
A Distributed Paging RAM Grid System for Wide-Area Memory Sharing
1

1 The work was partially supported by the National Basic Research Program of China (973) under Grant No.2005CB321801, No.

2003CB317008 and the National Natural Science Foundation of China under Grant No. 90412011, No. 60573135 and No. 60573140,

Hong Kong RGC DAG 05/06. EG44.

Rui Chu
†
, Nong Xiao

†
, Yongzhen Zhuang

‡
, Yunhao Liu

‡
, and Xicheng Lu

†

†
National Key Laboratory for Parallel and

Distributed Processing,

ChangSha, HuNan, China

{rchu, nongxiao, xclu}@nudt.edu.cn

‡
Hong Kong University of Science and

Technology

Clear Water Bay, Kowloon, Hong Kong

{cszyz, liu}@cs.ust.hk

Abstract

Memory-intensive applications often suffer from the

poor performance of disk swapping when memory is

inadequate. Remote memory sharing schemes, which

provide a remote memory that is faster than the local

hard disk, are able to improve the performance of such

applications. Due to the limitation of being applicable

within single clusters only, however, most of the previous

remote memory mechanisms, such as the network

memory scheme, fail to be extendable into a large scale,

distributed, heterogeneous, and dynamic environment. In

this work, we propose a service-oriented grid memory

sharing scheme, Distributed Paging RAM Grid (DPRG).

We study the properties and criteria of large scale

memory sharing, and then design major operations and

optimizations to fit the usage of grid systems. We collect

trace from our grid environment, and evaluate DPRG

through comprehensive trace-driven simulations. Results

show that DPRG significantly outperforms existing

remote memory sharing schemes and supports grid

computing applications effectively.

1. Introduction

Many scientific computing applications demand

significant amounts of memory, and are usually run on

supercomputers with large memory capacities. A typical

example is a meteorological analysis application from the

China Meteorological Administration. As shown in

Figure 1, running a meteorological analysis task with a

peak memory demand of 1.9G takes more than 20

minutes – the program abnormally exits due to low swap

space – on a workstation with 512M of physical memory,

but completes in about 30 seconds when there is 4G of

physical memory.

The tradeoff between memory capacity and

completion time exists in many scientific computing

applications. For a complex task with a high memory

demand, scientists are forced to lower the computing

precision to decrease the memory demand in order to

obtain results on time. Both page-faults and insufficient

disk caches can cause the performance to drop. The

ultimate problem is the gap in speed and capacity

between the memory and hard disk [1].

Clusters that use network memory mechanisms to

share memory between cluster nodes have long been

considered to be the best computing facilities for

memory-intensive applications [2]. However, the cluster

size is often restricted, and sometimes all of the cluster

nodes are lacking in memory. Moreover, memory sharing

in clusters may cause interior network congestion which

Figure 1. Tradeoff between memory
capacity and complete time.

1-4244-0054-6/06/$20.00 ©2006 IEEE

has the following inevitable problems. First, the large

amount of traffic caused by transferring cluster memory

greatly increases the access time of cluster memory.

Second, when one of the cluster nodes running a parallel

job encounters a memory shortage, the overall

performance drops significantly due to the

synchronization overhead caused by this slower node. In

the above scenarios, the overhead of using cluster

memory is even greater than that of using a local hard

disk [3].

Grid and P2P computing has been an attractive

distributed computing paradigm over wide-area

networks[4-7]. An abundant amount of idle memory

connected with high speed networks is scattered

throughout the Internet. Some are found to have

moderate speeds and capacities between the local

memory and disk. This motivates us to the idea of

utilizing remote memory resources beyond the cluster.

The existing network memory schemes[2], which were

originally designed for clusters, cannot work well under

wide-area distributed, heterogeneous, dynamic, and

autonomous conditions, and thus, cannot be directly

applied to grid memory sharing.

In this paper, we propose a new mechanism,

Distributed Paging RAM Grid (DPRG). We call the

remote memory resources on the Internet grid memory.

