
tional fluid dynamics (CFD) applications, are designed
to evaluate the performance of large parallel comput-
ers. The benchmarks include five kernels and three
pseudo-applications, and we use the Class A bench-
marks in our study. SpecOMP has been designed
by SPEC to evaluate shared memory multiproces-
sor (SMP) system performance for OpenMP, covering
eleven applications, and we use the Class M bench-
marks for our experiments.

• Commercial Applications: We use two server work-
loads including SPECJbb [20] and Apache. SPECJbb
evaluates the performance of server side Java by emu-
lating a three-tier client/server system (with an empha-
sis on the middle tier). It measures the performance of
the CPU, memory system, and the system scalability
by exercising the Java Virtual Machine (JVM), Just-
In-Time (JIT) compiler and some aspects of the op-
erating system. Apache is a widely used open-source
multithreaded HTTP web server. In this work, we use
Apache 4.0 for Sparcs and the SURGE web server
benchmark [3] as the client to initiate the requests.

All these benchmarks were run on the Simics [16] com-
plete system simulator with the SPARC target. Since our
primary interest is in the L2 accesses, we collected the L1
miss traces and used them in all our experiments in the in-
terest of simulation time. We collected the L2 cache access
traces for all the benchmarks using a simulated system with

Application L2 accesses per Simulated cycles per core
thousand instructions with perfect L2 (in millions)

bt.a 56.22 4,806
cg.a 127.21 2,167
ep.a 13.30 17,300
ft.a 134.88 1,865
is.a 177.45 1,168
lu.a 54.08 4,939

luhp.a 58.98 4,600
mg.a 89.44 2,976
sp.A 51.19 5,060
ua.a 27.25 9,303

310.wupwise 8.85 20,030
312.swim 103.61 2,084
314.mgrid 64.18 3,617
316.applu 15.33 28,075
318.galgel 11.87 25,335
320.equake 5.41 65,537

324.apsi 25.10 4,672
328.fma3d 63.08 4,205

330.art 4.15 6,322
332.ammp 3.23 34,515
SPECJbb 45.23 5,241
Apache 41.3 1,296

Average: 54.73 11,596

Table 1. Our applications and important
statistics.

4 cores, each with a private 16KB L1 cache. The L1 caches
are kept coherent using the MESI protocol.

For all the NAS Parallel benchmarks and SpecOMP
benchmarks, we marked the initialization phase of the
benchmarks at the source code level. Trace collection was
started 100 million instructions after the end of the initial-
ization phase to warm up the caches. We collected 400
million subsequent L1 misses for our studies, which was
roughly 2.2 GB in the compressed form for each applica-
tion. For the SPECjbb benchmark, since we have no precise
control to demarcate the initialization phase, we warmed up
the cache for the first 15 billion instructions, which cov-
ers the test, initialization, and terminal ramp-up phases. We
then collected 400 million L1 misses (during timing mea-
surement) for our experiments. In the case of Apache, we
started the trace collection after the SURGE [3] client has
successfully retrieved 600 web pages, beyond which point
the utilization of our CPUs reached almost 100 percent.

The collected trace for each application contains the ini-
tiator of the memory request, the physical and virtual ad-
dresses, the time elapsed (in cycles) since the last access
from that core, the size of the memory request, whether it
is a kernel or user access, instruction or data, read or write,
etc. The number of L2 accesses per thousand instructions
for each benchmark along with the number of simulated cy-
cles are given in Table 1.

2.2 Characterization

We examine the spatial and temporal L2 sharing behavior
of these applications using the above traces. In the following
results, we assume the L2 cache has infinite capacity since
we are interested in the application characteristics.

Figure 1 (a) illustrates the spatial sharing characteristics
of these benchmarks. The Y-axis plots the cumulative frac-
tion of L2 blocks, and the points ”s2”, ”s3”, and ”s4” on the
X-axis correspond to the fraction of total blocks in L2 that
are shared by 2, 3, and 4 cores respectively. Note that since
L2 is of infinite capacity, this sharing is across the entire run
of the experiment. The point marked as ”private” in Figure
1 (a) corresponds to the fraction of L2 blocks that are ever

2

accessed by only one core.
Although there are some individual differences across

these benchmarks, the general trend (the exceptions are
314.mgrid, lu.a, and luhp.a) we observe is that the percent-
age of blocks that are shared is a much smaller fraction of
the blocks that are privately accessed by a core. In fact, on
the average, the percentage of blocks ever shared by two or
more cores constitute only 36% of the total L2 blocks across
these twenty two benchmarks.

While the above observation may suggest that optimiza-
tions for sharing are not important, we note that the percent-
age of accesses to shared blocks paints a completely differ-
ent picture, as illustrated in Figure 1 (b). In fact, shared
accesses dominate the L2 accesses in many of the bench-
marks, averaging 78% of the total L2 accesses across our
twenty two benchmarks. This makes it essential to optimize
the latency for shared data accesses in L2.

It is possible that, despite this magnitude of shared block
accesses, the accesses from the different cores are tempo-
rally separated such that they could still be treated as vir-
tually private accesses to a core. In Figure 2, we plot the
temporal characteristics of accesses to shared blocks. In this
graph, we use the notion of a running distance. We define
the running distance as the number of accesses by a core to a
L2 block before it is accessed by another core. For instance,
D0 denotes that after a core accesses a block, the next ac-
cess to the same block is from another core. D1 denotes that
there is one more access from the same core, before another
core accesses it. Larger the running distance, the higher the
temporal locality from the same core, making it appear more
private than shared. As can be gleaned from Figure 2, fewer
than 15% of the running distances ever cross 4. Most run-
ning distances are lower than 3, with single touch accesses
(before another core touches the block) constituting a sig-
nificant fraction (over 30%) in many benchmarks. That is,
there is a high degree of active sharing in these benchmarks.

All these characteristics point out that latency of accesses
to shared blocks in L2 is very critical. It is not just there are
high number of accesses to such data, but the accesses from
different cores are temporally interleaved (i.e., the blocks
are actively shared). However, the leverage that we may
have towards optimizing accesses for such data is the obser-
vation that the number of blocks that fall in this category is
relatively low. These observations motivate our L2 organi-
zation described in the next section.

