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Abstract 

Recent advances in space and computer technologies 
are revolutionizing the way remotely sensed data is 
collected, managed and interpreted. The development of 
efficient techniques for transforming the massive amount 
of collected data into scientific understanding is critical 
for space-based Earth science and planetary exploration. 
Although most currently available parallel processing 
strategies for hyperspectral image analysis assume 
homogeneity in the computing platform, heterogeneous 
networks of computers represent a very promising cost-
effective solution expected to play a major role in the 
design of high-performance computing platforms for many 
on-going and planned remote sensing missions. This paper 
explores techniques for mapping morphological 
hyperspectral analysis algorithms, characterized by their 
scalability and sub-pixel accuracy, onto heterogeneous 
parallel computers. Important aspects in algorithm design 
are illustrated by using both homogeneous and 
heterogeneous parallel computing facilities available at 
NASA’s Goddard Space Flight Center and University of 
Maryland. Experiments reveal that heterogeneous 
networks of workstations represent a source of 
computational power that is both accessible and 
applicable in many remote sensing studies. 

1. Introduction 

The incorporation of last-generation sensors to airborne 
and satellite platforms is currently producing a nearly 
continual stream of high-dimensional data, and this 
explosion in the amount of collected information has 
rapidly introduced new processing challenges [1]. In 
particular, NASA is continuously gathering imagery data 

with Earth-observing sensors. Recent advances in sensor 
technology have led to the development of so-called 
hyperspectral instruments, capable of collecting hundreds 
of images, corresponding to different wavelength channels 
for the same area on the surface of the Earth. The concept 
of hyperspectral imaging (see Fig. 1) was introduced when 
NASA’s Jet Propulsion Laboratory Airborne Visible-
Infrared Imaging Spectrometer (AVIRIS) [2] was 
developed. This imager currently covers the wavelength 
region from 0.4 to 2.5 µm using 224 spectral channels, at a 
nominal spectral resolution of 10 nm. On other hand, the 
Hyperion hyperspectral imager aboard NASA’s Earth 
Observing-1 (EO-1) spacecraft has been NASA’s first 
hyperspectral imager to become operational on-orbit. It 
routinely collects images hundreds of kilometers long with 
220 spectral bands from 0.4 to 2.5 µm. In the near future, 
the use of hyperspectral sensors on satellite platforms will 
produce a nearly continual stream of multidimensional 
data, and this expected high data volume would demand 
fast and efficient means for storage, transmission and 
analysis. The automation of techniques for transforming 
collected data into scientific understanding is critical for 
space-based Earth science and planetary exploration with 
onboard scientific data analysis. 

While integrated spatial/spectral developments hold 
great promise for Earth science image analysis, they also 
introduce new processing challenges [3]. In particular, the 
price paid for the wealth of spatial and spectral 
information available from hyperspectral sensors is the 
enormous amounts of data that they generate [4]. Several 
applications, however, require that a response is provided 
quickly enough for practical use. Relevant examples 
include environmental modeling and assessment, target 
detection for military and defense/security purposes, urban 
planning and management studies, risk/hazard prevention 
and response including wild land fire tracking, biological 
threat detection, monitoring of oil spills and other types of 
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chemical contamination. To address the computational 
need introduced by such relevant applications, several 
efforts have been recently directed towards the 
incorporation of high-performance computing models in 
remote sensing missions [3], especially with the advent of 
relatively cheap Beowulf clusters [5]. The new processing 
power offered by such commodity systems can be 
employed in data mining applications from massively 
large data archives (it is estimated that NASA collects and 
sends to Earth more than 850 GB of hyperspectral data 
every day). Further, real-time systems for onboard data 
analysis and compression still need to be fully 
incorporated to remote sensing missions. Although most 
parallel techniques and systems for image information 
processing employed by NASA and other institutions 
during the last decade have chiefly been homogeneous in 
nature, a current trend in the design of systems for analysis 
and interpretation of the massive volumes of data provided 
by space-based Earth science and planetary exploration 
missions is to utilize heterogeneous resources. This 
heterogeneity is seldom planned, arising mainly as a result 
of technology evolution over time and computer market 
sales and trends. Commodity off-the-shelf heterogeneous 
clusters of computers can realize a very high level of 
aggregate performance [6], and it is expected that these 
clusters will represent a tool of choice for the scientific 
community devoted to high-dimensional image analysis in 
remote sensing and other fields [7-9]. It is also worth 
noting that significant opportunities to exploit 
heterogeneous computing techniques are still available in 
the analysis of high-dimensional image data sets [10]. 

