
Incrementally Developing Parallel Applications with AspectJ

J. L. Sobral
Departamento de Informática, Universidade do Minho

4700 - 057 Braga, Portugal

Abstract
1

This paper presents a methodology to develop more

modular parallel applications, based on aspect oriented

programming. Traditional object oriented mechanisms

implement application core functionality and

parallelisation concerns are plugged by aspect oriented

mechanisms. Parallelisation concerns are separated into

four categories: functional or/and data partition,

concurrency, distribution and optimisation. Modularising

these categories into separate modules using aspect

oriented programming enables (un)pluggability of

parallelisation concerns. This approach leads to more

incremental application development, easier debugging

and increased reuse of core functionality and parallel

code, when compared with traditional object oriented

approaches. A detailed analysis of a simple parallel

application - a prime number sieve - illustrates the

methodology and shows how to accomplish these gains.

1. Introduction

When developing parallel applications the programmer

is faced with concerns of traditional programming but

she/he has also to manage concerns specific to parallel

applications, namely she/he must specify how tasks are

partitioned among available resources and when these

tasks communicate and synchronise. In traditional

approaches these concerns are mixed in application

components: each module includes code to implement

core (sequential) functionality, as well as code to support

parallel execution (parallel code). This results in code

tangling and scattering, increasing development

complexity. It becomes difficult to reuse and/or share

1 Work supported by PPC-VM project POSI/CHS/47158/2002,

funded by Portuguese FCT (POSI) and by European funds (FEDER).

existing sequential components and to debug or improve

core functionality, since each module includes parallelism

related concerns and once these concerns are included in

source code they are not easily removed. Also, parallel

code is spread into several components (i.e., it cuts across

multiple modules), making harder to understand overall

parallelism structure and to develop parallel code that can

be reused in several parallel applications. Parallel

applications are also populated with optimisation code to

improve application performance for some classes of

target platforms.

Development and maintenance costs of parallel

applications can be reduced if parallelisation concerns can

be added in a modular way, with the fewest possible

changes to the source code. Several key benefits might

arise from this approach. First, a large amount of

sequential code would become easier to reuse in parallel

applications. Second, parallel code would be easier to

maintain and reuse, since it would be concentrated in

separate modules, making it easier to understand the

parallelism structure and to reuse parallel code in several

applications. Third, it would be feasible to have both

parallel and sequential versions of the same code, since

going from one version to the other is just a matter of

plugging or unplugging parallelisation modules.

The same strategy can also be realised for optimisation

code; however, this type of code is generally more

oriented to specific range of target platforms. A modular

specification of optimisation code, without spreading the

code into several components would make it possible to

have several modular optimisations and plug or unplug

each optimisation in a particular target platform.

AspectJ [7], a Java extension to support Aspect

Oriented Programming (AOP), implements the concept of

separation of concerns [8][22]. AOP programming makes

it possible to localise within a single module code that

would be scattered across multiple components with other

programming paradigms. Increased modularity was

observed in the implementation of several design patterns

[13] using AspectJ.

1-4244-0054-6/06/$20.00 ©2006 IEEE

In parallel applications and particularly in object

oriented parallel applications, parallelisation concerns cut

across several object classes. AOP can help to modularise

such concerns. The main idea is to model the core

functionality with traditional object oriented mechanisms

and to model parallelisation concerns as additional aspect

oriented modules, that can be (un)plugged or exchanged

from core functionality. This model allows the

programmer to concentrate on a specific concern,

simplifying the development, since each concern is treated

in a modular (and incremental) way. The code also

becomes easier to understand since each concern is

localised and isolated in a single block of code.

The rest of this paper is organised as follows. Section 2

discusses related research on object oriented parallel

programming and AOP. Section 3 presents a brief AspectJ

overview. Section 4 presents our design methodology and

how it is realised using AOP. Section 5 presents a case

study, a prime number sieve. Section 6 shows

performance results and section 7 concludes the paper

with suggestions for future work.

2. Related work

In the beginning of the nineties integration of objects

and concurrency was a very active field in the research

community. One of the most relevant works was ABCL

[1], which provided active objects to model concurrent

activities. Each active object can be implemented by a

process and inter-object communication can be performed

by asynchronous or synchronous method invocation.

There are two alternatives for an asynchronous method

invocation: when no return value is required the client

object can proceed while the remote object executes the

requested method; when a return value is required the

client provides a variable, called future, to store the return

value. If the client attempts to use this variable before its

value becomes available it will be automatically blocked,

until the value is computed.