3 Center-Cell based L2 Organization and
Data Lookup

The results from the previous section show that the num-
ber of L2 blocks shared among processors is not very high,
whereas the number of accesses to these shared blocks is
high. Therefore, while the L2 space allocated to shared
blocks can be small, its position within L2 is critical1. In
particular, since some of these blocks are widely shared
across processors (see Figure 1), it may not be a good op-
tion to place them close to only a single processor or into a
location which is far from all processors (as in the case of
[5]).

Based on these observations, we propose a new L2 orga-
nization depicted in Figure 3. In this organization, the L2

1Note that our L2 is shared, and therefore, a shared block can be any-
where in the L2. However, we want to place actively shared blocks into a
certain cell (center cell) for improving performance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

private s2 s3 s4

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

apache

specjbb

bt.a

cg.a

dc.a

ep.a

ft.a

is.a

lu.a

luhp.a

mg.a

sp.a
ua.a

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

328.fma3d

330.art

332.ammp

average

(a) Cumulative percentage of L2 blocks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

private s2 s3 s4

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

apache

specjbb

bt.a

cg.a

dc.a

ep.a

ft.a

is.a

lu.a

luhp.a

mg.a

sp.a
ua.a

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

328.fma3d

330.art

332.ammp

average

(b) Cumulative percentage of accesses to
L2 blocks (private or shared by 2,3,4)

Figure 1. Percentage of L2 blocks and ac-
cesses. ”s2”, ”s3” and ”s4” on X-axis
indicate that the number of cores shar-
ing/accessing the blocks is 2, 3 and 4 respec-
tively. Each graph is drawn as a cumulative
percentage starting from the ”Private” case.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D0 D1 D2 D3 D4 D5+

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

324.apsi

328.fma3d

330.art

332.ammp

apache

bt.a
cg.a

ep.A

ft.a

is.a

jbb.gz

lu.a

luhp.a

mg.a

sp.A

ua.a

average

Figure 2. Running distance distribution of the
shared blocks in L2. X axis shows the run-
ning distance, and the Y axis shows the cu-
mulative percentage of occurrences of that
running distance.

3

space is divided into multiple cells of equal size, and one
cell (of 64KB), referred to as the center cell, is reserved for
the shared blocks. The statistics presented in the previous
section suggest that this small capacity for the center cell
should be sufficient to capture most of the actively shared
blocks. Note that this shared cell is placed in the middle to
enable fast access from every processor core in the archi-
tecture. The remaining cells are distributed in the L2 space
as illustrated in Figure 4 from the perspective of a single
processor. As far as the access latencies are concerned, the
cells form three non-overlapping rings around a processor
core. The first ring, Ring-0, is the fastest one. It contains
18 cells, with access latencies ranging from 4 cycles to 12
cycles. The second ring, Ring-1, accommodates 25 cells,
with a maximum latency of 20 cycles. Finally, the outer-
most ring, Ring-2, includes the remaining 21 cells, with a
maximum access latency of 32 cycles. A cell residing in
any of these rings is referred to as the preferred cell for that
core; i.e., all these 64 cells are the preferred cells for that
core, whereas the remaining cells in the cache are termed
as the non-preferred cells. The goal in this design is to clus-
ter the privately-accessed data of each core into its preferred
cells to reduce access latency. Clearly, we want the most fre-
quently used blocks to reside in Ring-0 cells. Note that such
a design also enables the use of clustered tag [7], if desired,
to obtain a summary of the L2 tags to quickly determine if a
cache line exists in the preferred cells or not. Consequently,
both access latency and dynamic power consumption can be
cut down.

Core Interconnect

CORE
3

2
8

2
4

2
0

1
6

2
4

2
0

1
6

1
2

2
0

1
6

1
2

8

1
6

2
0

2
4

2
8

1
2

1
6

2
0

2
4

8
1
2

1
6

2
0

48
1
2

1
6

1
6

1
2

84

1
6

1
2

84

2
0

1
6

1
2

8

2
4

2
0

1
6

1
2

2
8

2
4

2
0

1
6

2
0

3
2

3
2

2
8

2
4

2
8

2
4

2
0

2
8

2
4

2
0

2
4

3
2

2
0

2
8

3
2

2
8

2
4

2
0

1
6

2
4

2
0

1
6

1
2

2
0

1
6

1
2

8

1
6

2
0

2
4

2
8

1
2

1
6

2
0

2
4

8
1
2

1
6

2
0

48
1
2

1
6

1
6

1
2

84

1
6

1
2

84

2
0

1
6

1
2

8

2
4

2
0

1
6

1
2

2
8

2
4

2
0

1
6

2
0

3
2

3
2

2
8

2
4

2
8

2
4

2
0

2
8

2
4

2
0

2
4

3
2

2
0

2
8

3
2

1
6

2
8

2
4

2
0

1
6

2
4

2
0

1
6

1
2

2
0

1
6

1
2

8

1
6

2
0

2
4

2
8

1
2

1
6

2
0

2
4

8
1
2

1
6

2
0

4 8
1
2

1
6

1
6

1
2

8 4

1
6

1
2

8 4

2
0

1
6

1
2

8

2
4

2
0

1
6

1
2

2
8

2
4

2
0

1
6

2
0

3
2

3
2

2
8

2
4

2
8

2
4

2
0

2
8

2
4

2
0

2
4

3
2

2
0

2
8

3
2

2
8

2
4

2
0

1
6

2
4

2
0

1
6

1
2

2
0

1
6

1
2

8

1
6

2
0

2
4

2
8

1
2

1
6

2
0

2
4

8
1
2

1
6

2
0

4 8
1
2

1
6

1
6

1
2

8 4

1
6

1
2

8 4

2
0

1
6

1
2

8

2
4

2
0

1
6

1
2

2
8

2
4

2
0

1
6

2
0

3
2

3
2

2
8

2
4

2
8

2
4

2
0

2
8

2
4

2
0

2
4

3
2

2
0

2
8

3
2

64KB
Center

Cell
CORE

1

CORE
2

low latency wire
connecting

point-of-entry
to center cell

CORE
0

preferred
cells

of core-0

point of
entry

Figure 3. Four-core 16MB L2 chip layout.