In our approach, the congestion of memory traffic is

alleviated by distributing the traffic-load over different

network paths. Thus, single-node over-loading occurs

less often since abundant memory resources are always

available on the Internet. DPRG adopts a service-

oriented architecture[8] and provides memory service

based on the wide-area distributed computing

technology. To the best of our knowledge, we are the

first to propose and design a RAM Grid system.

The rest of this paper is organized as follows. In

Section 2 we introduce the design criteria and system

background. In Section 3 we discuss the DPRG

architecture. Section 4 provides the simulation

methodology, and Section 5 presents the experimental

results and analysis. Section 6 describes the related work.

Section 7 concludes the paper and points to future work.

2. Overview

According to Patterson’s observation [9], the latency

of hard disks with different rotation speeds and seek

times ranges from 5 to 35 ms, while the network latency

of LAN or WAN can be as low as several hundred s. It

is indicated that cluster memory is faster than disk

memory by a factor of several hundred. Though its

performance varies due to different queuing and

transmission delays along the traveling path, grid

memory in the same city or campus can be several dozen

times faster than disk memory.

The advantages of RAM Grid are more than the high

access speed of a single remote memory compared with

disk speed. They include the capability to use Internet

memory services and improve the overall performance of

a computational task, the release of interior traffic

congestion, and high performance even when the

application memory demand is tremendously high.

2.1. System Assumption

We first make several reasonable assumptions in the

design of a prototype of a RAM Grid system - DPRG,

through which we separate sub-problems (mutual trust)

and throw away the trivia (zero disk cache).

Security and mutual trust: In DPRG, all nodes

joined in the system are considered to be trustworthy. As

the first step in the design of the RAM Grid system, we

only focus on the basic system design and the

performance evaluation. Security and trust mechanisms

are necessary to ensure safe transfer and execution. This

problem is separated from system core functions.

Presently, we assume that data transmission is secure and

all nodes in the system are trustworthy.

Zero disk cache: Each hard disk includes an inner

disk cache, whose size is usually in the range of several

megabytes. The speed of the disk cache is close to the

memory speed, and much faster than the hard disk speed,

but its effect in performance upgrade is not as significant

as that of free memory of the same size. Thereby, for

simplicity we can treat the memory and inner disk cache

as equivalent devices with the same access speed. If a

node has a memory of size X and an inner disk cache of

size Y (usually X >> Y), we simply regard it as a node

having a memory of size X+Y.

2.2. Criteria

We extract three system criteria, which are the basic

premises of DPRG.

Single service offering: Each grid node can only offer

service to one user. For example, if node x is storing

page frames for node y, it cannot store page frames for

any other node. Though the memory utilization is higher

if a grid node can work for more users simultaneously,

this one-to-many approach has the following problems.

First, since the remote memory is shared by several users,

each memory service user is not certain how much free

memory the remote node can offer in the future. It can

only obtain this information at each turn of the memory

request, which decreases the system performance.

Second, when multiple users are accessing their page

frames from the same node simultaneously, they suffer

from queuing delays. Therefore, single service offering is

reasonable since the memory resources are plentiful in a

RAM Grid. It is tolerable to have a little memory waste

in each node for the sake of fewer adjustments and less

queuing overheads.

Exponential request: When a user needs memory, it

requests M, 2M, 4M, …, 2n-1M of remote memory

gradually until its need is satisfied, where M is the

amount of local memory of the node. There is a tradeoff

between the time consumption and the memory waste in

this gradually increasing request. A small memory in

each round means more time spent for repeating resource

discovery, while a large memory in each round means

memory wasted. Assuming P is the total amount of the

requested memory, and t is the time spent for each round

of resource discovery, exponential request is a middle

course that can achieve moderate time consumption,

,*log 2 tM

MP

 (1)

and moderate memory waste,

.)12(*
2log

PM

M

MP

 (2)

3. System Design

A RAM Grid preserves the paging mechanism of

traditional operating systems. This means that the basic

unit of the system is a “page” and the basic operations

are “put page” and “get page”. We adopt the service-

oriented view in DPRG, which allows the grid memory

resources to publish their services, and the requestor to

transparently discover these services and access grid

memory.

There are five sets of nodes and two types of services

in DPRG. The classification and relationships of the

nodes and services are illustrated in Figure 2. We explain

them in detail in the following sections.