Latter attempts the integrate objects and concurrency

are based on extensions to sequential object oriented

languages [4][9]. These extensions are based on the same

primitives, but active and passive objects can coexist in

the same application. On these extensions new language

constructs are introduced that indicate which objects are

active and which calls can be performed asynchronously

[11][17]. These approaches require source code

modifications to introduce parallelisation statements,

resulting in tangled code, where partition, concurrency

and distribution issues are mixed with object definitions.

Our approach uses equivalent concurrency constructors

but moves parallelism related issues to (un)pluggable

modules.

OpenMP [18] uses annotations to introduce

parallelisation concerns. Annotations soften the transition

from sequential to parallel code and allow unpluggability

of parallelisation concerns, since annotations can be

ignored by the compiler for a strict sequential execution.

However, parallel code is not modularised, since

annotations are spread through functional code, becoming

difficult to reuse.

Reflective systems or meta-level architectures [10][23]

provided an early attempt to separate concurrency and

distribution issues from core functionality. However, these

approaches yield inefficient code, due to reification and

meta-level code is difficult to understand and reuse.

Probably the most successful separation between core

functionality and parallelisation concerns was achieved in

functional languages, where parallelism structure is

expressed by a skeleton, using high order functions

[6][12][19]. Generative patterns approach [14] follows a

similar path. Parallel code is generated and the

programmer must fill the provided hooks with core

functionality. Aspect oriented programming differs from

these previous approaches since is uses a different way to

compose core functionary and parallel code.

The work in [15] was one of the roots of aspect

oriented programming, by proposing a domain-specific

language that separates core functionality from

concurrency and distribution issues. AspectJ is a more

mature and general-purpose language and was used

recently in [16][21] to introduce distribution concerns into

sequential applications. In [2], an attempt is made to move

all parallelism related issues into a single module. Our

methodology was influenced by all these previous efforts

but differs from them in that we use a more fine-grained

decomposition of parallelisation concerns, using a set of

modules that can be (un)plugged or switched. This leads

to a higher reuse potential and more incremental

application development.

3. Overview of AspectJ

AspectJ is an extension to Java that includes

mechanisms for Aspect Oriented Programming. It

supports two types of crosscutting concerns: static and

dynamic.

With static crosscutting it is possible to introduce

instance variables or methods into a class, without

changing the base class source code. It is also possible to

declare a class to implement an interface or to extend

another class. Figure 1 presents a point class and Figure 2

presents an aspect that changes class Point, to implement

interface Serializable, and to include an additional

method, called migrate. For simplicity we do not strictly

follow the AspectJ syntax.

public class Point {

 private int x=0;
 private int y=0;

 public void moveX(int delta) { x+=delta; }

 public void moveY(int delta) { y+=delta; }

 public static void main(String[] args) {
 Point p = new Point();
 p.moveX(10);
 p.moveY(5);
 }
}

Figure 1 - Point class

public aspect Static {

 declare parents: Point implements Serializable;

 public void Point.migrate(String node) {
 System.out.println("Migrate to " + node);
 }
}

Figure 2 - Example of a static crosscutting aspect

With dynamic crosscutting it is possible to replace

object creations, method calls or instance variable

accesses, using the around construct, or add behaviour

before or after the event. In aspect code a special

keyword, proceed, indicates where/when the original

event executes. Figure 3 shows a typical example of a

logging aspect, applied to Point class. In this example, on

every call to methods moveX or moveY a message is

printed on the screen. In this case the wildcard is used to

specify a pattern for the method’s signature to intercept.

public aspect Logging {

 void around(void Point.move*()) {
 System.out.println("Move called");
 proceed(); // proceed the original call
 }
}

Figure 3 - Example of a dynamic crosscutting aspect

Each event (i.e., object creation or method call) is

called joinpoint and a set of joinpoints is called pointcut

(i.e., void Point.move*()). Reusable aspects can be

developed using abstract pointcuts or interfaces. In both

cases the abstract aspect only refers to abstract pointcut(s)

or to interface(s). Each concrete reuse refines the abstract

aspect by specifying concrete pointcuts or concrete classes

that implement the interface.

An aspect construct specifies a crosscutting concern in

a modular way, although it results in code executed in

several places, using a process called weaving in AOP.

This process, at compile time, composes aspect code into

the target classes. For instance, the around code in

Figure 3 would be called in both methods of Point class.

4. Proposed Methodology

The programming model is based on a parallel object

oriented language, where the base concurrency

mechanism is asynchronous method invocations. In this

type of method call, the client can proceed while the

server processes the requested method in parallel. An

asynchronous method invocation can be seen as a

high-level equivalent of a message send in message

passing interfaces like MPI. The most relevant difference

from existing parallel object oriented languages [17] is

that this type of method calls and object distribution are

specified in a more centralised and modular way.