An important question at this point is how fast an access
to the center cell can be. There are two primary factors that
influence the access latency of a cell in this organization: its
capacity and its distance from the processor that accesses it.
In this case, the capacity does not present a problem since it
is really small (64KB). As far as the distance is concerned,
we assume the availability of a low latency long wire [4],
which is typically used for fast interconnects. We use ad-
ditional set of low latency wires, shown as the big “I” in
Figure 3, to connect the center cell to the point of entry of
the preferred cells. The results we obtained from using the
Berkeley Predictive Technology Model (BPTM) [6] to cal-
culate the wire delay for 3200um global wire at 25nm tech-
nology are shown in Table 2. Our calculations indicate that
the access latency for the center cell is 5 cycles at 10 GHZ.
Overall, the center-cell based L2 organization shown in Fig-
ure 3 provides very fast access to shared blocks (considering

28 24 20 16

24 20 16 12

20 16 12 8

16 20 24 28

12 16 20 24

8 12 16 20

4 8 12 1616 12 8 4

16 12 8 4

20 16 12 8

24 20 16 12

28 24 20 16

20

32

32 28

24

28

24 20

28

24

20 24

32

20

28 32

Ring 0

Ring 1

Ring 2

Point
of

Entry

Figure 4. Layout of the preferred cells and ac-
cess latencies as seen from a core’s perspec-
tive.

the fact that the fastest preferred cell has a latency of 4 cy-
cles as shown in Figure 4). As a result, we do not need to
migrate back and forth a shared block frequently between
different regions of L2, as in the case of prior work [5].

There are three critical issues that need to be addressed
in the context of this center cell based L2 organization: (1)
Placement: Where should a new (incoming) L2 block be
placed in the L2 space?; (2) Migration/Eviction: When/how
should a block be migrated within L2 based on variations in
interprocessor data access and sharing patterns? Also, what
happens to a block that needs to be replaced (evicted) from
a cell?; and (3) Search: How should we search for a block
in L2? The rest of this section discusses these issues in de-
tail. Our goal in studying these questions is to understand
the ways in which the access non-uniformity in this L2 or-
ganization can be exploited.

3.1 Placement

A placement scheme decides where to store a new block
coming from off-chip memory. While one can place it into
any randomly-selected cell in L2, a better option would be
something like a first-touch policy, where the block is placed
into one of the fastest cells (4 cycle latency) in the preferred
region of the core that brings it into L2. Since our early eval-
uation showed that the first touch policy is clearly superior
to the random placement policy, we use the former in all our
experiments.

3.2 Migration and Eviction

In this center cell based L2 architecture, a block can mi-
grate from one cell to another in two ways: access triggered
and eviction triggered. When a block is requested by a pro-
cessor, we may want to migrate it to a different cell than its
current one to better exploit non-uniform access latencies in
the future accesses. For example, while the block is in a pre-
ferred cell of a core, an access to it by another core moves it
to the center cell2. It is possible at this point that the center
cell is full, and consequently, a block needs to be evicted
from it to create space for the new block. Our approach
evicts the victim block to one of the lowest latency preferred
cells (i.e., 4 cycle cells) of the core that used the block in
question last time. This is an example of eviction triggered

2Another type of access triggered migration is to move a block from a
high latency cell to a low latency cell upon an request.

4

Material Technology W S Length T H Dielectric Delay

Cu 25nm 0.35um 0.35um 3200um 1.2um 0.15um 2.0 0.06ns (1 cycle)

Table 2. Important parameters for a 3200um low-latency wire at 25nm.

migration. In our architecture, an eviction triggered migra-
tion can cause subsequent evictions. For example, a block
evicted from the center cell into a preferred cell of 4 cycles
can cause another block from that cell to be evicted to a cell
of 8 cycles, and this in turn, can cause yet another block
from the 8 cycle cell to be evicted to a cell of 12 cycles, and
so on. Figure 5 illustrates this cascade evictions. Note that,
while, as explained above, these evictions can be triggered
by a block evicted from the center cell, they can also occur
when a new block coming to L2 displaces a block that re-
sides in the 4 cycle cell (i.e., as a result of placement), or
when a block coming from a high latency cell displaces a
block from a low latency cell.

24 20

20 16 12 8 8

4 816 12 8 4

16 12 8 420

28

24

20

A line to be installed

Victims

Figure 5. Cascade evictions of L2 blocks.

3.3 Search

In our L2 organization, data lookup can be performed in
different ways, depending on how tags and data are orga-
nized, each exhibiting a different trade-off between latency
and power consumption. In this work, we study two dif-
ferent schemes which we call CT (Clustered Tag) and DT
(Distributed Tag). Each scheme has its own tag/data orga-
nization. In the DT scheme, tag and data are stored close to
each other in the same cell. While it is possible to lookup
the requested data by probing the entire cache, this would
normally be very costly. A better option would be to first
search the data in nearby cells (i.e., the ones with low ac-
cess latency) and then expand the search to other cells upon
failure. This should work fine in principle due to locality
of data references. Based on this observation, in the DT
scheme, the requesting core probes its own preferred cells
(as will be discussed shortly in detail) and the center cell
first. In case of failure, the request is forwarded, by the cen-
ter cell, to the preferred cells of the other cores. The reason
that we employ the center cell for forwarding the request is
to avoid a potential race condition. It could so happen that
two cores start requesting the same block which sits in a
third core’s preferred cell. In such a case, if the center cell
does not keep track of all the outstanding requests to other
preferred cells, the first request will bring the block to the
center cell, while the second request will miss in the third
core’s preferred cell and will subsequently issue a request
to the off-chip memory. To prevent this from happening, the
center cell in our implementation maintains an outstanding

request queue (only for the requests directed to other pre-
ferred cells) so that the second request in question could be
suppressed if it hits in the outstanding request queue of the
center cell. In the rest of this paper, we refer to this search
strategy as CC.DT, which means center cell based organiza-
tion which uses distributed tags.