3.1. Paging Service and Deputy Service

DPRG provides two basic services: paging service

and deputy service, based on the Open Grid Service

Architecture (OSGA)[8, 10]. The flexibility of services

provides open and uniform interfaces for heterogeneous

resources. Note that current Web Service protocols can

not be used directly due to their poor performance. We

will study and design proper protocols for DPRG in

future works.

A node providing paging service allows other nodes

in the system to remotely store a page in its shared

.

Head node

Available

node

User node

Busy node

Subscribe Cancellation

Paging service (using)

Deputy service (using)

Intermediate

node

Paging

service

Deputy

service

Request

Figure 2. Relationship of different nodes
and services.

memory and fetch the page at any time. A node

providing deputy service acts as an agent that assists the

service requestor by discovering paging services. The

service requestor does not search for paging services

directly; it relies on the deputy service to do it. The

deputy service greatly releases the service requester from

resource preparation, since the latter is already heavily

loaded with scientific computing tasks.

3.2. Node Sets and Node States

DPRG is comprised of five sets of nodes: Savailable,

Sbusy, Sintermediate, Suser, and Shead. The relationship between

them is as follows:

SS i
i (3)

ji SS ji
where S is the set of all the nodes in the system. The five

node sets correspond to the five states. If node N belongs

to set Sx (N Sx), it means “N is at state X and it is an X

node”. Therefore, the expressions “N Sx”, “N is at

state X” and “N is an X node” are equivalent statements

in this paper. A node’s state tells us the current behavior

of the node.

Available node: If a node has a certain amount of free

memory to provide a paging service, it is an available

node. Each node monitors its own memory utilization

and makes the decision about its own availability by the

paging availability condition. A small portion of the

available nodes that satisfy the deputy availability

condition can provide deputy service.

Busy node: If a node’s paging service is being used

by another node, it is a busy node. A busy node

constantly monitors its own performance and decides

whether or not to continue providing service.

Head node: If a node is providing deputy service, it is

a head node. Head nodes are selected from available

nodes by the deputy availability condition which

emphasizes free CPU cycles over free memory.

User node: If a node is using one or more paging

services provided by busy nodes or a deputy service

provided by a head node, it is a user node.

Intermediate node: If a node is not available to

provide any paging or deputy services, and is not using

any paging services, it is at an intermediate state. An

intermediate node consumes a large portion of the local

memory, but it is unclear whether it will turn into an

available state or a user state in the near future.

Node states are related to the nodes’ actions in the two

services. The available, busy, and head nodes are the

service providers in different situations. The user and

intermediate nodes are the service consumers. Each user

node or intermediate node is associated with one head

node.

State transitions are triggered by certain service

operations, which we call events. Figure 3 depicts the

state diagram including seven transitions.

There are some consecutive and concurrent transitions

in the above diagram.

.When an available node becomes an intermediate

node , it requests a deputy service to discover paging

services for later usage, so another available node must

be quickly selected as the head node to run this deputy

service .

.When an intermediate node becomes available ,

the deputy service it is using should be released, and the

corresponding head node also becomes available .

.When an intermediate node becomes a user node

, at least one available node becomes busy and

provides paging services for it .

.When the user node returns back to intermediate

state , it releases all of its paging services, and the

corresponding busy nodes becomes available .

3.3. Paging Service Operations

As previous discussed, paging service is the basis for

providing grid memory, including the core operations put

page and get page, and the other management operations

service release, service withdrawal, and service

subscription.

3.3.1. Put Page and Get Page

 As illustrated in Figure 4, the two basic paging

operations are put page and get page. Put page stores a

page from the user node to the busy node. Get page

fetches a page from the busy node to the user node. The

user node manages a page table for all remote pages so

that it can determine which remote page to use for put

page and where to use get page.

7

Available

node

Busy node

Head node

User

node

6 5

1

3

2 4

Intermediate

node

Figure 3. Node state diagram.

3.3.2. Paging Service Subscription

The paging service subscription operation is used to

inform an available node that its service may be used in

the near future by a head node. A successful subscription

adds a record into the subscription list of the head node.