In this paper, we explore techniques for mapping 
hyperspectral image analysis algorithms onto 
heterogeneous networks of computers. Section 2 describes 
a hyperspectral analysis methodology that will serve as 
our case study throughout the paper. Section 3 develops 
parallel versions of the considered approach, specifically 
designed for heterogeneous platforms. In Section 4, we 
assess the parallel performance of the considered parallel 
algorithms by drawing comparisons between their 
efficiency on a heterogeneous cluster of workstations with 
the efficiency evidenced by their homogeneous 
counterparts on a homogeneous cluster with the same 
aggregate performance as the heterogeneous one. This 
evaluation strategy is adopted from recent studies by 
Lastovetsky and Reddy. Performance data on 
Thunderhead, a (homogeneous) massively parallel 
Beowulf cluster at NASA’s Goddard Space Flight Center 
are also given. Section 5 concludes with some remarks. 

2. Hyperspectral Analysis Methodology 

This section develops a sequential morphological 
processing algorithm for analysis and classification of 
hyperspectral image data [11]. The algorithm will be used 

as a case study throughout the paper, as a representative 
algorithm of integrated spatial/spectral approaches, i.e., 
algorithms that take into account both the spatial and 
spectral information of the data in simultaneous fashion. 
Such hybrid techniques represent the most advanced 
generation of algorithms for analyzing hyperspectral 
imagery [1]. Before describing our proposed approach, let 
us denote by f  a hyperspectral data set defined on an N-

dimensional (N-D) space, where N is the number of 
channels or spectral bands. Using extended morphological 
operations [12], we impose an ordering relation in terms of 
spectral purity in the set of pixel vectors lying within a 
spatial search window (structuring element), designed by 
B , and defined in advance. In order to do so, we first 
define a cumulative distance between one particular pixel 

( )yx,f , where ( )yx,f  denotes an N-D vector at discrete 

spatial coordinates ( ) 2, Zyx ∈ , and all the pixel vectors in 

the spatial neighborhood given by B  ( B -neighborhood) 
as: 

[ ] [ ]∑ ∑= i jB jiyxAMyxD ),(),,(S),( fff ,

where ),( ji  refers to spatial coordinates in the B -

neighborhood and SAM is the spectral angle mapper [1], 
defined by : 

( ) ( )),(),(),(),(cos),(),,(SAM 1 jiyxjiyxjiyx ffffff ⋅= −

As a result, [ ]),( yxDB f  is ultimately given by the sum 

of SAM scores between ( )yx,f  and every other pixel 

vector in the B -neighborhood. Based on the distance 
above, we calculate the extended erosion of f  by B  [13] 

for each pixel in the input data scene, i.e., for each 
possible B -neighborhood in the input scene, we select the 
pixel that produces the minimum value for BD :

( )
( ) ( ) ( ) ( )[ ]{ }{ }jyixDjijyix

yxB

Bji ++=++
=Θ

,minarg',',','

),(

, ff

f

where the arg min operator selects the pixel vector is most 
highly similar, spectrally, to all the other pixels in the B -
neighborhood. Similarly, we apply an extended dilation of 
f  by B  [13] to select (for each possible B -neighborhood 

in the input scene) the pixel vector that produces the 
maximum value for BD :

( )
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where the argmax operator selects the pixel vector that is 

most spectrally distinct to all the other pixels in the B -
neighborhood. Finally, we calculate a morphological 
eccentricity index (MEI) [11] at each pixel as follows: 