The behavior of this search scheme can be affected by
tuning the order in which different cells are looked up.
Specifically, we implemented three different variants of
CC.DT:

• Aggressive Search will start probing the non-preferred
cells immediately if the requested block is missing in
its Ring-0 (and in the center cell). This illustrated in
Figure 6(a).

• Moderate Search will start probing the non-preferred
cells only when the requested block is missing in its
Ring-1. This is shown in Figure 6(b).

• Conservative Search, shown in Figure 6(c), will start
probing the non-preferred cells only when the re-
quested block is missing in its Ring-3.

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70

cycles

re
ac

h
ab

le
 p

er
ce

n
ta

g
e

CC.CT

CC.DT (Aggressive)

CC.DT (Moderate)

CC.DT (Conservative)

Figure 7. Fraction of L2 cache that can be ac-
cessed under a given number of cycles.

There is a tradeoff between performance (lookup delay)
and power consumption among these three probing (search)
schemes. The aggressive search scheme is clearly preferred
from the performance angle. On the other hand, one can
also expect its power consumption to be very high. The con-
servative search scheme represents the other extreme where
latency can be very high (as accesses to preferred cells and
non-preferred cells are serialized). However, its power con-
sumption will be low in cases the requested block is caught
in Ring-1 of the requester. The moderate search strikes a
balance between these two extremes.

In the Clustered Tag scheme (denoted as CC.CT in our
discussion), tags are clustered together and stored in places
close to the core, similar to [7]. When a request comes to
a preferred/non-preferred region, we first search the tags to
determine the data cell in which the requested block resides,
which can be accomplished in 4 cycles, based on our layout.
Once this cell is located, we directly access it for retrieving
the block. In our implementation of CC.CT, however, we
still use the concurrent tag-data search for the center cell.

5

CORE

CORE

CORE

CORE

1

1

2

3

2 2

2

3 3

3

4

4 4

5

CORE

CORE

CORE

CORE

1

1

2

3

3 3

3

4 4

4

5

5 5

6

(a) CC.DT with Aggressive search (b) CC.DT with Moderate search
1. Probe both Ring-0 and center cell 1. Probe both Ring-0 and center cell
2. If miss in both, probe preferred Ring-1 2. If miss in both, probe preferred Ring-1
and all three non-preferred Ring-0 3. If still missing, probe preferred Ring-2
3. If still missing, probe preferred Ring-2 and all three non-preferred Ring-0
and all three non-preferred Ring-1 4. Probe all three non-preferred Ring-1 if needed
4. Probe all three non-preferred Ring-2 if needed 5. Probe all three non-preferred Ring-2 if needed
5. Bring data in through memory interface 6. Bring data in through memory interface

CORE

CORE

CORE

CORE

1

1

2

3

4 4

4

5 5

5

6

6 6

7

CORE

CORE

CORE

CORE

1

1

2

2 2

2

3 3

3

Tag Tag

TagTag

3

(c) CC.CT with Conservative search (d) CC.CT
1. Probe both Ring-0 and center cell 1. Probe the tags of preferred cells and center cell
2. If miss in both, probe preferred Ring-1 2. If miss, probe non-preferred tags
3. If still missing, probe preferred Ring-2 3. If miss in non-preferred cells, bring data through
4. Probe all three non-preferred Ring-0 memory interface (note: access could happen in any
5. Probe all three non-preferred Ring-1 of the rings, thus the corresponding latency value varies)
6. Probe all three non-preferred Ring-2
7. Bring data in through memory interface

Figure 6. The search (probing) strategies employed by CC.CT and by different variants of CC.DT

This is because (1) this cell is small and (2) its latency af-
fects the performance of all four cores. Consequently, in
CC.CT, when a core misses in L1, it first probes the center
cell and the tags of its preferred cells. If the request hits in
the center cell, only the center cell will be accessed. If the
tags of the preferred cells report a hit, the core needs to send
its request only to the cell that has the block. This approach,
depicted in Figure 6(d), tends to reduce unnecessary search
in other cells and can be beneficial from the dynamic energy
viewpoint.

Figure 7 shows the reachable cache percentage (i.e., the
fraction of L2 cache that can be accessed) with a given num-
ber of cycles. As we can see from the figure, among the
CC.DT schemes, more aggressive search options can cover
larger portion of the cache under the same latency value,
compared to the less aggressive search options. For exam-
ple, given 30 cycles, the aggressive, moderate, and conser-
vative search schemes can cover 60%, 40% and 25% of L2
cache, respectively. On the other hand, CC.CT performs
better than all the CC.DT variants beyond 12 cycles. But,
up to 12 cycles, CC.CT covers much less cache capacity
than all the CC.DT schemes due to its serial tag-data access.

Parameter Value

Instruction Set Sparc V9
CPU Cores 4 In-Order Single Issue cores
Core Speed 10GHZ

L1 I & D Caches 16KB, 4-way, 3 cycles
Center Cell 64KB, 4-way, 3 cycles

4 outstanding requests
L2 Cell 64KB, 4-way, 3 cycles

Total L2 capacity 16MB
L1,L2 cache block size 64 Bytes

Memory latency 200 cycles

Table 3. Simulation parameters.

4 Results

4.1 Experimental Parameters

The simulated system has 16MB+64KB shared L2 cache
with each core having 4MB preferred cells, and the center
cell is 64KB. As discussed before, the access latency to the
center cell from any of the cores is 5 cycles. The access
times to the preferred cells have already been explained (see
Figure 4). The rest of the simulation parameters are given
in Table 3.

The schemes that we are experimentally comparing are
summarized in Table 4. We have already described our

6

0%

20%

40%

60%

80%

100%

31
0.

wup
wise

31
2.

sw
im

31
4.

m
gr

id

31
6.

ap
plu

31
8.

ga
lge

l

32
0.

eq
ua

ke

32
4.

ap
si

32
8.

fm
a3

d

33
0.

ar
t

33
2.

am
m

p

ap
ac

he bt
.a

cg
.a

ep
.A ft.

a
is.

a jbb lu.
a

luh
p.

a
m

g.
a

sp
.A

ua
.a

av
er

ag
e

N
o

rm
al

iz
ed

 B
lo

ck
 M

ig
ra

ti
o

n CC.DT CC.Large

Figure 8. Normalized cache block migration
with CC.DT and CC.Large with respect to M.DT.