After that, the service can be used at any time until a

cancellation message is received. Each available node

maintains a subscriber list. When the available node

changes states, it should send a cancellation message to

all the head nodes on its subscriber list.

3.3.3. Paging Service Release

Each paging service is associated with a timer to

record the amount of time elapsed since the last put page

or get page operation. If a paging service does not store

any pages of the user node and has not been used for

Tidle, it is implicitly released, as illustrated in Figure 5.

The paging service then informs the user node and the

head node about the service release. The user node stores

any shortcuts of the paging services that it has ever used.

The next time the user node needs memory services, it

will first request these shortcut services.

3.3.4. Paging Service Withdrawal

Paging service withdrawal stops a busy node from

providing service for a user node in the middle of the

service process according to the paging unavailability

condition. The busy node is responsible for handing over

its jobs to another available node. To ensure a quick

service handover, each busy node subscribes to some

available backup services. As illustrated in

Figure 6, the process of the service handover proceeds

as follows:

a. The busy node swaps some of the user’s page

frames into the hard disk in order to satisfy the local

memory demand with higher priority.

b. It asks its backup nodes about their service

parameters. It then selects an appropriate backup

node as the substitute and moves the user’s page

frames to the substitute.

put page

ACK

get page

page frame

user node busy node

page table Page frame

head node busy node

usability list

user node

release

release

page table
idle

delete

delete

available node

Figure 4. Put page and get page operation. Figure 5 Paging service release operation.

c. It informs the head node about its handover to

update the usability list.

d. It informs the user node about its handover to

update the page table.

e. The busy node turns into an intermediate node.

3.3.5. Paging Service Monitoring

We first define URAM (0 < URAM < 1) as the availability

threshold. Let PRAM denote the predicted memory

utilization ratio of node G at time t. Node G is considered

to be available to provide a paging service at time t if and

only if PRAM < URAM. This is the paging availability

condition.

The paging service capacity Mshare of an available

node is defined as the maximum number of pages that an

available node can share. Let Mtotal denote the total

number of page frames of G, and Mlocal denote the

number of page frames being used by G’s local

application. We introduce Mupper to represent the upper

bound of Mshare.

}max{ RAMtotallocaltotalupper UMMrMM

or
localtotalupper MrMM

 (4)

Here we give two different calculations of Mupper. The

former is stricter, while the latter is looser. Here r is

called the relax factor (usually r = 2). Mshare can then be

calculated as follows.

The initial value of Mshare

In the duration of a paging service process, Mshare does

not change. At the end of each service process (service

release or withdrawal), the value of Mshare is updated and

the new Mshare is applied to the next round of paging

services. The initial value of Mshare is:

uppershare MM
 (5)

This value of Mshare is used when an available node

joins the system.

First tier update of Mshare

At the end of a paging service process, if the service is

successfully released, we should increase Mshare by the

proper amount:

2/)(shareuppershareshare MMMM

2/)(shareupper MM
 (6)

where Mupper is the current upper bound calculated from

formula (4).

Second tier update of Mshare

If a busy node G withdraws its paging services, it

changes from a busy state to an intermediate state. To

avoid unnecessary service withdrawal overheads in the

future, we decrease Mshare:

2/shareshare MM
 (7)

We can also define the paging unavailable condition

here. Let Mtotal, Mlocal and Mshare be the current total,

locally used, and shared page frames of a busy node at

time t, respectively. A busy node is considered to be

unavailable to provide paging services at time t if and

only if Mlocal > (Mtotal - Mshare).

3.4. Deputy Service Operations

DPRG requires each intermediate and user node to be

connected to a head node to provide deputy services. The

intermediate node first searches for a number of available

nodes using the service discovery approach described in

Section 3.3, and then it selects the head node that has the

highest processing power and acceptable network

conditions. The user node inherits the deputy services of

the intermediate node from which it is transformed.

The deputy service is an agent between the user and

its paging services. Besides the put page and get page

operations, other paging service management operations

must go through the head node. The head node should

maintain two lists for the user, a subscription list and a

usability list.