( )( ) ( )( )[ ]yxByxByx ,,,SAM),(MEI Θ⊕= ff

The resulting MEI scores (at a pixel level) can be then 
used for a variety of applications in hyperspectral imaging 
[12], most notably, to select the “purest” pixels in the 



image data, which can then be used to express “mixed” 
pixels in terms of linear/nonlinear combinations of pure 
pixels. Mixed pixel characterization is crucial in 
hyperspectral imaging, where the spatial resolution of the 
sensor is often not fine enough to separate different pure 
materials at a sub-pixel level and these can jointly occupy 
a single pixel, with the resulting spectral measurement at 
the pixel given by composite of the individual spectra. 
Although spectral unmixing procedures based on pure 
pixel identification have become quite popular in recent 
years, their exploitation in real applications is often 
limited by their high computational complexity. 

3. Parallel Implementation 

This section describes a heterogeneous parallel processing 
framework for hyperspectral image analysis, which makes 
use of the morphological algorithm outlined in section 2 as 
a case study. Before providing an overview of the 
proposed parallel processing approach, we fist discuss 
volume partitioning and data communications. 

3.1. Volume Partitioning 

A major requirement for efficient parallel algorithms on 
distributed memory systems is finding a decomposition 
that minimizes the communication between the 
processors. For that purpose, domain decomposition 
techniques provide flexibility and scalability in parallel 
image processing. Two types of partitioning can be 
exploited in hyperspectral image analysis algorithms: 
spectral-domain partitioning and spatial-domain 
partitioning [5]. Spectral-domain partitioning subdivides 
the volume into small cells or sub-volumes made up of 
contiguous spectral bands, and assigns one or more sub-
volumes to each processor. With this model, each pixel 
vector is split amongst several processors, which breaks 
the spectral identity of the data because the calculations 
for each pixel vector (e.g., for the SAM calculation) need 
to originate from several different processing units [14]. 

On the other hand, spatial-partitioning preserves the 
entire spectral signature of each hyperspectral image pixel 
[5]. In this work, we adopt a spatial-domain partitioning 
approach due to several reasons. First, the application of 
spatial-domain partitioning is a natural approach for low-
level image processing [10], as many operations require 
the same function to be applied to a small set of elements 
around each data element present in the image data 
structure. A second reason has to do with the cost of inter-
processor communication. In spectral-domain parallel, the 
structuring element-based calculations made for each 
hyperspectral pixel need to originate from several 
processing elements, and thus require intensive inter-
processor communication.  

Figure 1. 3x3-pixel structuring element computation 
split between two processing nodes. 

Finally, we believe that volume partitioning in the 
spatial domain is easier to handle in systems for 
hyperspectral imaging due to the fact that most available 
algorithms rely on spatial domain decomposition, while 
spectral domain-based partitioning would require careful 
re-design and re-programming of standard techniques. 

3.2. Handling Data Communications 

Before describing our adopted parallel algorithm, we 
should point out that an important issue in neighborhood-
based image processing applications such as mathematical 
morphology is that additional inter-processor 
communications are required when the structuring element 
computation needs to be split amongst several different 
processing nodes due to boundary effects, as illustrated in 
Fig. 2 for a 3x3-pixel structuring element. In the example, 
the computations for a certain pixel need to originate from 
two heterogeneous processors, and a communication 
overhead involving three high-dimensional pixel vectors is 
introduced. 

However, if redundant information such as an overlap 
border is added to one of the adjacent partitions to avoid 
accesses outside image domain, as illustrated in Fig. 3, 
then boundary data to be exchanged between neighboring 
processors can be greatly minimized [15]. It is clear at this 
point that an overlapping scatter would introduce 
redundant computations, since the intersection between 
the two involved partitions would be non-empty. It is also 
worth noting that the solution above may be prohibitive 
for large structuring element sizes. Subsequently, there is 
an application-dependent threshold to decide whether a 
redundant information-based or data exchange-based 
strategy should be adopted.  