CC.CT and CC.DT schemes where we use a 64KB cen-
ter cell, with the difference being whether the tags are dis-
tributed or clustered. In the M.CT architecture, we do not
have a center cell, i.e., L2 has only preferred regions; each
is 4MB with their access latencies given in Figure 4. The
migration scheme automatically migrates the block to the
core accessing the block upon each request. Consequently,
under M.CT, a shared block can keep shuttling between the
preferred regions of the different cores. While the search
strategy is to serially probe tag and data in the case of
M.CT, the search is done in parallel for M.DT. The replace-
ment mechanism for M.CT/M.DT works the same way as
CC.CT/CC.DT, except that there is no center cell to be con-
sidered. Note that, like CC.DT, M.DT can also have differ-
ent search options such as Aggressive, Moderate, and Con-
servative.

Finally, in order to demonstrate that it is important for
the center cell to be equally close to all the cores, rather
than equally distant from them (as in [5]), we also introduce
one more scheme called CC.Large where the center cell is
much larger (4MB versus our default 64KB) with a longer
access latency (15 cycles from each core). In this scheme,
the preferred L2 regions have 3 MB for each core, with their
maximum latency now reduced from 32 to 24 cycles.

4.2 Reduction of Cache Block Migration

Our first set of results is intended to show that our ap-
proach can considerably reduce the number of block migra-
tions between the different parts of L2, since that can impact
both performance and power. Figure 8 shows the number of
migrations of CC.DT normalized with respect to M.DT. As
can be seen, by adding a center cell, we are able to drasti-
cally cut down the shuttling of blocks between the different
L2 regions. When a block in CC.DT is migrated to the cen-
ter cell, it remains there even when another core accesses
it, while in M.DT, the blocks would frequently move from
one preferred region to another. On the average, the center
cell saves about 63% of the block migrations. Note that we
achieve these savings with just a 64K center cell, and we do
not need a large center cell (as in CC.Large) to obtain such
drastic reductions (as is also illustrated in the same figure).

4.3 Profile of L2 Hits

Having shown that the center cell substantially reduces
the number of block migrations within L2, we now illustrate
how effective it can be toward satisfying the requests from
each core by examining the behavior of CC more closely
(note that the hit behavior of CC.DT and CC.CT are the
same). Figure 9 (a) shows the breakdown of L2 hits in
terms of (i) hits in the preferred cells of the requesting cores,
(ii) hits in the center cell, and (iii) hits in the non-preferred

cells. We can observe the effectiveness of our scheme from
this bar-chart by noting that the number of hits in the non-
preferred cells is fairly low (less than 6% on average). The
center cell is able to satisfy a considerable number of re-
quests in many of the applications. Specifically six of the
applications - 312.swim, 316.applu, 328.fma3d, apache, jbb
and cg.a - have 20% or more hits in the center cell. Note
that these were also the applications which showed a low
running distance in Section 2. The average hit ratio in the
center cell is around 15.6% across all applications.

We wish to point out that in addition to the hit ratio (in
the center cell), the positional information of the hits in the
preferred and non-preferred regions are equally important
since the access latencies are quite dependent on the loca-
tion of the cell that satisfies the requests. Figures 9 (b) and
(c) give the breakdown of the hits in the preferred and non-
preferred L2 cache regions, respectively, in terms of which
ring satisfies a request. From the figure for the preferred re-
gions, we see that we are exploiting the NUCA property
by meeting more of the requests from Ring-0 which has
lower access latency than the other two rings. The figure
for the non-preferred accesses gives us additional interest-
ing insights. We note that the hits, here again, are coming
from the lower number rings (particularly Ring-0 which sat-
isfies around 78% of the non-preferred hits on the average).
This is an indication that the requests from different cores
are more temporally close to each other (i.e., more active
sharing), which is again another motivation for the architec-
ture proposed in this paper.

0%

20%

40%

60%

80%

100%

31
0.

w
up

w
is

e
31

2.
sw

im
31

4.
m

gr
id

31
6.

ap
pl

u
31

8.
ga

lg
el

32
0.

eq
ua

ke
32

4.
ap

si
32

8.
fm

a3
d

33
0.

ar
t

33
2.

am
m

p
ap

ac
he bt
.a

cg
.a

ep
.A ft.
a

is
.a jb
b

lu
.a

lu
hp

.a
m

g.
a

sp
.A

ua
.a

av
ea

rg
e

hit in center cell hit in preferred cells hit in non-preferred cells

(a) Breakdown of L2 hits.

0%

20%

40%

60%

80%

100%

31
0.

w
up

w
is

e
31

2.
sw

im
31

4.
m

gr
id

31
6.

ap
pl

u
31

8.
ga

lg
el

32
0.

eq
ua

ke
32

4.
ap

si
32

8.
fm

a3
d

33
0.

ar
t

33
2.

am
m

p
ap

ac
he bt
.a

cg
.a

ep
.A ft.
a

is
.a jb
b

lu
.a

lu
hp

.a
m

g.
a

sp
.A

ua
.a

av
ea

rg
e

Preferred Ring-0 Preferred Ring-1 Preferred Ring-2

(b) Breakdown of L2 hits in preferred regions.

0%

20%

40%

60%

80%

100%

31
0.

w
up

w
is

e
31

2.
sw

im
31

4.
m

gr
id

31
6.

ap
pl

u
31

8.
ga

lg
el

32
0.

eq
ua

ke
32

4.
ap

si
32

8.
fm

a3
d

33
0.

ar
t

33
2.

am
m

p
ap

ac
he bt
.a

cg
.a

ep
.A ft.
a

is
.a jb
b

lu
.a

lu
hp

.a
m

g.
a

sp
.A

ua
.a

av
ea

rg
e

Non-preferred Ring-0 Non-preferred Ring-1 Non-preferred Ring-2

(c) Breakdown of L2 hits in non-preferred regions.

Figure 9. L2 hit distribution.

