
A Code Motion Technique for Accelerating
General-Purpose Computation on the GPU∗

Takatoshi Ikeda, Fumihiko Ino, and Kenichi Hagihara

Graduate School of Information Science and Technology
Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
{ikeda,ino,hagihara}@ist.osaka-u.ac.jp

Abstract

Recently, graphics processing units (GPUs) are provid-
ing increasingly higher performance with programmable
internal processors, namely vertex processors (VPs) and
fragment processors (FPs). Such newly added capabili-
ties motivate us to perform general-purpose computation on
GPUs (GPGPU) beyond graphics applications. Although
VPs and FPs are connected in a pipeline, many GPGPU
implementations utilize only FPs as a computational engine
in the GPU. Therefore, such implementations may result in
lower performance due to highly loaded FPs (as compared
to VPs) being a performance bottleneck in the pipeline exe-
cution. The objective of our work is to improve the perfor-
mance of GPGPU programs by eliminating this bottleneck.
To achieve this, we present a code motion technique that
is capable of reducing the FP workload by moving assem-
bly instructions appropriately from the FP program to the
VP program. We also present the definition of such mov-
able instructions that do not change the I/O specification
between the CPU and the GPU. The experimental results
show that (1) our technique improves the performance of
a Gaussian filter program with reducing execution time by
approximately 40% and (2) it successfully reduces the FP
workload in 10 out of 18 GPGPU programs.

1. Introduction

The GPU (graphics processing unit) [8] is a process-
ing unit designed for accelerating compute-intensive visu-
alization tasks, such as three-dimensional (3-D) rendering
applications [3]. Recently, GPUs are rapidly increasing

∗This work was partly supported by JSPS Grant-in-Aid for Scientific
Research for Scientific Research (B)(2)(16300006) and on Priority Areas
(16016254).

their performance beyond the Moore’s law [25]. For exam-
ple, nVIDIA’s GeForce 6800 provides approximately 120
GFLOPS at peak performance, which equals to six 5-GHz
Pentium 4 processors [24].

In addition to this attractive performance, recent GPUs
provide flexible programmabilities, such as programmable
internal processors, branch capability, and single-precision
32-bit floating-point operations based on the IEEE standard
[29]. These newly added programmabilities allow us to use
GPUs not only for traditional graphics applications but also
for compute-intensive, general-purpose applications.

There are many projects reporting experiences in accel-
erating general-purpose computation on the GPU (GPGPU)
[1, 26]. From the viewpoint of implementation strategy,
these prior projects can be classified into two groups:
hardware- and software-based groups.

The former group is based on a hardware acceleration
strategy that makes use of graphics-specific components of
the GPU. For example, Lengyel et al. [20] have presented
an algorithm for robot motion planning using rasterization
hardware. Hoff et al. [15] also make use of interpolation-
based polygon rasterization hardware to compute Voronoi
diagrams. Takizawa and Kobayashi [30] solve the problem
of data clustering using the Z-buffer depth comparison. The
key difficulty in this strategy is to map CPU algorithms and
data structures onto the hardware components.

The latter group is based on the stream programming
model [18] that uses programmable components of the
GPU, namely vertex processors (VPs) and fragment proces-
sors (FPs). Because current FPs provide higher arithmetic
performance than VPs, many GPGPU implementations use
only FPs as a computational engine in the GPU [26]. This
software-based strategy is more flexible than the hardware-
based strategy, because it requires us to simply translate
CPU programs into GPU programs using graphics APIs.
Due to this simplicity, it is used for various scientific prob-

1-4244-0054-6/06/$20.00 ©2006 IEEE

lems, such as physical simulation [13, 21] and numerical
computation [5–7, 10, 12, 16, 17, 19].

Thus, many projects report successful results using the
GPU. However, prior projects mainly focus on showing the
performance gain against the CPU. Accordingly, the effi-
ciency of GPU implementations has not been investigated
well. Note here that most implementations are based on
the stream programming model that uses only FPs. In this
model, FPs may become a performance bottleneck in the
GPU, because FPs and VPs are connected in a pipeline.
Therefore, it is better to offload FPs to VPs in order to
stream more data through the pipeline for higher perfor-
mance.