In order to explore the above relevant issue, in this 
work we will compare three different overlap 
communication strategies. It should be noted that the 
strategies addressed below have never been tested in the 
context of hyperspectral imaging applications: 



Figure 2. Redundant computations to reduce inter-
processor communication. 

a) Standard non-overlapping scatter, followed by 
overlap communication in the structuring element-
based filtering operation for every pixel (as shown in 
Fig. 2), thus sending very small sets of pixels very 
often. 

b) Standard non-overlapping scatter, followed by 
overlap communication before the morphological 
filtering, to have all data available in the overlap 
border areas (thus sending all border data beforehand, 
but only once). This is the strategy that is used in [16]. 

c) A special “overlapping scatter” operation, that also 
sends out the overlap border data as part of the scatter 
operation itself. 

3.2. Implementation Details 

The main purpose of the parallel algorithm in this 
section is to provide a mechanism to slice the available 
data into chunks (according to the spatial-domain volume 
partitioning framework described in subsection 3.1) so that 
the total execution time is minimized. For this purpose, 
there is a need to load-balance the workloads of p

participating heterogeneous resources so that each 
processor iP  will accomplish a share iα  of the total 

workload W , where 0i ≥  for pi ≤≤1  and ∑ =
=

p

i
i

1
1α .

Therefore, a desired goal is to find a set of optimal values 

for the set { }p
ii 1=α , taking into account the three data 

communication strategies addressed in subsection 3.2. We 
provide below a step-by-step description of the proposed 
parallel algorithm, where the input parameters are a 
hyperspectral image f  with N spectral channels, and a 

structuring element, B , that will be used for the 
construction of morphological operations. Based on our 
previous results with the proposed morphological 
algorithm, we will assume that the structuring elements 
used in this work are square-shaped, although structuring 
elements with different shapes may also be considered. 

Heterogeneous Morphological Processing (HMP)

Inputs: N-dimensional image f , Structuring element B

Output: 2-dimensional image MEI 
1. Obtain necessary information about the heterogeneous 

system, including the number of available processors, 

p , each processor’s identification number, { }p
iiP 1= ,

and processor cycle-times, { }p
iiw 1= .

2. Using B  and the information obtained in step 1, 
determine the total volume of information, R , that 
needs to be replicated from the original data volume, 
V  according to the three data communication 

strategies described in subsection 3.2.  
3. Let the total workload W  to be handled by the 

algorithm be given by RVW += .

4. Set 
( )

( )⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢

⎣
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=

∑ =

p

i
i

i
i

w

wp

1
1

α  for all { }pi ,,1 ⋅⋅⋅∈ .

5. For ∑ =
=

p

i
im

1
α  to ( )RV + , find { }pk ,,1 ⋅⋅⋅∈  so that 

( ) ( ){ }p
iiikk ww 11min1 =+⋅=+⋅ αα  and set 1+= kk αα .

6. Use the resulting { }p
ii 1=α  to obtain a set of p  spatial-

domain heterogeneous partitions of ( )RV + , and send 

its corresponding partition to each processor iP  along 

with B  following the data communication strategies 
described in subsection 3.2.  

7. Execute the sequential algorithm in section 2 in 
parallel at each heterogeneous processor. 

8. Collect all the individual results { }p
ii 1MEI =  provided 

by each processor iP , and merge them together to 

form a final image { }i

p

i
MEIMEI

1=
∪= .

In order to perform spatial-domain data partitioning in 
step 6, we adopt a hybrid methodology with two steps: 
a) Partition the hyperspectral data set so that the number 

of rows in each partition is proportional to the values 

of { }P
ii 1=  assuming that no upper bound exists on the 

number of pixels that can be stored by the processor.  
b) For each processor, check if the number of pixel 

vectors assigned to it is greater than the upper bound. 
For all the processors whose upper bounds are 
exceeded, assign them a number of pixels equal to 
their upper bounds. Now, we solve the partitioning 
problem of a set with remaining pixel vectors over the 
remaining processors. We recursively apply this 
procedure until all the elements have been assigned. 