4.4 L2 Hit Latency

Having shown the profile of where the data is located on
an L2 hit, we now show the actual L2 access latency upon
a hit in Figure 10. This experiment accounts for the latency
of accesses to the different parts of L2 as explained earlier.
In nineteen out of the twenty two applications, CC.DT (with

7

M.CT CC.CT M.DT CC.DT CC.Large

Preferred size / core 4MB 4MB 4MB 4MB 3MB
Latencies for preferred cells tag: 4 cycles tag: 4 cycles 4, 8, 12, 16, 4, 8, 12, 16, 4, 8, 12, 16,

+ 4, 8, 12, 16, + 4, 8, 12, 16, 20, 24, 28, 32 20, 24, 28, 32 20, 24
20, 24, 28, 32 20, 24, 28, 32

Center cell size None 64KB None 64KB 4MB
Center cell latency None 5 cycles None 5 cycles 15 cycles

Minimum access latency 8 cycles 8 cycles 4 cycles 4 cycles 4 cycles
Maximum access latency 40 cycles 41 cycles 64 cycles 65 cycles 49 cycles

Table 4. Schemes we compare in our experiments. Table shows the sizes of the center cell and
preferred L2 regions of each core. It also shows the latency to these L2 portions from each core.

the aggressive search option) has the lowest hit latency. In
general, CC does better than M, because of the presence of
the center cell which is equally accessible by all the cores.
In the M schemes, the high sharing behavior is causing the
blocks to migrate frequently between the different regions,
as was observed earlier, leading to a higher access latency
overall (i.e., a core may frequently need to go to a non-
preferred region to get its blocks). On the other hand, in CC,
a core can locate the data in the center cell rather than hav-
ing to go to a non-preferred region each time a core misses
in its preferred region.

CC is also a better option than CC.Large since (i) in the
case of a hit in the center cell, the latter incurs a much higher
access latency than the former (15 cycles versus 5 cycles)
because of its much larger size, (ii) as noted earlier in our
characterization studies, we only need a small center cell to
hold much of the shared working set, making the hit rates in
the center cell of CC and CC.Large not very different, and
(iii) in CC.Large we are cutting down the size of the pre-
ferred regions in the expectation of increasing the hit rates
of the center cell.

Between the CC.DT (which uses aggressive searches)
and CC.CT search techniques, the latter always incurs an
additional tag look up latency (4 cycles) before the data is
accessed, while the former does both in parallel for a given
L2 cell. Since our statistics provided earlier show that most
of the accesses hit in Ring-0, the tag accesses in CC.CT get
in the critical path making it slower. The exceptions are
cg.a, and to a lesser extent, SPECJbb. As observed ear-
lier in Figure 9 (a), cg.a has the most non-preferred hits.
In CC.CT, having all the tags clustered together helps us
detect preferred region misses faster, to initiate the search
in the non-preferred regions earlier (where it is found in
Ring-0). Overall, the average L2 hit latencies for M.CT,
M.DT, CC.CT and CC.DT under the aggressive search op-
tion are 15.3, 12.9, 14.2 and 11.2 cycles, respectively. That
is CC.DT achieves 9% saving over M.DT on average.

Having shown the aggressive search results for CC.DT,
we now examine the L2 hit latencies for the moderate and
conservative search schemes, and we present the results in
Figure 11. The results for CC.DT under the aggressive
search option are reproduced here for the ease of compar-
ison. As expected, the aggressive scheme does better since
the search ends quicker for the hits in the non-preferred re-
gions. This benefit would be more significant for applica-
tions which have higher hits in non-preferred regions as is
the case of cg.a and SPECJbb. On the average, the results
with the different variants of CC.DT are within 8% of each
other, and thus one may simply want to employ the moder-
ate or conservative search schemes in the interest of lower-
ing interconnect traffic and reducing power.

0.0

5.0

10.0

15.0

20.0

25.0

31
0.

w
up

w
is

e
31

2.
sw

im
31

4.
m

gr
id

31
6.

ap
pl

u
31

8.
ga

lg
el

32
0.

eq
ua

ke
32

4.
ap

si
32

8.
fm

a3
d

33
0.

ar
t

33
2.

am
m

p
ap

ac
he bt
.a

cg
.a

ep
.A ft.
a

is
.a jb
b

lu
.a

lu
hp

.a
m

g.
a

sp
.A

ua
.a

av
er

ag
e

A
ve

ra
g

e
L

2
H

it
 L

at
en

ci
es

 (
C

yc
le

s)

M.CT M.DT (Aggressive) CC.CT CC.DT (Aggressive) CC.Large (Aggressive)

Figure 10. Average L2 hit latencies with the
different schemes.

0.0

5.0

10.0

15.0

20.0

31
0.

w
up

w
is

e
31

2.
sw

im
31

4.
m

gr
id

31
6.

ap
pl

u
31

8.
ga

lg
el

32
0.

eq
ua

ke
32

4.
ap

si
32

8.
fm

a3
d

33
0.

ar
t

33
2.

am
m

p
ap

ac
he bt
.a

cg
.a

ep
.A ft.
a

is
.a

jb
b

lu
.a

lu
hp

.a

m
g.

a

sp
.A

ua
.a

av
er

ag
e

A
ve

ra
g

e
L

2
H

it
 L

at
en

cy
 (

C
yc

le
s) CC.DT (Aggressive) CC.DT (Moderate) CC.DT (Conservative)

Figure 11. Average L2 hit latencies for CC.DT
under the different search options.

4.5 Average Access Energy

Figure 12 shows the average energy consumption num-
ber per L2 access. To calculate the data and tag access
power numbers, we used CACTI [22]. This is shown for our
proposed CC schemes (CC.CT, and CC.DT with the mod-
erate search option), and compared with the correspond-
ing schemes without a center cell (M.CT and M.DT with
moderate), and the scheme which uses a large center cell
(CC.Large with moderate). We present the results in two
graphs for ease of comparison. In Figure 12 (a), we compare
M.CT and CC.CT, and in (b), we compare M.DT, CC.DT,
and CC.Large.