3.4.1. Deputy Service Process

 The deputy service maintains a list of subscribed

paging services as follows. The deputy service starts at

the time an available node turns into a head node. The

head node searches available nodes by flooding or other

existing search techniques. It then selects a set of

appropriate paging services, whose aggregate

subscription capacity is given by:

head node busy node

usability list

user node available node (backup)

update
(withdraw/handover)

update
(withdraw/handover)

page table
page frames

handover

busy nodeIntermediate node

Figure 6. Paging service withdrawal
operations.

bMM Ushare (8)

where MU is the local memory size of the user, b is the

backup factor (usually b = 1.5), and shareM
 is the

subscription capacity. The purpose of the backup factor b

is to over-subscribe a certain amount of service capacity

in case some services are cancelled later. The head node

then subscribes to the selected available paging services

and maintains a subscription list.

When the user node has a page P that needs to be

stored in grid memory, but the capacity of its current

paging services are used up, the following steps are

carried out, as illustrated in Figure 7.

a. The page P is sent to the corresponding head node.

b. The head node immediately sends the subscription

list to the user node.

c. The head node selects a subscribed paging service S

to store P.

d. The head node informs the user node of its selection

of S.

e. If the head node receives more page frames from

the user node, steps a, c and d are repeated.

f. The user node receives the subscription list, and

uses the paging service directly.

After a head node sends the subscription list to the

user node, it starts a new round of discovery and

subscription. The discovery and selection approach is the

same as that in step a). However, this time the aggregated

subscription capacity is given by:

bMMM PRshare)(
 (9)

where PM
is the total capacity of the paging services

being used by R. This update of subscription capacity

conforms to the “exponential request” criteria of Section

2. Step b) and c) are repeated during the process of the

deputy service.

3.4.2. Settlement of Subscription Cancellation

DPRG requires the subscribed paging service to send

a cancellation message to all (head) nodes in the

subscriber list. As time elapses, more paging services are

cancelled and the head node’s subscription capacity is

gradually reduced, as illustrated in Figure 8. To maintain

a subscription list of a certain capacity, the head node

needs to conduct re-discovery and re-subscription. Due

to the overhead of service discovery, DPRG only

conducts re-discovery and re-subscription when the

following condition is satisfied:

)(PRshare MMM
 (10)

Notice that the above formula does not use the backup

factor b. This means that re-discover and re-subscription

is conducted only when the subscription capacity is not

sufficient. The re-subscription capacity is the same as in

formula (8) and (9).

3.4.3. Deputy Service Release

When all the paging services are released, the user

node enters the available state. Its deputy services and all

the subscribed paging services in the subscription list are

released, and the head node also turns into an available

node, as illustrated in Figure 9.

3.4.4. Deputy Service Withdrawal

A head node withdraws the deputy service when it is

determined to be unavailable according to the deputy

unavailability condition. It hands over the subscription

list and usability list to a new head node and then informs

the user and all available nodes in the subscription list

(and all busy nodes in the usability list) about the head

node transfer.

3.4.5. Deputy Service Monitoring

 Unlike paging services, deputy services do not have

much of a memory requirement. Instead, deputy services

need more processing power for service maintenance. At

time t, let the predicted CPU utilization ratio of the node

N in the next T seconds be PCPU.
head node busy node

usability list

user node

subscription list
page frame P

subscript list

page table

put page

ACK

Inform put page

Figure 7. Operations of deputy service
process.

subscribe

responses

head node available nodes

subscription list

……

……
cancellation

A number of

cancellation

responses

……

re-subscribe

head node busy node

usability list

user node

release

turn to intermediate state

……

empty

subscription list

release
Intermediate node

available node

available node

subscription list

……

empty

release

Figure 8. Settlement of paging service
cancellation.

Figure 9. Deputy service release
operation.

 We select the node that has the lowest value of PCPU to

be the head node. This is the deputy availability

condition.

We also define the deputy unavailability condition as

follows. A head node H is considered to be unavailable

to provide deputy services any further if and only if its

CPU utilization in the past T seconds, Pcpu, is higher than

a threshold Ucpu, i.e. Pcpu > Ucpu.

If the deputy unavailability condition is satisfied, the

head node withdraws its ongoing deputy service and

hands it over to a backup node selected from the

subscription list. The detailed process is described in

Section 3.4.4.