In this paper, we present a code motion technique that
addresses the above mentioned problem for acceleration of
GPU applications. To reduce the FP workload, our tech-
nique moves assembly instructions appropriately from the
FP program to the VP program. This code motion is carried
out without changing the I/O specification between the CPU
and the GPU, preventing us from modifying CPU programs.
Our technique is applicable to assembly programs running
on the GPU that supports Vertex Shader (VS) 1.1 [23] and
Pixel Shader (PS) 2.0 [23], which are standards for GPU
design.

The rest of the paper is organized as follows. We be-
gin in Section 2 by introducing GPU architecture with its
programming strategy. We then present our code motion
technique in Section 3. Section 4 shows some experimen-
tal results and Section 5 introduces related work. Finally,
Section 6 concludes the paper.

2. GPGPU: General-Purpose Computation on
the GPU

To describe the details of our technique, we first show a
brief overview of GPGPU: the underlying architecture, as-
sembly language, and programming strategy. In the follow-
ing discussion, we assume VS 1.1 and PS 2.0 as the target
standards for our technique.

2.1. GPU Architecture

The original task of the GPU is a rendering task, which
computes pixels on the screen by projecting polygonal ob-
jects [3] (usually triangles) located in the 3-D space. In or-
der to accelerate this compute-intensive task, the GPU is
structured in a rendering pipeline consisting of two differ-
ent programmable processors: VPs and FPs.

Figure 1 shows an overview of the GPU architecture.
VPs transform 3-D triangles into 2-D triangles by project-
ing their vertices onto the screen from the viewing point.
In other words, this geometric transformation computes the
position of vertices on the screen, so that determines the

CPU

Vertex processors

(VPs)

Rasterization and interpolation

GPU

Main memory

Video memory

Texture/frame

buffer

3-D triangle data

Fragment processors

(FPs)

AGP or PCI Express bus

2-D triangle

data

Fragment

data

Pixel data

Figure 1. GPU pipeline architecture.

screen region in which FPs operate. Then, these 2-D tri-
angles are rasterized into fragments for input to FPs. FPs
take the responsibility for determining the final coloring of
pixels. The details of VPs and FPs are as follows:

VP: VPs are based on a MIMD structure [11] in order to
realize fast geometric transformation of vertices. Be-
cause this transformation is usually represented as a
4 × 4 transformation matrix, each processing element
of VPs has a vector processing unit that is capable of
rapid processing of 4 × 4 matrices.

The input to VPs, namely the polygonal data, must
be transferred in advance from the main memory to
the video memory. This data transfer is performed
by a CPU program using graphics APIs such as Di-
rectX [23] or OpenGL [28]. Then, the vertex data is
set to input registers v# in VPs (see Table 1). By using
other registers, VPs obtain transformation results, such
as the vertex coordinates and colors, and then write
them to output registers. Note here that output regis-
ters are not readable from VPs themselves.

FP: FPs are capable of rapid mapping of textures [3] (pat-
terns) onto objects, aiming at increasing the realism
of produced scenes. To do this, they obtain fragments
from the rasterizer, and then execute some mathemati-
cal operations between the fragments and textures. FPs
are based on a SIMD structure [11] that allows ap-
plying the same operation simultaneously to multiple
fragments. Furthermore, as same as VPs, FPs sup-
port 4-length vector operations, because they deal with
four-component RGBA data representing red, green,
blue colors and opacity.

The fragment data is given by input registers v# and t#
in FPs (see Table 1), which indirectly receive data from

output registers oD# and oT# in VPs, respectively. The
texture data is read from the video memory using sam-
plers s#, and the mapping results are written to buffers
on the video memory through output registers oC# and
oDepth.

In summary, an execution on the GPU can be represented
as a pseudo code presented in Figure 2. The VP program is
invoked on each vertex of 3-D triangles while the FP pro-
gram is invoked on each fragment inside the 2-D triangles.
The entire execution can be expressed as a doubly-nested
loop, because rasterization inside the 2-D triangles generate
fragments.