It should be noted that a homogeneous version of the 
algorithm above can be obtained by replacing step 4, so 
that iwpi =α  for all { }pi ,,1 ⋅⋅⋅∈ , where iw  is a constant 

communication speed between each processor pair.  



P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

0.0072 0.0102 0.0206 0.0072 0.0102 0.0058 0.0072 0.0102 0.0072 0.0451 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 

Table 1. Processor cycle-times (in seconds per megaflop) for the heterogeneous cluster. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1
 19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P2
19.26  19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P3
19.26 19.26  19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P4
19.26 19.26 19.26  48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P5
48.31 48.31 48.31 48.31  17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P6
48.31 48.31 48.31 48.31 17.65  17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P7
48.31 48.31 48.31 48.31 17.65 17.65  17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P8
48.31 48.31 48.31 48.31 17.65 17.65 17.65  48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P9
96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31  16.38 58.14 58.14 58.14 58.14 58.14 58.14 

P10
96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38  58.14 58.14 58.14 58.14 58.14 58.14 

P11
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14  14.05 14.05 14.05 14.05 14.05 

P12
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05  14.05 14.05 14.05 14.05 

P13
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05  14.05 14.05 14.05 

P14
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05  14.05 14.05 

P15
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05  14.05 

P16
154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05 

Table 2. Capacity of links (measured in terms of the time in miliseconds to transfer a one-megabit message) for the 
heterogeneous cluster. 

4. Experimental Results 

This section provides an assessment of the 
effectiveness of the proposed parallel algorithm using 
different data communication and redundant computation 
handling strategies, as described in subsection 3.2. In 
order to assess the algorithm’s performance, we resort to a 
framework for assessment of heterogeneous algorithms 
recently proposed by Lastovetsky and Reddy [17], who 
stated that a heterogeneous algorithm cannot be executed 
on a heterogeneous environment faster than its 
homogeneous prototype on the equivalent homogeneous 
environment. In [17], a homogeneous computing 
environment was considered equivalent to the 
heterogeneous one if: 1) both environments have the same 
number of processors; 2) the speed of each processor in 
the homogeneous environment is equal to the average 
speed of processors in the heterogeneous environment; 
and 3) the aggregate communication characteristics of the 
homogeneous environment are the same as those of the 
heterogeneous environment. As a result, the heterogeneous 
algorithm may be considered optimal if its efficiency is 
the same as that of the homogeneous prototype. This 
strategy is appropriate in morphological hyperspectral 
imaging, where the proposed heterogeneous algorithm is a 
modification of some homogeneous one. 

4.1. Parallel Computing Architectures 

This subsection provides an overview of the 
heterogeneous and homogeneous parallel computing 
architectures used for evaluation purposes in this work. 
For the design of experiments, we have considered three 
clusters of workstations. The first one is a small-scale 
heterogeneous network of 16 different SGI, Solaris and 
Linux workstations, and four communication segments at 
University of Maryland. Table 1 shows the cycle-times of 

the heterogeneous processors, where processors { }4
1ii =P  are 

attached to communication segment 1s , processors { }8
5ii =P

communicate through 2s , processors { }10
9ii =P  are 

interconnected via 3s , and processors { }16
11ii =P  share 

communication segment 4s . The communication links 

between the different segments { }4

1jj =
s  only support serial 

communication. For illustrative purposes, Table 2 shows 
the capacity of all point-to-point communications, 
expressed as the time in milliseconds to transfer a one-
megabit message between each processor pair ( )ji PP ,  in 

the heterogeneous system. As it can be deduced from 
Table 2, the communication network of the heterogeneous 



platform consists of four relatively fast homogeneous 
communication segments interconnected by three slower 

communication links with capacities ( ) 05.291,2 =c ,
( ) 31.482,3 =c , ( ) 14.583,4 =c  in milliseconds, respectively. 

Although this is a simple architecture, it is also a quite 
typical and realistic one as well. 