4. Performance Evaluation

We collect trace from a real grid system, SkyHawk.

The SkyHawk grid is currently composed of the data grid

system GridDaen, the database grid system GridDaen-

EDS, and the grid monitoring system GridEye. Both

GridDaen and GridEye are important modules integrated

into the China National Grid system, which is the largest

test-bed for grid technologies in China, as illustrated in

Figure 10. Several large-scale applications in many

industries, including National Meteorological Grid,

Spatial Information Grid, and Remote Sensing Data

Processing system are currently deployed in SkyHawk.

In order to simulate the memory requirements of real

applications, we modified the system kernel to record the

page swap actions between the local memory and disk

when workstations are running the meteorological

analysis application. The trace information includes page

swap time (in microseconds), swap type (swap in or swap

out), and the page location in a disk. In SkyHawk, the

standard setting is a Linux workstation with 2 Intel Xeon

3.6GHz processors and at most a 4G physical memory.

We modify and install the Linux kernel version 2.4.22 on

RedHat release 9 to record trace information. Once we

have the data, we launch a trace-driven simulation to

evaluate the performance of DPRG.

4.1. DPRG vs. Disks

Our first concern with the RAM Grid is the network

conditions, which might restrict the grid memory’s

access speed. Without DPRG, the replaced page will be

swapped to hard disks. We compare the completion time

using DPRG and disks under different network

conditions, changing the average WAN bandwidth and

latency. In both tests, the completion time of disks is

always the same, in spite of the change in network

condition. In Figure 11, when the bandwidth increases

from 1M to 16M, the completion time decreases slowly

due to the faster remote page transmission. In Figure 12,

the completion time increases with the end-to-end

latency. We test five latencies, 1/4T, 1/2T, T, 2T, and 4T,

where T is the default average latency (1.5ms). In both

figures, DPRG’s completion time is much lower than that

of disks. The former is always less than 150s no matter

what the network condition is, while the latter is more

than 300s.

Figure 10. The SkyHawk grid.

Figure 11. RAM Grid V.S. disk under different
network bandwidth (1M – 16M). The disk
bandwidth is 80M.

Figure 12. RAM Grid V.S. disk under
different network latency (1/4T – 4T).

4.2. RAM Grid vs. Network Memory

Network memory, without any mechanisms for

heterogeneous and dynamic Internet environments,

cannot be directly used in grid systems. In this

experiment, we compare DPRG with network memory

schemes.

We study two parameters: the heterogeneous factor

and the dynamic factor, and their effect on RAM Grid

and network memory. The heterogeneous factor

(Fh [0,1]) denotes the heterogeneity (including

architecture, code set, operating system, etc.) of grid

nodes. Fh=0 implies that all grid nodes are homogenous;

and Fh=1 implies that all grid nodes are heterogeneous.

Figure 13 plots the completion time of DPRG and

network memory under different values of Fh. Since

RAM Grid can utilize all heterogeneous resources, its

performance does not change with Fh. Network memory,

however, increases exponentially. This means network

memory is severely affected by the heterogeneous factor.

The dynamic factor (Fd [0%,100%]) indicates the

possibility of unexpected service failure while the service

is being used. The RAM Grid can deal with these

dynamic conditions using backup nodes and the overhead

is overlapped by the head node, and thus, it is not

affected by the dynamic factor. Network memory,

however, is sensitive to service dynamicity. In Figure 14,

we can see that the completion time of network memory

increases linearly with the dynamic factor.

4.3. Different System Workload

We evaluate RAM Grid under different system

workloads. The system workload is changed by either

adjusting the application interval (the time interval

between the termination of a scientific application and

the start of the next application), or by adjusting the

proportion of intermediate nodes, slight-busy nodes, and

heavy-busy nodes.

In Figure 15, when the application interval increases,

the completion time of the application becomes shorter.

We test different application intervals from 1-15min to

40-480min. The decrease is almost flat when the

distribution of the interval is in a range higher than 5-

60mins in Figure 15. This means that at this point, RAM

Grid is already able to provide sufficient grid memory.