Similar to the latency results, we find that the large cen-
ter cell (CC.Large) does poorly in terms of the energy con-
sumption as well. As noted earlier, shared data access con-
stitute a substantial portion of the L2 accesses, and by mak-
ing the center cell large, we are incurring much more energy
per access. This is another reason in favor of opting for a
much smaller center cell as in our proposal. When we look
at Figure 12 (a), we see that CC.CT saves 6% energy on
average than M.CT. Similarly, from Figure 12 (b), one can
observe that CC.DT saves 15% energy than M.DT. The re-
sults show that having a small center cell in the organization
is important from power perspective as well.

8

0%

20%

40%

60%

80%

100%

31
0.w

upwise

31
2.s

wim

31
4.m

grid

31
6.a

pplu

31
8.g

alg
el

32
0.e

quak
e

32
4.a

psi

32
8.f

m
a3

d

33
0.a

rt

33
2.a

m
m

p

ap
ac

he
bt.a cg

.a
ep

.A ft.
a

is.
a

jb
b

lu
.a

lu
hp.a

m
g.a

sp
.A

ua.a

av
er

ag
e

N
o

rm
al

iz
ed

 L
2

A
cc

es
s

E
n

er
g

y

CC.CT

(a) CC.CT normalized with respect to M.CT.

0%

20%

40%

60%

80%

100%

120%

140%

31
0.w

upwise

31
2.s

wim

31
4.m

grid

31
6.a

pplu

31
8.g

alg
el

32
0.e

quak
e

32
4.a

psi

32
8.f

m
a3

d

33
0.a

rt

33
2.a

m
m

p

ap
ac

he
bt.a

cg
.a

ep
.A ft.

a
is.

a
jb

b
lu

.a

lu
hp.a

m
g.a

sp
.A

ua.a

av
er

ag
eN

o
rm

al
iz

ed
 L

2
A

cc
es

s
E

n
er

g
y CC.DT (Moderate) CC.Large (Moderate)

(b) CC.DT and CC.Large normalized with respect to M.DT.

Figure 12. Normalized average energy con-
sumption per L2 access.

4.6 Execution time

We finally present the overall execution cycles for the
different schemes across our benchmarks in Figure 13.
Since our point here is to illustrate the benefit of our cen-
ter cell architecture, we present the reduction in execution
time for the different schemes with respect to that for the
M.CT scheme (which frequently shuttles the shared blocks
among the preferred regions of each core).

As we can see from these results, in most of the appli-
cations the CC.DT scheme does the best, providing 2.1%
execution time improvement over M.CT on the average. In
some applications, such as ft.a, it provides as much as 6.3%
performance improvement. In the few cases where CC.DT
does not fare as well, as in cg.a and SPECJbb where the
hits in the non-preferred regions are high (see Figure 9), we
note that CC.CT does the best. As noted earlier, in addi-
tion to the non-preferred region hits, CC.CT benefits from
the hits in the lower latency center cell as well compared to
M.CT. Finally, the choice of a small center cell is again reit-
erated by the poor performance of CC.Large, as in Apache,
where the hits in the higher latency center cell lead to worse
execution time.

-10%

-5%

0%

5%

10%

31
0.w

upwise

31
2.s

wim

31
4.m

grid

31
6.a

pplu

31
8.g

alg
el

32
0.e

quak
e

32
4.a

psi

32
8.f

m
a3

d

33
0.a

rt

33
2.a

m
m

p

ap
ac

he
bt.a

cg
.a

ep
.A ft.

a
is.

a
jb

b
lu

.a

lu
hp.a

m
g.a

sp
.A

ua.a

av
er

ag
e

R
ed

u
ct

io
n

 o
f

ex
ec

u
ti

o
n

 t
im

e

CC.CT M.DT (Moderate) CC.DT (Moderate) CC.Large (Moderate)

Figure 13. Reduction in execution time with
respect to M.CT.

5 Related Work

In this section, we discuss the prior work on L2 cache or-
ganizations with non-uniform access latency. [4] proposed
to use a thicker metal for mitigating wire delays, which is

a growing problem in circuit design. Kim et al. [13] pro-
posed a non-uniform cache architecture. Their proposal is
based on the observation that growing wire delays will force
significant changes in the physical layout of large caches.
They also evaluated two techniques, called the aggressive
broadcast and the energy-friendly multicast search, for lo-
cating a block in their architecture. Chishti et al. [7] pro-
posed NuRapid, a non-uniform latency cache organization,
that decouples tag placement from data placement. It clus-
ters tags and puts them into places close to the core, and this
helps improve both performance and power consumption.
Our work is different from these studies since we target a
CMP, whereas [13] and [7] focus on single processor based
architectures.

Several recent papers proposed schemes that extend the
non-uniform latency cache idea to CMP environments. For
example, Chishti et al. [8] extended NuRAPID [7] to the
multi-core processor paradigm. Their approach is based on
replication to keep the frequently accessed shared blocks
close to processor cores that use them. Zhang and Asanovic
[23] discussed an approach called the victim replication.
This approach keeps copies of local primary cache victims
within the local L2 cache slices. While both these schemes
([8] and [23]) are effective in reducing access latency to
shared data, they require coherence maintenance. Specif-
ically, replicating data within L2 requires a complex co-
herency control protocol which itself can be costly from
both performance and power perspectives. In comparison,
the approach proposed in this paper does not replicate data
blocks; instead, we reduce latency and power consumption
in accessing shared blocks by placing them into a small cen-
ter cell, which is very close to all the processors. Therefore,
from an implementation viewpoint, our approach is simpler.

Beckmann and Wood [5] proposed a block-migration
scheme to extend the DNUCA for the CMPs, but their pro-
tocol is complex and the presented results rely on an oracle-
based search, whose practical implementation is not elabo-
rated in the paper. One of the problems associated with this
approach is that it puts the shared data into a place within
L2, which is equally far from the processors that share it.
Each access to such a block tries to bring the block closer to
the processor that requests it. However, as a result, heavily
shared blocks tend to cluster in the middle regions which are
far from the processors. This in turn increases the number
of migrations and causes extra latency and power consump-
tion. In fact, one can view this scheme as a variant of ours
with a very large center cell CC.Large. In contrast, we keep
the center cell very small and close to all the processors,
and this cuts the number of block migrations significantly,
as demonstrated by our experimental results. The reduction
in block migrations also helps reduce power consumption.