The second parallel computing architecture used in 
experiments is a homogeneous cluster of 16 identical 
Linux workstations which is considered to be equivalent to 
the heterogeneous one. The processor cycle-time of the 16 
processors in this architecture is 0131.0=w  seconds per 

megaflop, and they are interconnected via a homogeneous 
network with capacity 64.26=c  milliseconds. It should 

also be noted that the same processors { }16
11ii =P  in the 

heterogeneous cluster were also used to construct the 
homogeneous cluster, which allowed us to better control 
the accuracy of experiments by ensuring that these 
processors have the same speed in the homogeneous 
cluster running an homogeneous prototype and in the 
heterogeneous cluster running its corresponding 
heterogeneous algorithm. It is also important to emphasize 
that the configuration of the two platforms above was 
custom-designed to make sure that the two architectures 
are approximately equivalent in the context of our specific 
heterogeneous application, as detailed in [17]. 

Finally, In order to test the heterogeneous algorithm on 
a larger-scale parallel platform, we have also 
experimented with Thunderhead, a Beowulf cluster 
located at NASA’s Goddard Space Flight Center (GSFC). 
Beginning in the early nineties, the overwhelming 
computational needs of Earth and space scientists have 
driven GSFC to be one of the leaders in the application of 
low cost high-performance computing to remote sensing 
problems. In 1997, the HIVE (Highly Parallel Virtual 
Environment) project was started to build a homogeneous 
commodity cluster intended to be exploited by different 
users in a wide range of scientific applications. The 
Thunderhead system can be seen as an evolution of the 
HIVE project. It is currently composed of 256 dual 2.4 
GHz Intel Xeon nodes, each with 1 GB of memory and 80 
GB of main memory. The total peak performance of the 
system is 2457.6 GFlops. Despite the computational 
power offered by Thunderhead, a current trend at GSFC 
and other NASA centers is to exploit highly 
heterogeneous, massively parallel computing platforms 
able to operate in large-scale distributed environments. 

4.2. Performance Analysis 

The parallel algorithm in section 3 was applied to a 
hyperspectral scene collected by the AVIRIS 
hyperspectral imager, using seven different square-shaped 
structuring elements, i.e., 3x3B , 5x5B , 7x7B , 9x9B , 11x11B ,

13x13B  and 15x15B . The full data set, with dimensions of 

1024 samples by 614 lines and 224 spectral bands (around 
280 MB) was acquired over the well-known Indian Pines 
region, a mixed forest/agricultural test site, and represents 
a very challenging classification problem due to the fact 
that most of the classes are dominated by mixed pixels. 
Extensive ground-truth information is available for the 
area along with ground-truth information, as shown by 
Fig. 4. This map was preliminary used to validate the 
accuracy of our proposed morphological algorithm 
combined with a spectral mixture analysis approach, in 
which the procedure described in section 2 was first used 
to identify the most spectrally pure pixels in the data set 
according to the resulting MEI scores. As a result, a set of 
30 representative pure pixels (one per ground-truth class) 
was identified, and each pixel was labeled as belonging to 
the class given by the most abundant sub-pixel component 
(this strategy is known as winner-take-all in the literature 
[1]). For illustrative purposes, Table 3 shows the 
classification accuracy scores (in terms of the percentage 
of correctly classified pixels) obtained using the procedure 
above with the seven considered structuring elements, 
where the most appropriate structuring element seemed to 
be 13x13B .

3x3B 5x5B 7x7B 9x9B 11x11B 13x13B 15x15B

65.34 73.48 80.29 84.05 90.13 90.55 90.96 

Table 3. Percentages of correctly classified pixels in 
the AVIRIS scene by a winner-take-all strategy based 
on the proposed morphological processing using 
different structuring elements. 