In our methodology, traditional object oriented

mechanisms are used to implement application core

functionality and parallelisation concerns are implemented

using aspect oriented mechanisms. Parallelisation

concerns are separated into four categories: functional

or/and data partition, concurrency, distribution and

optimisation. Each concern is implemented into a different

module, which can be plugged or unplugged from

application core functionality.

Core functionality is developed or reused from an

existing application, and specifies the application base

functionality, i.e., what the application is supposed to do.

Partition modules specify how work is performed in an

efficient way, using several processing elements; they

implement either a functional or a data partition.

Concurrency modules specify parallel execution among

tasks and synchronisation requirements. Distribution

modules perform object distribution among available

resources and remote method invocations. Optimisation

modules mainly tune application performance for a

particular platform, optimising work distribution and

inter-object communication.

Each parallelisation concern (i.e., aspect) intercepts

object creations and/or method calls (i.e., joinpoints) and

specifies an enhanced behaviour, replacing the event or

including additional functionality before or after event

execution. Intercepted events are specified in a quantified

form (i.e., all calls to a specific method) and other

modules are oblivious of the additional concern [5].

In this methodology the programmer must first design

the parallel application to support a high level of

modularity. This design phase mainly consists on

developing the core functionality to provide adequate

joinpoints to compose with parallelisation concerns.

Core functionality is implemented using traditional

object oriented abstractions, in which client objects

request task execution to server objects. It has two main

goals: to expose application core functionality and to

provide adequate functionality to support parallelisation

by plugging partition, concurrency and distribution

aspects. A partition aspect intercepts joinpoints from the

core functionality and performs work/data partition,

composing object instances/method calls of core classes.

This module introduces joinpoints that can be intercepted

by concurrency, distribution and optimisation aspects. The

concurrency module specifies events from partition or

core functionality that are executed in parallel as well as

synchronisation requirements. The distribution aspect

specifies how objects are distributed among available

computing resources and how they communicate. Finally,

an optimisation aspect can be introduced. Each of these

parallelisation concerns is detailed in the following

subsections.

4.1 Partition

In object oriented parallel applications functional

parallelism can be modelled by calling several methods in

parallel, in the same or in multiple objects. Data parallel

applications can be modelled by calling the same method

in multiple objects in parallel, where each object contains

a different piece of data. Two base mechanisms work

together to achieve these types of parallelism: object

duplication and method call split.

The first mechanism transparently replaces a single

object in the core functionality by a set of objects (Figure

4). Objects created in aspect code are called aspect

managed objects, since their lifetime is managed by the

partition aspect. Objects in this set can compute in parallel

(concurrency concern) and can be distributed among

processing nodes (distribution concern). Object

duplication is implemented by intercepting object

creations or method calls in core functionality, by means

of aspect code. When additional data is required to

execute the requested task the partition aspect also

specifies how and when each object in the set interacts

with other objects to gather necessary data.

SS

S
S

SSSC
Partition
aspect

Client object

Server object

Server creation

C

S

Figure 4 – Object duplication through aspect code.

The second mechanism splits a method call into several

calls that can be processed in parallel, by one or several

objects (Figure 5). This mechanism performs a data

partition, in which data sent in a method call (as method

parameters) is partitioned or replicated and forwarded to

multiple objects. This mechanism can also distribute data

across several objects, forwarding a piece of data to each

object in the set.

These two mechanisms work together to achieve a

partition module. Object duplication creates several object

instances, while method call split transforms a single

method call into several calls that can be executed in

parallel by these aspect managed object instances.

SC C S
Partition
aspect

Client object

Server object

Method call

C

S

Figure 5 – Method call split through aspect code.

A single aspect specifies work partition code, keeping

the core functionality oblivious from partition concerns,

transparently changing object creation/method call

semantics in core functionality. Object duplication is

specified by intercepting the creation of objects and

method split calls are specified by intercepting method

calls, but it is also possible to perform object creations

when intercepting method calls (e.g., in divide and

conquer algorithms).

The design of core functionary to transparently support

modular partition requires that classes from core

functionality provide method(s) to process a subset of the

data. The partition aspect must deal with data

dependencies, replicating data and/or performing

additional interactions among aspect managed objects to

retrieve the relevant data. For instance, in iterative

applications the full data set can be initially distributed

into several objects in a block fashion. Iterations are

broadcasted to all aspect managed objects. Between

iterations, the partition code must exchange updated data

among objects, required for the next iteration.

4.2 Concurrency

Concurrency is based on asynchronous method calls. In

Java these calls can be implemented by spawning a new

thread to perform the requested method call.

Implementation of asynchronous method calls can be

specified in aspect code that transparently changes the

semantics of method calls. Concurrency aspect can

intercept events either in core functionality or in partition

code.