With regard to our code motion technique, the GPU ar-
chitecture has three characteristics as follows.

• The input registers v# and t# in FPs hold linearly in-
terpolated values of the output registers oD# and oT#
in VPs, respectively. That is, because the former reg-
isters hold the attributes (for example, coordinates and
colors) for a vertex, whereas the latter have those for
a fragment, the input to FPs is automatically interpo-
lated according to the relative position of fragments, as
shown in Figure 1. This interpolation is automatically
performed during rasterization. Moreover, registers v#
(oD#) have lower precision than others. Each com-
ponent in these registers is allowed to store 8 bits of
unsigned data in the range [0,1], whereas registers t#
(oT#) can store four 32-bits of signed data.

• VPs and FPs have different capabilities, because they
do not process the same type of data: vertices and frag-
ments. For example, FPs are capable of loading texture
data from the video memory through samplers s#, but
VPs do not have this capability. Thus, FPs have unique
instructions and registers which VPs do not have.

• There is a limitation on the number of registers that
pass data from VPs to FPs. This means that the in-
formation transmitted from a vertex to a fragment is
limited by this number, because VP and FP programs
are invoked on each vertex and fragment, respectively.
In our target standards VS 1.1 and PS 2.0, there are
eight t# (oT#) registers and two v# (oD#) registers.

2.2. Assembly Language for the GPU

Basically, there is no significant difference between the
CPU assembly language and the GPU assembly language.
Instructions require a few operands as follows.

add r1, r0, c0

In this example, two vectors in source registers r0 and c0
are added and stored into the destination register r1.

Table 1. Registers in VPs and FPs. The num-
ber of registers # is specified by standards.
See [23] for details.

Unit Type Name Read/Write
Input register v# R
Constant register c# R

VP
Temporary register r# R/W
Address register a0 R/W
Output register oPos, oFog, oPts W

oD#, oT#
Input register v#, t# R
Constant register c# R

FP Temporary register r# R/W
Sampler s# R
Output register oC#, oDepth W

1: foreach vertex set do begin
2: Execute the VP program on VPs; // specify a region
3: Rasterize the region into fragments;
3: foreach fragment do begin
4: Execute the FP program on FPs;
5: end
6: end

Figure 2. Pseudo code representing GPU ex-
ecution. In this representation, our technique
can be regarded as a loop-invariant code mo-
tion technique [2], because moving instruc-
tions from FPs to VPs is equivalent to moving
them outside the inner loop.

Note here that instructions can be applied to the indi-
vidual components of the vector data. To do this, we must
specify the source/destination registers using masks: x, y, z,
and w. For example, r0.xy specifies the first and the second
components of register r0.

VP and FP programs have a limitation on program
length. This limitation is specified by the number of in-
struction slots required for the program. For example, VS
1.1 and PS 2.0 have a maximum constraint of 128 slots and
that of 96 slots for the VP program and the FP program,
respectively. Most instructions occupy one instruction slot,
but some arithmetic instructions require more slots.

Although the number of instruction slots does not repre-
sent the precise execution time, it provides useful informa-
tion to compare two instructions in terms of execution time.
Therefore, this number is useful to select the best combina-
tion of instructions, when all movable instructions cannot
be moved due to the lack of computational resources.

1: mov oPos, v0 ; vertex coordinates
2: mov oT0.xy, v1 ; texture coordinates

(a)

; myPos = t0 (t0 is automatically set when invoked)
; leftPos = myPos + float2(-1.0f/W, 0.0f)
; rightPos = leftPos + float2(2.0f/W, 0.0f)

1: mov r0.z, t0.y
2: mov r1.y, c4.x ; 0.0f
3: mov r0.y, c4.x
4: rcp r0.w, c3.x ; -1.0f/W
5: mov r0.x, -r0.w
6: add r1.x, r0.w, r0.w ; 2.0f/W
7: add r0.xy, r0, t0
8: add r1.x, r1.x, r0.x
9: add r1.y, r0.z, r1.y