Fig. 5(a) plots the speedup of the heterogeneous 
algorithms over their corresponding homogeneous 
prototypes on the heterogeneous platform as a function of 

WR
, where the three considered data communication 

strategies are respectively labelled as HMP-A, i.e., overlap 
communication for every single pixel; HMP-B, i.e., 
overlap communication to have all data available before 
the morphological filtering; and HMP-C, i.e., sending the 
overlap border data as part of the scatter operation itself. 
Results in Fig. 5(a) show that heterogeneous algorithms 
were several times faster than their homogeneous versions, 
in particular, those labelled as HMP-B and HMP-C. The 
speedup was simply calculated as the execution time of 
the homogeneous algorithm divided by the execution time 

of the heterogeneous algorithm for the same 
WR

 ratio. 
The main reason why the HMP-A algorithm performed 
less effectively is due to its very expensive communication 
strategy, while HMP-B implemented a better 
communication strategy, and HMP-C was usually about as 
good as strategy B. 



   
Figure 4. (Left) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural and forest features at 
Indian Pines, Indiana. (Right) Ground-truth map with 30 mutually exclusive land-cover classes. 
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Figure 5. Speedup achieved by the heterogeneous 
algorithms over their corresponding homogeneous 
counterparts on a heterogeneous cluster at University 
of Maryland. 

Fig. 5 plots the speedup of the heterogeneous 
algorithms over their corresponding homogeneous 
prototypes on the heterogeneous platform as a function of 

WR , where the three considered data communication 

strategies are respectively labeled as HMP-A, i.e., overlap 
communication for every single pixel; HMP-B, i.e., 

overlap communication to have all data available before 
the morphological filtering; and HMP-C, i.e., sending the 
overlap border data as part of the scatter operation itself. 
Results in Fig. 5 show that heterogeneous algorithms were 
several times faster than their homogeneous versions, in 
particular, those labeled as HMP-B and HMP-C. The 
speedup was simply calculated as the execution time of 
the homogeneous algorithm divided by the execution time 
of the heterogeneous algorithm for the same WR  ratio. 

The reason why the HMP-A algorithm performed less 
effectively is due to its expensive communication strategy, 
while HMP-B implemented a better communication 
strategy, and HMP-C implemented a strategy that was 
usually about as good as strategy B. Similarly, Fig. 6 
shows the speedup of the homogeneous algorithms over 
the heterogeneous ones on the homogeneous platform as a 
function of WR . Results in Fig. 6 demonstrate that the 

homogeneous algorithms only slightly outperformed the 
heterogeneous ones for small structuring elements when 
the computing platform was also homogeneous. However, 
as the volume of computation increased (which is often a 
requirement in light of results in Table 3), heterogeneous 
algorithms achieved very similar performance to their 
respective homogeneous counterparts.  
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Figure 6. Speedup achieved by the homogeneous 
algorithms over their corresponding heterogeneous 
algorithms on a homogeneous cluster which is 
considered equivalent to the heterogeneous one. 

This result demonstrates the flexibility of the proposed 
heterogeneous algorithms, which were able to adapt much 
better to homogeneous computing environments, in 
particular, when the volume of computations involved is 
very large. Quite opposite, homogeneous algorithms could 
not effectively adapt to a heterogeneous computing 
scenario, as demonstrated by results in Fig. 5. This is 
mainly due to a less efficient workload distribution among 
the heterogeneous workers. To analyze this relevant issue 
in more detail, a study of load balance is highly required to 
fully substantiate the parallel properties of the considered 
algorithms. 

In order to explore load balance, Table 4 shows the 
imbalance scores achieved by the different algorithms 
(implemented with maxI  set to 5 iterations). The 

imbalance is defined as minmax RRD /= , where maxR  and 

minR  are the maxima and minima processor run times, 

respectively. Therefore, perfect balance is achieved when 
1=D . In the table, we report the imbalance considering 

all processors, AllD , and also considering all processors 

but the root, MinusD . In all cases, load balance was similar 

when the root processor was not included, which means 
that the master node does not have high computation load. 
It is also clear from Table 4 that the homogeneous 
algorithms executed on the heterogeneous network 
provided the highest values of AllD  and MinusD  (and 

hence the highest imbalance), while the heterogeneous 
algorithms always resulted in values of AllD  and MinusD

which were closer to 1, regardless of the platform where 
they were run. More specifically, it can be seen from 
Table 4 that the HMP-B implementation was the only 
heterogeneous algorithm which was able to provide values 
of AllD  and MinusD  which were always very similar, while 

HMP-C provided slightly less similar scores. 
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Figure 7. Scalability of the heterogeneous and 
homogeneous algorithms on Thunderhead, using a 
square-shaped structuring element of 13x13 pixels as 
a case study for demonstration. 