The disk performance is also plotted in the figure as a

reference. We also test different node proportions and

observe that the completion time increases when there

are more heavy-busy nodes. From Figure 16, we can see

that the completion time increase of DPRG is much

slower than that of the disk.

4.4. Different Parallel Size

In our previous experiments, we investigated the

impact of parallel jobs of size Fs. Fs denotes the number

of cluster nodes participating in one parallel job. Fs = 1

means that only one cluster node is participating in the

computing, so synchronization is not required. Fs = 32

means all of the 32 nodes in a cluster are joined in the

computing, such that the synchronization overhead will

be high. In Figure 17, we can see that when the parallel

job size increases, the completion time of RAM Grid

increases at a much slower pace than that of the disk.

This means that RAM Grid is not as affected by the

cluster’s parallel job size.

5. Related Work

The page fault problem in parallel computing has been

recognized and studied intensively in past years. Many

solutions have been proposed; some focus on reducing

the page fault overhead, while others try to reduce the

number of the page faults itself.

Figure 13. RAM Grid V.S. network memory
when the heterogeneous factor is changing.

Figure 14. RAM Grid V.S. network memory
when the dynamic factor is changing.

(intermediate node: slightly-busy node: heavy-busy node)

Figure 15. The impact of the application
interval on RAM Grid performance.

Figure 16. The impact of the application
proportion on RAM Grid performance.

Figure 17. The impact of the parallel job size
on RAM Grid performance.

Many variations of the scheduling algorithm have

been proposed to prevent the occurrence of page faults.

Douglas C. Burger et al point out that in parallel

computing, CPUs, as well as memories must be “gang

scheduled” [1]. Later, Anat Batat et al propose an

improved gang scheduling algorithm that takes memory

into consideration [11]. They propose that instead of

scheduling a task to the node that cannot fulfill its

memory requirements, it is better to suspend the task and

wait for another appropriate node. This is a multi-criteria

scheduling problem known to be NP-hard. Anat Batat et

al use the execution history and other information

extracted from execution files in his prediction. This

method, however, is not suitable in the case of dynamic

memory allocation, such as heap memory.

Two kinds of approaches are usually used to reduce

the page fault overhead. The hard-approaches use high-

speed paging devices. They provide faster paging than a

traditional hard disk. The soft-approach uses network

memory as the secondary RAM. Michael J. Feeley et al

build GMS (Global Memory Service), and the global

memory management system used in cluster computing.

They make a comprehensive design of the overall system

that considers many problems encountered in network

memory and developed solutions such as the page

replacement algorithm, the reliability problem, and so on

[2, 12, 13]. They adopt a distributed directory in page

management, where each page has a globally unique ID.

The whole system was implemented at the low operating

system layer. Michael J. Feeley et al analyze the

workload of the memory server and improve the GMS

performance by using methods of sub paging and pre-

fetching[12, 14]. Anurag Acharya et al analyze

parameters concerning idle memory (idle probability, the

idle interval length, etc.) from a large amount of trace

data [15]. They then build a run-time system called Dodo

for harvesting idle memory. Evangelos P. Markatos et

al’s research focuses on reliability. They build a remote

memory pager similar to GMS. By creating a parity

server for remote page checking, the system’s usability

can be increased [16].

All the above network memory approaches are

designed for a single cluster. John Oleszkiewicz et al

point out that the performance of network memory is

sensitive to the workload and network conditions of the

whole cluster [3]. In situations where some cluster nodes

are under a heavy load, or a portion of the cluster

network is congested, the network memory performance

drops rapidly. However, this balance is pretty limited

since the scope of a cluster is fairly small. If some nodes

fail to provide enough memory, or some paths are

congested, it is probable that other nodes also have heavy

jobs and other paths will be influenced by the congested

link.

6. Conclusion

The major contributions of this paper are as follows.

We propose RAM Grid, a grid memory sharing

mechanism. We further define a series of design

criteria, such as single service offer, exponential

request, and non-dual-identity, which are applicable

to RAM Grid systems.

We design the DPRG scheme, which is

composed of two major services: paging service and

deputy service. We provide a detailed service design,

including most of the core functions needed in grid

memory sharing.