Asynchronous method invocations may also require

synchronisation code to protect shared objects, avoiding

data races and to ensure a specific execution order.

Synchronisation code is also placed in concurrency aspect

and it resorts to synchronised blocks and monitors

provided by Java.

Partition and concurrency code are specified in

separate modules. The main idea is first to develop a

partition module and next to develop the concurrency

module, i.e., partition and concurrency concerns are

placed in their respective aspects. This way it is possible

to (un)plug concurrency for debugging and it also helps to

avoid the inheritance anomaly problem [20]. However, it

also means that the program must be valid without

concurrency, something similar to OpenMP [18]. It is also

possible to merge partition and concurrency into a single

module; however, additional benefits arise when these

concerns can be modularised in different aspects.

Separation between partition and concurrency code

requires more design effort, since the partition code must

provide adequate joinpoints to allow composition with

concurrency code. One example is future type method

calls. It is possible to design the partition code in a way

that the concurrency module can transparently introduce

this type of method calls [3].

4.3 Distribution

Our programming model is based on distributed

objects: each object is a unit of distribution. The key idea

is to implement code related to object distribution into

another module. There are two main benefits from this

approach: partition and concurrency modules can be

developed without dealing with object distribution issues

(i.e., they are developed for a single processor/shared

memory machine) and it becomes easier to switch among

underlying middleware implementations for distribution

concerns, such as CORBA, Java RMI and MPI.

There are several alternatives to implement object

distribution; one of them is Java Remote Method

Invocations (RMI). However, various changes are

required in the source code to use Java classes as remote

classes within RMI. With AOP this code can be isolated

in a single aspect. It is also possible to use a combination

of middleware implementations, for example, using MPI

for performance critical parts, and Java RMI in the

remainder parts of the application.

Distribution requires an aspect that intercepts both

sides of a method call: in the caller object to transparently

redirect the call to the distribution middleware; in the

called object node to receive the call and forward it to the

target object.

Distribution aspect is also responsible by the selection

of the most adequate node for a particular object instance.

Several policies can be implemented in this aspect (e.g.,

random, round-robin).

4.4 Optimisation

Optimisation code can make the parallel code very hard

to understand since it generally suffers from two classic

problems: code tangling and code scattering. Code

tangling arises since the optimisation code is mixed with

the class base functionality. Code scattering arises since

one optimisation may be implemented in multiple classes.

Aspects provide a way to modularise optimisations,

becoming easier to experiment various alternative

optimisations, by plugging or unplugging each

optimisation aspect. However, only optimisations based in

joinpoints can be modularised by aspects. Examples are:

thread pools, cache objects, communication packing and

replicated computation.

5. Case Study – Prime Number Sieve

This case study shows how to apply the proposed

methodology to a particular case study, using AspectJ, and

illustrates several ideas presented in previous section. The

presented code samples are written in a simplified version

of AspectJ to enhance code readability and ease of

understanding.

The case study is a prime number sieve to calculate all

primes up to a predefined number. The candidate numbers

are placed in a list in increasing order. First, all multiples

from the lowest number are removed from the list

(initially all multiples of 2). Afterwards, all multiplies of

the next lowest number are removed (multiples of 3 in the

second step). The process is repeated up to the largest

number. All numbers remaining in the list are primes.

A parallel prime number sieve pre-calculates the

primes up to the square root of the largest number and

distributes these numbers by a set of objects (i.e.,

processes) connected in a pipeline structure. Each object

filters multiples of a range of prime numbers, receiving

numbers to filter from the previous pipeline element and

sending to the next element the pipeline, numbers that still

to be filtered. Each number that reaches the end of the

pipeline is a prime number. The next sub-sections detail

how this application can be designed and implemented

following the proposed methodology.

5.1 Core Functionality

The object oriented sieve is based on a two-step

filtering. First, it calculates all primes up to the square root

of the maximum number. Afterwards, the rest of the

numbers are placed in a list and divided by all the first

calculated primes. These steps are executed, respectively,

in object constructor and in method filter. The object

constructor indicates the range of primes to filter and the

method filter removes all non-prime numbers from the list

of candidate numbers. The following code provides a

skeleton of these two methods:

public class PrimeFilter {

 // calculates primes between [pmin,pmax]
 public PrimeFilter(int pmin, int pmax);

 // remove non-primes from num list
 public void filter(int num[]);

}

The following code uses this core functionality to

calculate all primes up to predefined maximum:

void public static void main(String[] arg) {
 int list[] = ... // place numbers in the list
 PrimeFilter p = new PrimeFilter(2, sqrt(Max));
 p.filter(list); // filters the list
}

Figure 6 presents an interaction diagram corresponding

to the above code. It is a fully functional sequential

version of the prime number sieve for a single processor

machine. The next subsections show how to develop

modules to add parallelisation concerns to this core

functionality.