Taking in mind the results described above, and with 
the ultimate goal of exploring issues of scalability and 
portability of the proposed heterogeneous algorithms to 
existing massively parallel computing platforms at NASA 
(which are mainly homogeneous in nature), we have also 
compared the performance of the proposed heterogeneous 
algorithms (and their homogeneous counterparts) on 
Thunderhead. Fig. 7 shows the speedups achieved by the 
heterogeneous algorithms and their homogeneous versions 
over a single-processor run of the sequential 
morphological algorithm on Thunderhead, as a function of 
the number of processors, using a structuring element size 
of 13x13 pixels (measured processing times are also 
reported on Table 5). As Fig. 7 shows, the scalability of 
the heterogeneous algorithms was similar to that achieved 
by their homogeneous prototypes, in particular, for both 
HMP-B and HMP-C algorithms. It should also be noted 
that a processing time of 40 seconds was measured for 
HMP-B when all available processors on Thunderhead 
were used. This is a relevant achievement given the 
extremely high dimensionality of the considered scene, in 
particular, if we take into account that more than two 
hours of computation (7267 seconds) were required to 
process the full hyperspectral data set using a single 
Thunderhead processor. Overall, experimental results in 
this section revealed that parallel algorithms based on 
heterogeneous computing paradigms offer a simple, 
relatively platform-independent and scalable solution in 
the context of high-dimensional imaging applications. 

5. Conclusions and Future Research 

This paper provided an investigation of parallel 
techniques to extract relevant information from 
hyperspectral image data sets in highly heterogeneous 
computing environments.  



 HMP-A HMP-B HMP-C 

Algorithm AllD MinusD
AllD MinusD AllD MinusD

Homogeneous versions 1.31 1.15 1.07 1.03 1.12 1.04 

Heterogeneous algorithms 1.28 1.13 1.06 1.02 1.10 1.03 

Table 4. Load-balancing rates for heterogeneous algorithms (and homogeneous versions) in the heterogeneous cluster. 

 HMP-A HMP-B HMP-C 

Number of processors Execution time Speedup Execution time Speedup Execution time Speedup 

4 3460 2.01 1990 3.65 2344 3.12 

16 741 9.18 490 14.81 549 13.23 

36 357 20.03 219 33.12 256 28.34 

64 224 32.24 128 56.67 141 51.23 

100 151 48.35 85 85.23 102 71.23 

144 117 62.34 62 116.23 83 87.34 

196 98 74.23 48 149.56 73 99.86 

256 90 80.32 40 180.28 69 105.23 

Table 5. Execution time in seconds and speedup factors for heterogeneous algorithms on Thunderhead. 

Experimental results demonstrated that heterogeneous 
networks of workstations represent a cost-effective way of 
exploiting parallelism in spatial/spectral algorithms such 
as those based on mathematical morphology, which 
represent a most advanced generation of algorithms in 
hyperspectral imaging. It has been shown that parallel 
computing at the massively parallelism level provides a 
unique framework to extract information in near real-time 
and with adequate reliability in an environment dominated 
by heterogeneous processing components. The proposed 
parallel framework is particularly suitable for data mining 
applications that previously looked to be too 
computationally intensive in practice, due to immense files 
and data archives common to remote sensing problems. 
Combining this readily available computational power 
with the new sensor instruments may introduce major 
changes in the systems used by NASA and other agencies 
for exploiting Earth and planetary remotely sensed data. 
We feel that the applicability of the techniques described 
in this paper extend beyond the domain of high-
dimensional image processing. This is particularly true for 
the domains of signal processing and linear algebra 
applications, which include similar patterns of 
communication and calculation. 
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