Through trace-driven simulations, we evaluate

the performance of DPRG and compare it with the

network memory in grid environments. Experimental

results show that DPRG significantly outperforms

existing remote memory sharing schemes and

effectively supports grid computing applications.

The deployment of DPRG in Skyhawk Grid is

currently ongoing in our lab.

References

[1]D. C. Burger, R. S. Hyder, B. P. Miller, and D. A. Wood,

"Paging tradeoffs in distributed-shared-memory

multiprocessors," In Proceedings of Conference on High

Performance Networking and Computing, Washington, D.C,

1994.

[2]M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M.

Levy, and C. A. Thekkath, "Implementing Global Memory

Management in a Workstation Cluster," In Proceedings of

Symposium on Operating Systems Principles, Copper

Mountain Resort, Colorado, 1995.

[3]J. Oleszkiewicz, L. Xiao, and Y. Liu, "Parallel Network

RAM: Effectively Utilizing Global Cluster Memory for Large

Data-Intensive Parallel Programs," In Proceedings of the 2004

International Conference on Parallel Processing, Montreal,

Quebec, Canada, 2004.

[4]M. Wu and X.-H. Sun, "Memory Conscious Task Partition

and Scheduling in Grid Environments," In Proceedings of the

Fifth IEEE/ACM International Workshop on Grid Computing,

Pittsburgh, 2004.

[5]H. Sun, L. Zhong, J. Huai, and Y. Liu, "OpenSPACE: An

Open Service Provisioning and Consuming Environment for

Grid Computing," In Proceedings of First IEEE International

Conference on e-Science and Grid Computing, Melbourne,

Australia, 2005.

[6]Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, "Location-

Aware Topology Matching in P2P Systems," In Proceedings

of IEEE INFOCOM 2004, Hong Kong, China, 2004.

[7]I. Foster and A. Iamnitchi, "On Death, Taxes, and the

Convergence of Peer-to-Peer and Grid Computing," In

Proceedings of 2nd International Workshop on Peer-to-Peer

Systems Berkeley, 2003.

[8]I. Foster, K. Czajkowski, and D. Ferguson, "Modeling and

Managing State in Distributed Systems: The Role of OGSI

and WSRF," In Proceedings of the IEEE, 2005.

[9]D. A. Patterson, "Latency lags bandwith," Communications of

the ACM, vol. 47, pp. 71-75, 2004.

[10]I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The

Physiology of the Grid: An Open Grid Services Architecture

for Distributed Systems Integration. ," In Proceedings of the

5th Global Grid Forum Workshop (GGF5), 2002.

[11]A. Batat and D. G. Feitelson, "Gang Scheduling with

Memory Considerations," In Proceedings of the 14th

International Symposium on Parallel and Distributed

Processing, Cancun, Mexico, 2000.

[12]H. A. Jamrozik, M. J. Feeley, G. M. Voelker, J. E. II, A. R.

Karlin, H. M. Levy, and M. K. Vernon, "Reducing Network

Latency Using Subpages in a Global Memory Environment,"

In Proceedings of Seventh International Conference on

Architectural Support for Programming Languages and

Operating Systems, Cambridge, Massachusetts, 1996.

[13]G. M. Voelker, H. A. Jamrozik, M. K. Vernon, H. M. Levy,

and E. D. Lazowska, "Managing server load in global memory

systems," In Proceedings of ACM SIGMETRICS

International Conference on Measurements and Modeling of

Computer Systems, Seattle, Washington, United States, 1997.

[14]G. M. Voelker, E. J. Anderson, T. Kimbrel, M. J. Feeley, J.

S. Chase, A. R. Karlin, and H. M. Levy, "Implementing

cooperative prefetching and caching in a globally-managed

memory system," In Proceedings of Joint International

Conference on Measurement and Modeling of Computer

Systems, Madison, Wisconsin, United States, 1998.

[15]A. Acharya and S. Setia, "The Utility of Exploiting Idle

Memory for Data-Intensive Computations," Technical Report:

TRCS98-02, 1998.

[16]E. P. Markatos and G. Dramitinos, "Implementation of a

Reliable Remote Memory Pager," In Proceedings of USENIX

Annual Technical Conference, San Diego, CA, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