PrimeFilter

new

Main

filter

Figure 6 – Core functionality of prime number sieve

5.2 Partition Module

The overall structure of partition code is presented in

Figure 7; it consists of three parts: (1) object duplication

to use a pipeline of prime filters instead of a single filter;

(2) method call split to divide a large pack of numbers

into smaller packs that can be processed in parallel and (3)

method call forward to propagate a method call made to

the first object in the pipeline to all objects in the pipeline

(3). These tasks are modularised within Partition aspect,

whose code sketch is presented in Figure 8.

PrimeFilter PrimeFilter PrimeFilter

new new

Main

new

new

filter

filter
filter

filter

 Partition aspect

1

2

3

filter

E
x
e
c
u
tio

n
 o

rd
e
r

filter

fiter

filter

filter

filter

Figure 7 – Interaction diagram after weaving

core functionality and partition aspect

aspect Partition {

 // pointer to the next pipeline element

 HashMap next = new HashMap();

 ... // other local variables and functions

 // prime filter object duplication

PrimeFilter around (PrimeFilter.new(..)) ... {

 PrimeFilter p, oldp = null;
 // create pipeline filters in reverse order
 for(int i=numberOfDuplicates; i>0; i--) {
 // create filter with specific parameters
 p=new PrimeFilter(/*..*/);
 next.put(p,oldp); // save filter sequence
 oldp = p;
 }
 return(p); // return first pipeline element
 }

 // filter method call split

 void around (PrimeFilter.filter(..)) ... {

 PrimeFilter p = ... // get target object
 packs = ... // split into a set of packs
 for(int i=0; i<numberOfPacks; i++) {
 p.filter(packs[i]);
 }
 }

 // forward calls among pipeline elements

 void around (PrimeFilter.filter(int num[])){

 PrimeFilter p = ... // get target object
 proceed(num); // invoke filter(num)
 if (next.get(p)!=null)) // if has next
 (next.get(p)).filter(num); // invoke
 }

}

Figure 8 – Partition code sketch

Partition aspect consists of three parts. The next

variable registers prime filter pipeline sequence.

The first part (1 - around (PrimeFilter.new()) carries

out object duplication. It changes the semantics of the

PrimeFilter constructor to create a predefined number of

filters. The first prime filter created is returned to the

client (i.e., call to PrimeFilter.new in core functionality).

This pointcut only intercepts object creations in the core

functionality.

The second part (2 - around (PrimeFilter.filter(..)))

changes the semantics of calls to filter method in core

functionality, performing method split. It takes a pack of

numbers to filter, received as a parameter, splits this pack

into a set of packs and performs a series of filter calls,

each call with a different pack.

The last part (3 - around (PrimeFilter.filter(int

num[])), propagates filter calls, performed in the first

pipeline element to all pipeline elements. This code also

applies recursively to the filter method (i.e., also intercepts

aspect calls to method filter, see Figure 7, block 3).

In the core functionality a single PrimeFilter filters a

single pack of numbers. After applying the partition

module, a pipeline of PrimeFilters receives several packs

of numbers that can be processed in parallel. This change

has been performed without changing the core

2

3

1

functionality. The partition aspect completely modularises

and encapsulates the pipeline functionality. Also, partition

code can be unplugged to improve or debug core

functionality.

After having modularised the pipeline functionality, the

natural step is to develop a reusable module encapsulating

this type of partition. Common behaviour of a pipeline

includes the three steps presented before:

1 creation of pipeline elements, including the

management of next associations;

2 split of a core functionality call into several calls;

3 forward of method calls among all pipeline

elements.

In AspectJ we can use abstract pointcuts or marker

interfaces to develop reusable aspects. Figure 9 presents

the code sketch of an abstract pipeline using marker

interfaces. Two main refactorings were performed:

references to pipeline elements became marker interfaces

and each method parameter became a generic Object.

Concrete pipeline elements must implement the Pipe

interface in a concrete aspect that inherits from this

abstract aspect.

abstract aspect PipelineProtocol {

 // generic pipeline element
 public interface Pipe {
 // o = pipe parameters, i = rank
 public void Pipe(Object o, int i);
 public void compute(Object o);
 }

 // pipe object duplication
 Object around (Pipe.new(..)) ... {
 Pipe oldp = null;
 ... // create pipeline elements as before
 }

 // method call split
 void around (Pipe.compute(Object t)) ... {
 Pipe p = ... // get target object
 ... // generate several compute calls
 }

 ... // call forward among pipeline elements

}

Figure 9 – Reusable code sketch for a pipeline

In a simple farming parallelisation each filter has ALL

the primes up to the square root of the maximum number

and each pack of numbers can be processed by ANY

PrimeFilter (Figure 10). This requires two changes to the

code in Figure 8: the PrimeFilter constructor parameters

are broadcasted to all duplicated objects (change in line

new PrimeFilter of block 1 and the next variable becomes

a vector) and each call to the filter method is forwarded to

a single filter (change in if (next.get(p)!=null)) statement

in block 3 to select one PrimeFilter in the set). In this

particular case block 2 does not require any changes.