; set xn−1, xn+1, and xn as texture data at
; leftPos, rightPos, and myPos, respectively

10: texld r2, r0, s0
11: texld r0, r1, s0
12: texld r1, t0, s0

; convolution: yn =
∑1

k=−1
ckxn+k

13: mul r2, r2, c0.x
14: mad r1, c1.x, r1, r2
15: mad r0, c2.x, r0, r1
16: mov oC0, r0 ; output yn

(b)

Figure 3. Example of (a) VP and (b) FP pro-
grams performing 1-D convolution. W repre-
sents the texture width. See text for detail.

2.3. Programming Strategy for GPGPU

In modern GPUs, FPs provide higher performance than
VPs, because rendering tasks usually need to process more
fragments than vertices, as presented in Figure 2. There-
fore, most GPGPU implementations use FPs as a computa-
tional engine in the GPU [26]. They regard FPs as a stream
processor [18] and use VPs only for informing FPs of the
working region. Thus, data is passed through VPs.

This strategy is called the stream programming model
[18], which exploits the data parallelism inherent in the ap-
plication by organizing data into streams and expressing
computation as kernels that operate on streams. Streams
here are usually stored as texture data, which can be fetched
to FPs by samplers. A kernel is implemented as a FP pro-
gram. The computed results can be transferred (readback)
from the video memory to the main memory by using the
graphics APIs mentioned in Section 2.1.

Table 2. Instructions available only on FPs.
Capability Instruction
Texture reference texkil, texld, texldb, texldp
Conditional selection cmp, cnd
Dot product and add dp2add

Figure 3 shows an example of VP and FP programs
developed according to the stream programming model.
These programs implement a 1-D convolution filter that
smoothes a 2-D image. In this example, four vertices of a
rectangle are given to VPs, and then VPs simply output two
coordinates for each vertex: the coordinates on the screen
(oPos) and those on the texture (oT0.xy). FPs receive an
interpolated value (t0), namely the texture coordinates for a
fragment. The FP program implements the convolution op-
eration on each fragment, accessing its left and right neigh-
bors. Because the texture coordinates are specified in the
range [0,1], the relative coordinates of the left neighbor are
given by (-1.0f/W, 0.0f), where W is the texture width.

In summary, many GPGPU implementations use the
stream programming model due to its simplicity. However,
VPs are not used well in this model, motivating us to move
instructions from highly-loaded FPs to VPs.

3. Code Motion Technique

We now present our technique that aims at accelerating
GPU programs by moving instructions from FPs to VPs.
The problem here is that, given a pair of VP and FP pro-
grams, (1) which instructions are movable and (2) how these
programs can be modified without changing the computa-
tional results.

3.1. Definition of Movable Instructions

To apply our technique to GPU programs, we have to
make clear which instructions are allowed to move from FPs
to VPs. This section presents the definition for such mov-
able instructions. To define this, we basically focus on the
three characteristics mentioned in the end of Section 2.1. In
the following, we explain the definition using the example
in Figure 3.

We define movable instructions such that they satisfy all
of the following four conditions C1–C4:

C1. Executability: Movable instructions must be exe-
cutable on VPs as well as on FPs. However, the in-
struction set available on VPs is not exactly the same
as that available on FPs, as shown in Table 2. For ex-
ample, the texld instruction cannot be moved to VPs,
because VPs do not have a read capability to textures.

Therefore, in Figure 3(b), the texld instructions in lines
10–12 must be stay fixed in the FP program.

C2. Accessibility: As same as the limitations on instruc-
tions, some FP registers also have unique capabilities
that VP registers do not have. Such unique registers
are samplers s# and output registers oC# and oDepth.
Samplers cannot be replaced by any register in VPs,
because they are unique in terms of sampling a texture.
Similarly, output registers are also unique in terms of
having a write capability to the video memory. Thus,
instructions accessing these unique registers cannot be
moved to VPs. Note here that constant values are mov-
able to VPs, because they are set by the VP/FP pro-
gram, and thus are fixed before program execution. In
Figure 3(b), the instructions in lines 10–12 and 16 must
be in the FP program, because they access sampler s0
or output register oC0.