Huh et al. [11] studied how to partition the NUCA L2
to reduce the interconnect traffic, thus improve the perfor-
mance and power consumption. Similar to [5], their ap-
proach keeps the shared data far from the requesting cores, if
both cores are on the opposite side of the die. Iyer [12], Kim
et al. [14] and Suh et al. [21] studied the sharing fairness of
L2 cache for CMPs to prevent one thread from polluting the
cache so that the overall throughput could be improved.

6 Concluding Remarks

As chip multiprocessors (CMPs) grow in popularity, it
becomes very critical to effectively manage the large on-
chip cache space due to wire delays. Making sure that the

9

right data is at the right place at the right time can ensure
timely access to the data so that the processing cores are not
unduly delayed.

The two main themes of prior work in exploiting non-
uniformity of L2 cache latencies for CMPs have primarily
tried to use replication (tag and/or data) [8, 23], and explicit
migration/staging of the data based on access patterns [5].
With replication, we need to explicitly maintain consistency
and, in our work, we have avoided the additional complexity
of dealing with replicas. Our proposal is more in line with
the latter theme of migrating/moving the data to keep access
times low for each core.

This paper has presented the idea of using a small, low-
latency center cell based L2 organization that is equally
close to all the cores. This cell can hold shared data blocks,
which constitute a substantial number of L2 misses though
the number of such blocks is itself quite low. Using a
large number of diverse multi-threaded benchmarks, we
have shown that this architecture is a better alternative, in
terms of L2 access latency, access energy, and execution
time, than a scheme (without center cell) that simply mi-
grates blocks back and forth between the regions closer to
each core. It is also a better alternative having a large center
cell (CC.Large) and perhaps staging the data between differ-
ent parts of this large cell (as is done in [5]) since our results
show that there is high active sharing (for the few) blocks.
Placing such blocks in a small center cell and not migrating
them back and forth can give both performance and power
savings.

There are several interesting directions for future work
related to discretionarily placing data in the center cell,
bringing blocks directly to center cell based on prior history,
and compiler support for exploiting the center cell based L2
organization. In addition, we are also working on expanding
our cache organization to higher number of cores.

References

[1] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B.
Jones, and B. Parady. Specomp: A new benchmark suite for
measuring parallel computer performance. In Proceedings
of the International Workshop on OpenMP Applications and
Tools, pages 1–10, 2001.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The nas parallel benchmarkssum-
mary and preliminary results. In Proceedings of the 1991
ACM/IEEE conference on Supercomputing, pages 158–165,
1991.

[3] P. Barford and M. Crovella. Generating representative web
workloads for network and server performance evaluation.
In Proceedings of the 1998 ACM SIGMETRICS joint inter-
national conference on Measurement and modeling of com-
puter systems, pages 151–160, 1998.

[4] B. M. Beckmann and D. A. Wood. TLC: Transmission Line
Caches. In Proceedings of the 36th annual IEEE/ACM Inter-
national Symposium on Microarchitecture, page 43, 2003.

[5] B. M. Beckmann and D. A. Wood. Managing wire delay
in large chip-multiprocessor caches. In Proceedings of the
37th annual International Symposium on Microarchitecture,
pages 319–330, 2004.

[6] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New
paradigm of predictive mosfet and interconnect modeling for

early circuit design. In Proc. of IEEE Custom Integrated
Circuit Conference, pages 201–204, 2000.

[7] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Dis-
tance associativity for high-performance energy-efficient
non-uniform cache architectures. In Proceedings of the 36th
annual IEEE/ACM International Symposium on Microarchi-
tecture, page 55, 2003.

[8] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimiz-
ing replication, communication, and capacity allocation in
cmps. In Proceedings of the 32nd International Symposium
on Computer Architecture (ISCA’05), 2005.

[9] J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu,
D. Plass, J. Dawson, P. Muench, L. Powell, M. Floyd, B. Sin-
haroy, M. Lee, M. Goulet, J. Wagoner, N. Schwartz, S. Run-
yon, G. Gorman, P. Restle, R. Kalla, J. McGill, and S. Dod-
son. Design and implementation of the power5™ mi-
croprocessor. In Proceedings of the 41st annual conference
on Design automation, pages 670–672, 2004.

[10] L. Dagum and R. Menon. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci.
Eng., 5(1):46–55, 1998.

[11] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. A nuca substrate for flexible cmp cache sharing. In
Proceedings of the 19th annual International Conference on
Supercomputing, 2005.

[12] R. Iyer. CQoS: a framework for enabling QoS in shared
caches of CMP platforms. In Proceedings of the 18th annual
international conference on Supercomputing, pages 257–
266, 2004.

[13] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches. In Proceedings of the 10th international confer-
ence on Architectural support for programming languages
and operating systems, pages 211–222, 2002.

[14] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In Pro-
ceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, pages 111–122,
2004.

[15] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded sparc processor. IEEE Micro, 25(2):21–
29, 2005.

[16] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, , and
B. Werner. Simics: A full system simulation platform. IEEE
Computer, 35(2):50–58, 2002.

[17] D. Matzke. Will physical scalability sabotage performance
gains? Computer, 30(9):37–39, 1997.

[18] C. McNairy and D. Soltis. Itanium 2 processor microarchi-
tecture. IEEE Micro, 23(02):44–55, 2003.

[19] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
N. Ranganathan, D. Burger, S. W. Keckler, R. G. McDonald,
and C. R. Moore. Trips: A polymorphous architecture for
exploiting ilp, tlp, and dlp. ACM Trans. Archit. Code Optim.,
1(1):62–93, 2004.

[20] Specjbb2000 java business benchmark. standard perfor-
mance evaluation corporation (spec), fairfax, va, 1998. avail-
able at http://www.spec.org/osg/jbb2000/.

[21] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partition-
ing of shared cache memory. J. Supercomput., 28(1):7–26,
2004.

[22] S. Wilton and N. Jouppi. Cacti: An enhanced cache access
and cycle time model, 1996.

[23] M. Zhang and K. Asanovic. Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiproces-
sors. In 32nd International Symposium on Computer Archi-
tecture (ISCA’05), 2005.

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