PrimeFilter PrimeFilterMain

filter

filter

filter

 Partition aspect
3

filter

PrimeFilter

Figure 10 – Farm parallelisation strategy

5.3 Concurrency and Distribution Code

Concurrency can be added to the previous code by

spawning a new thread to execute each filter method call.

However, each PrimeFilter object must be protected

against concurrent invocations to avoid data races, since

its implementation is not thread safe. Figure 11 shows an

interaction diagram after weaving the core functionality

with partition and concurrency aspects and Figure 12

shows the code of concurrency aspect.

PrimeFilter PrimeFilter PrimeFilterMain

filter

filter

filter

filter
filter

filter
filter

 Partition aspect

new thread

new thread

new thread

new thread

new thread

new thread

new thread

new thread

new thread

 Concurrency aspect

filter

filter

filter

Figure 11 – Interaction diagram after weaving

partition and concurrency aspects

aspect Concurrency {
 void around(PrimeFilter.filter(..)) {
 (new Thread() { // execution in a new thread
 public void run() { proceed(); }
 }).start(); // starts the thread
 }
 void around(PrimeFilter.filter(..)) {
 // synchronise thread access
 synchronized(/* target object */) {
 proceed();
 }
 }
}

Figure 12 – Concurrency aspect

Introducing the concurrency aspect allows the

application to take advantage of parallel shared memory

machines. However distribution code is required to use

distributed memory machines.

Distribution concerns can be implemented with Java

RMI. This module creates remote object instances and

redirects local calls to remote objects instances (Figure

13). Four code changes are required to use Java RMI:

1. Distributed objects must implement an interface,

this interface must extend the Remote interface and

all its methods must throw a RemoteException.

2. Each remote object must be instantiated, exported

to be externally available and registered in a name

server to allow external references to it;

3. Client objects must contact the name server to

obtain a initial reference to a remote object;

4. Remote method calls must include a try { … }

catch statement to deal with RemoteExceptions;

F F F Compute node

F PrimeFilter

Main

Method invocation

M F F F M

Figure 13 – Distribution concern

The first two are server side modifications, whereas the

last two are client side modifications. Without using AOP

these modifications involve changes in several places in

code. Using AOP it is possible to concentrate these

changes in a single module (Figure 14). Additionally, this

module can be (un)plugged to provide support for

distributed memory machines.

01 aspect Distribution {
02
03 // Registers servers in RMI (server side)
04 public static void PrimeFilter.main() {
05 PrimeFilter ps = new PrimeFilter(...);
06 ... // registers object in name server
07 }
08
09 // catch PrimeFilter.new and associate
10 // with a remote one (client side)
11 int count=0; // number of servers created
12 PrimeFilter around(PrimeFilter.new()) ... {
13 String name=new String("PS"+(++count));
14 remote=findRemoteObject(name, ...);
15 ... // associate remote to the local ref.
16 }
17
18 // redirect calls to remote objects (client)
19 void around (PrimeFilter.filter(int num[])){
20 ... // exception handler logic
21 remote.filter(num); // redirects call
22 ... // exception handler logic
23 }
25 }

Figure 14 – RMI distribution code

The Prime filter class is declared to implement the

required interfaces (code modification 1) and a new

interface IPrimeFilter is introduced due to RMI

requirements (code for both modification is not presented,

but it is also modularised within distribution aspect). The

method PrimeFilter.main implements modification 2

(lines 03-07). When a prime filter is created a remote JVM

is contacted to provide a remote instance. The name of

each remote instance is automatically generated, using the

name PS<instance number> (modification 3, lines 09-16).

Lines 18-23 redirect local calls to remote instances

(modification 4).

Code to use different middleware can also be

developed. For example, when using a message passing

library the remote method invocation is performed

through a message send and the main method contains a

loop to receive incoming messages and call the method

filter. Figure 15 presents a simplified example, using the

Java MPP (Message Passing Package) library, which is

based on the new Java nio package. It is also possible to

develop a hybrid implementation, using MPP and RMI.