C3. Equivalency: Only linear operations can be moved to
VPs, because FPs receive linearly interpolated data
from VPs. Otherwise, namely if we move non-linear
operations to VPs, we have wrong results due to the au-
tomated interpolation. Formally, this condition can be
expressed as follows: computation C on FPs is mov-
able if C(L(V)) = L(C(V)), where L is the linear
interpolation and V is the original output of VPs. In
addition to this linearity of computation, we have to
consider the precision of registers. That is, lower pre-
cision registers v# (oD#) cannot be used to pass high-
precision data from VPs to FPs. Otherwise, we obtain
wrong results due to round-off errors.

C4. Dependability: In addition to the GPU-oriented limi-
tations mentioned above, we also have to consider data
dependencies between instructions, because our code
motion technique changes the execution order of in-
structions. Actually, Figure 2 indicates that moving
an instruction to the VP program means that the in-
struction will be executed prior to all instructions in
the FP program. Therefore, we must avoid the collapse
of data dependencies in order to obtain correct results.
Thus, an instruction is movable if all instructions that
have a dependency on the instruction are also movable.
In Figure 3(b), the instructions in lines 13–16 are not
movable due to the dependencies from the unmovable
texld instructions in lines 10–12.

According to the conditions mentioned above, our tech-
nique determines that the instructions in lines 1–9 are mov-
able to VPs. These instructions intend to compute the coor-
dinates in a texture in order to fetch the left and right neigh-
bors. This address computation can be precomputed by
VPs, because it satisfies condition C3 in addition to C1, C2,

t0 c4.x c3.x

1 2 3 4

5 6

7

89

r0.xy r1.xr1.y

used by the texld instruction

v0

1

oPos

v1

2

oT0.xy

VP

FP

Interpolation

(a)

1 2

v1v0

oPos oT0.xy

c4.x c3.x

3 4 5 6

7 8

9

1113

oT1.xy oT2.xoT2.y

1

t1

2

t2

Interpolation

VP

FP

(b)

Figure 4. A portion of a directed acyclic graph
representing data dependencies (a) before
and (b) after code motion. A node ID repre-
sents the line number in the program. Under-
lined registers are modified to obtain correct
results.

and C4. That is, the coordinates of the left and right neigh-
bors (leftPos and rightPos) do not change whether they are
computed for each fragment (after interpolation) or for each
vertex (before interpolation).

3.2. Code Motion Strategy

The next question is how instructions should be moved to
the VP program in a proper manner. Our technique moves
the code in the following three steps (see Figures 4 and 5).

1. Code movement: We add the code at the end of the
VP program, as shown in Figure 5(a). At that point,
since VPs have completed the original computation,
the concatenated code is allowed to use all temporary
registers in VPs.

2. Modification on inputs: The inputs to the code must
be changed to obtain them directly in the VP program.
Such inputs are values (1) in the FP input registers t#
and (2) in constant registers c# (see Figure 4(a)). For
the former case, we add some instructions in the VP
program in order to save the origin of the VP output
registers oT# as the new inputs to the code. How-
ever, these additional instructions are not required for
most GPGPU implementations, which do not change
the values of input registers v#. Thus, in most cases,
we are allowed to replace operands t# with v# (lines 3
and 9 in Figure 5(a)). For the latter case, we replace
operands c# with other unused c# if necessary.