In these two examples object distribution is performed

explicitly (in main method) but it is also possible to

modularise more automatic object distributions, by using

object factories and changing the way remote servers are

contacted on object creations.

aspect DistributionMPP {

 public static void PrimeFilter.main() {
 PrimeFilter ps = new PrimeFilter(...);
 while(!end) { // receive "filter" messages
 comm.recv(buf, buf.length, ...);
 ps.filter(buf);
 }
 // catch PrimeFilter.new
 PrimeFilter around(PrimeFilter.new(..)) ... {
 ...
 }

 // redirect calls of filter to remote object
 void around (PrimeFilter.filter(int num[]) {
 comm.send(num, num.length, ...);
 }

}

Figure 15 – MPP distribution code

6. Performance Evaluation

The first test evaluates the overhead introduced by an

AOP based approach. It compares the performance of a

hand coded RMI version of the prime sieve against an

AspecJ version, developed using the presented

methodology. This test was performed on seven dedicated

dual processor Xeon 3.2 GHz (Hyper-thread enabled), 1

GB DDR2 400, running Linux CentOS 4.1, connected

through a Gigabit Ethernet. The maximum prime number

was set to 10.000.000 and there are 50 messages of

100.000 numbers (only odd numbers are sent to the

pipeline). Presented values are median of five executions,

using JVM 1.5.0_03 and AJDT 1.3.0. Figure 16 shows

that the performance penalty introduced by the proposed

methodology is very small (less than 5%). It mainly

occurs due to code that is no longer inlined in object

classes but placed in separated classes by the AspectJ

compiler.

The prime sieve does not scale well using a pipeline

parallelisation strategy. This is due to the amount of

messages generated among filters (each message must

cross all pipeline elements). However, this was one of the

reasons to select the prime filter for this test, since the

aspect code executes in multiple places in the code (see

Figure 11).

The second test compares execution times (Figure 17)

of AspectJ versions using combinations of modules

presented in section 5 (Table 1). These versions were

obtained by plugging or unplugging one or several

modules. When using a single machine (i.e., using only 2

filters) the best parallel application is obtained without

including the distribution aspect; this application is

targeted for shared memory systems. However, this

version cannot take advantage of more than 4 filters, since

it does not include distribution code. The farm strategy is

better than a pipeline partition strategy in all cases. The

MPP middleware leads to lower execution times since it

introduces lower communication overhead, when

compared to Java RMI. Fortunately, using our

methodology it is easier to exchange the parallelisation

strategy. We also present results using a dynamic farm

parallelisation. In this application the dynamic farm only

introduces a small improvement since there are not load

imbalances in a normal farming strategy (i.e., with a static

work allocation). The dynamic farm is an example where

we were not able yet to separate partition from

concurrency issues.

0

1

2

3

4

5

6

7

1 4 7 10 13 16
Filters

E
x

e
c

u
ti

o
n

 t
im

e

(s
e
c
o

n
d

s
)

AspectJ

Java

Figure 16 - Performance of Java versus AspectJ

P
a

rtitio
n

C
o

n
cu

rren
cy

D
istrib

u
tio

n

FarmThreads Farm Yes No

PipeRMI Pipeline Yes RMI

FarmRMI Farm Yes RMI

FarmDRMI Dynamic Farm RMI

FarmMPP Farm Yes MPP

Table 1 – Tested module combinations

0

1

2

3

4

5

6

7

1 4 7 10 13 16

Filters

E
x

e
c

u
ti

o
n

 t
im

e

(s
e

c
o

n
d
s
)

PipeRMI
FarmThreads
FarmRMI
FarmDRMI
FarmMPP

Figure 17 - Performance of AspectJ versions

Conclusion

This article presents a design methodology to develop

parallel applications, based on the modularisation of core

functionality, partition, concurrency, distribution and

optimisation code. By separating these concerns

applications become easier to develop and maintain, since

code is more modular and easier to reuse. In this

methodology, most of the code is developed using

sequential programming; concurrency and distribution

aspects are introduced in a later development phase and

can be (un)plugged on the fly. Also, it is possible to

exchange one aspect by another, for example, exchanging

a pipeline by a farm partition.

AOP requires fewer changes to existing code to work

in a parallel environment than current alternatives, namely

templates and skeletons. This is due to the larger number

of alternatives to compose core functionality with

parallelisation code. With AOP it becomes feasible to

develop a working core application and to incrementally

add parallelisation concerns. Additionally, these concerns

can be unplugged at any development phase, which also

makes debugging easier. In our experience, most of the

changes are performed in a single module and even when

the required modifications break the modularity they can

be incrementally propagated to the rest of the modules.