1: mov oPos, v0
2: mov oT0.xy, v1

→ 3: mov r0.z, v1.y
→ 4: mov r1.y, c4.x ; 0.0f
→ 5: mov r0.y, c4.x
→ 6: rcp r0.w, c3.x ; -1.0f/W
→ 7: mov r0.x, -r0.w
→ 8: add r1.x, r0.w, r0.w ; 2.0f/W
→ 9: add r0.xy, r0, v1
+ 10: mov oT1.xy, r0.xy
→ 11: add r1.x, r1.x, r0.x
+ 12: mov oT2.x, r1.x
→ 13: add r1.y, r0.z, r1.y
+ 14: mov oT2.y, r1.y

(a)

1: texld r2, t1, s0
2: texld r0, t2, s0
3: texld r1, t0, s0
4: mul r2, r2, c0.x
5: mad r1, c1.x, r1, r2
6: mad r0, c2.x, r0, r1
7: mov oC0, r0

(b)

Figure 5. Example of (a) VP and (b) FP pro-
grams after code motion. See Figure 3 for the
original program. Instructions marked with
notations ‘→’ and ‘+’ are those moved from
the FP program and those added during code
motion, respectively. Underlined operands
are changed to obtain correct results.

3. Modification on outputs: The data obtained by the
new code must be sent properly to FPs. To do this,
we add an instruction that sets the data to the unused
output registers oT# in VPs (lines 10, 12, and 14 in
Figure 5(a)). The data must also be received by FPs.
Therefore, we replace the operands that refer the data
with the unused input registers t# in FPs (lines 1 and
2 in Figure 5(b)). Note here that a proper pair of in-
put/output registers must be selected to avoid passing
data to wrong registers.

3.3. Code Selection Strategy

Although our code motion technique reduces the instruc-
tion slots used in FPs, it requires (1) more instruction slots
in VPs and (2) more registers for passing data from VPs
to FPs. For example, in Figure 5, our technique reduces

Table 3. Experimental environments.
Component Specification
CPU Pentium 4 3.0-GHz
Main memory 1 GB
Graphics bus AGP 8X
GPU ATI Radeon X800 Pro

Core clock 475 MHz
Video memory 256 MB
6 VPs and 12 FPs

Operating system Windows 2000
Graphics API DirectX 9.0 [23]

the number of instruction slots in FPs from 16 to 7 slots,
but increases that in VPs from 2 to 14 slots. Therefore, we
must give priorities to movable instructions if these com-
putational resources are not sufficient to move all of them.
In such a case, we currently select a combination of in-
structions that minimizes the number of instructions slots
required for the FP program.

Our technique reduces the number of instructions per
fragment, and thereby reduces execution time spent for the
FP program. In contrast to this timing benefit, there are
some disadvantages in our technique. One apparent disad-
vantage is that it takes more time on VPs due to increased
instructions in the VP program. The other disadvantage is
that, more data is passed from VPs to FPs, so that this in-
crease may decrease the entire performance if the rasterizer
would become a performance bottleneck.

Despite the disadvantages mentioned above, we think
that our technique is effective in improving the performance
of typical GPGPU programs. As we mentioned in Section
2.3, such programs usually use FPs as a computational en-
gine and access textures to fetch data. In this programming
model, there are many instructions for computing the tex-
ture coordinates, which are usually movable instructions, as
presented later in Section 4.

4. Experimental Results

We now present some experimental results showing the
effectiveness of our technique. We investigate the technique
from the following two viewpoints: the reduction of execu-
tion time and the improvability for a variety of GPU pro-
grams. Table 3 shows the specification of the experimental
machine, which consists of commodity hardware.

4.1. Timing Results

We apply our technique to a Gaussian filter that
smoothes an N × N pixel image. Pixels here are stored
in a 32-bit RGBA format. The kernel size of the filter is set

Table 4. Timing results for a Gaussian filter with kernel size of K × K pixel, where K = 13. V and
F represents the number of instruction slots required for VP and FP programs, respectively. Ratio
represents the reduction percentage of FP slot or time.