The article presented a simple case study. However, we

have developed parallelisation strategies for the three most

common categories: pipeline, farm with separable

dependencies and heartbeat. Our felling is that code reuse

is high, since moving from a parallel application to

another using the same parallelisation strategy is

performed by copying the parallelisation aspects and

updating these modules to the new application.

Additionally, it is possible to develop reusable abstract

aspects to model the common behaviour. Currently,

experiments are also ongoing with other benchmarks with

more complex task dependencies. We are also developing

a domain-specific aspect library for parallel computing,

based on reusable aspects.

Acknowledgments

Thanks to Miguel Monteiro for his comments on this

paper. Also thanks to all PPC-VM members for their

contribution to this work.

References

[1] A. Yonezawa. ABCL: an Object-Oriented Concurrent

System, MIT Press, 1990.

[2] B. Harbulot, J. Gurd. Using AspectJ to Separate Concerns

in Parallel Scientific Java Code, Third International

Conference on Aspect Oriented Software Development

(AOSD’04), Lancaster, UK, March 2004.

[3] C. Cunha, J. Sobral, M. Monteiro, Reusable Aspect-

Oriented Implementations of Concurrency Patterns and

Mechanisms, Fifth International Conference on Aspect

Oriented Software Development AOSD’06, Bonn,

Germany, March 2006.

[4] E. Dekel (Ed). Java on Clusters, Special Issue of Journal of

Parallel and Distributed Computing, 60(10), October 2000.

[5] E. Filman, D Friedman. Aspect-Oriented Programming is

Quantification and Obliviousness, Workshop on Advanced

Separation of Concerns, OOPSLA 2000, Minneapolis,

October 2000.

[6] F. Rabhi, S. Gorlatch (ed): Patterns and Skeletons for

Parallel and Distributed Computing, Springer, 2003.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

W. Griswold, Getting Started with AspectJ.

Communications of the ACM, 44(10), October 2001

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, J. Irwin. Aspect Oriented

Programming, ECOOP ‘97, 1997

[9] G. Wilson (Ed). Parallel Programming Using C++, MIT

Press, 1996.

[10] H. Masuhara, A. Yonezawa. Design and Partial Evaluation

of Meta-Objects for a Concurrent Reflective Language,

ECOOP’98, July 1998.

[11] J. Briot. R. Guerraoui. K. Lohr. Concurrency and

Distribution in Object Oriented Programming, ACM Comp

Surveys, 30(3), Sept. 1998.

[12] J. Darlington, Y. Guo, H. To, J. Yang. Parallel Skeletons

for Structured Composition, PPoPP’95, Santa Clara, USA,

1995.

[13] J. Hannemann, G. Kiczales. Desing Pattern Implementation

in Java and AspectJ, OOPSLA ’02, November 2002.

[14] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, S. MacDonald.

Using Generative Design Patterns to Generate Parallel Code

for a Distributed Memory Environment, PPoPP'03, San

Diego, California, USA, June, 2003.

[15] C. Lopes, D: A Language Framework for Distributed

Computing, Ph.D. thesis, College of Computer Science,

Northeastern University, Boston, USA, November 1997.

[16] M. Ceccato, P. Tonella. Adding Distribution to Existing

Applications by means of Aspect Oriented Programming, In

Proc. of the 4th IEEE Int. Workshop on Source Code

Analysis and Manipulation (SCAM 2004), Chicago Illinois,

USA, September 2004.

[17] M. Philippsen. A Survey of Concurrent Object-Oriented

Languages, Concurrency: Practice and Experience, 10(12),

August 2000.

[18] OpenMP architecture review board, OpenMP Application

Program Interface, Version 2.5, May 2005,

www.openmp.org.

[19] P. Trinder, K. Hammond, H. Loidl, S. Jones. Algorithm +

Strategy = Parallelism, Journal of Functional

Programming, 8(1), January 1998.

[20] S. Matsuoka, A. Yonezawa, Analysis of Inheritance

Anomaly in Object-Oriented Concurrent Programming

Languages. In Research Directions in Concurrent Object-

Oriented Programming (Agha G., Wegner P., et al.,

editors), MIT press, 1993.

[21] S. Soares, E. Loureiro, P. Borba. Implementing Distribution

and Persistence Aspects With AspectJ, OOPSLA ’02,

November 2002.

[22] T. Elrad, R. E. Filman, A. Bader. Aspect Oriented

Programming, Communications of the ACM, 44(10),

October 2001

[23] Y. Ishikawa, A. Hori, M. Sato, M. Matsuda, J. Nolte H.

Tezuka, H. Konaka, M. Maeda, K. Kubota. Design and

Implementation of Metalevel Architecture in C++ - MPC++

Approach, Workshop on Reflection and Metalevel

Architecture, April 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