Instructions Image Filtering Readback Total Performance
V F Ratio size Time Ratio Time Time Ratio 12KN2/t

(slot) (slot) RF (%) N t (ms) Rt (%) (ms) T (ms) RT (%) (GFLOPS)
256 1.3 — 2.0 3.3 — 7.8

2 63 —
512 4.9 — 5.3 10.2 — 8.3
768 10.9 — 11.9 22.8 — 8.4

1024 19.5 — 21.0 40.5 — 8.4
256 1.2 6 2.0 3.2 2 8.3

6 60 5
512 4.7 6 5.3 10.0 3 8.8
768 10.3 6 11.9 22.2 3 8.9

1024 18.2 7 21.0 39.2 3 9.0
256 1.2 11 2.0 3.2 4 8.8

9 57 10
512 4.4 11 5.3 9.7 5 9.4
768 9.7 11 11.9 21.6 6 9.5

1024 17.2 11 21.0 38.2 5 9.5
256 1.1 17 2.0 3.1 6 9.4

12 54 14
512 4.1 17 5.3 9.4 8 10.0
768 9.1 17 11.9 21.0 8 10.1

1024 16.1 18 21.0 37.1 8 10.2
256 1.0 22 2.0 3.0 9 10.0

15 51 19
512 3.8 23 5.3 9.1 11 10.7
768 8.4 23 11.9 20.3 11 10.9

1024 14.9 23 21.0 35.9 11 11.0
256 0.9 28 2.0 2.9 11 10.8

18 48 24
512 3.5 29 5.3 8.8 14 11.6
768 7.8 29 11.9 19.7 14 11.8

1024 13.8 29 21.0 34.8 14 11.8
256 0.9 33 2.0 2.9 13 11.7

21 45 29
512 3.2 34 5.3 8.5 16 12.6
768 7.2 34 11.9 19.1 17 12.8

1024 12.7 35 21.0 33.7 17 12.9
256 0.8 39 2.0 2.8 15 12.8

23 43 32
512 3.0 40 5.3 8.3 19 13.8
768 6.6 40 11.9 18.5 19 14.0

1024 11.6 40 21.0 32.6 19 14.1

to be K × K pixel. This 2-D filter is realized using 1-D
filtering in the horizontal and vertical directions. The ini-
tial implementation is typically developed according to the
stream programming model. It requires 2 slots for the VP
program and 63 slots for the FP program.

There are 20 movable instructions composing 7 indepen-
dent groups in terms of data dependencies. Accordingly,
if all groups are moved, the VP program requires approxi-
mately 20 instruction slots and 7 oT# (t#) registers in addi-
tion to the initial usage. Because we have enough registers
and instruction slots to move all groups, we then move them
in a stepwise manner to investigate the relationship between
the reduction of instruction slots and that of execution time.
Table 4 shows the results. In the following discussion, let V

and F be the number of instruction slots consumed by the
VP program and the FP program, respectively.

As we move more groups to the VP program, the FP
program uses less instruction slots F , finally achieving a
minimum of 43 slots. On the other hand, the VP program
requires more slots V , resulting in a maximum of 23 slots.
Thus, we generate seven variations in addition to the initial
implementation.

We then measure the execution time of these eight im-
plementations with varying the size of image N from 256
to 1024 pixels. In Table 4, Notation T represents the total
time of implementation, containing (1) the filtering time t
spent on the GPU and (2) the readback time required for
data transfer from video memory to main memory. Note

here that time t includes the initialization time for sending
data from main memory to video memory. This initial pro-
cedure is automatically processed by underlying APIs, and
thus we cannot separate the initialization time from the pro-
cessing time. Ratio RF , Rt, and RT represent the reduction
percentage as compared to the original implementation.

For all implementations, we obtain ratio Rt > 0, so
that our technique successfully reduces the filtering time
t. When we move all movable instructions (F = 43),
we obtain the best result with achieving 39–40% reductions
against the original implementation. These reductions can
be explained by comparing ratio Rt with RF . These ratios
show a linear relationship between the reduction of execu-
tion time and that of instruction slots. That is, the number
of instruction slots F affects the execution time t on the
GPU. Therefore, F can be used as a selection measure for
minimizing time t if all instructions cannot be moved.

The disadvantages mentioned in Section 3.3 are not re-
vealed in the timing results, because the FP program is exe-
cuted much more time as compared to the VP program. In
our implementation, given an N × N pixel image, the VP
program is invoked only four times to process the vertices
of the image while the FP program is invoked N2 times to
process all fragments. Actually, on the experimental ma-
chine with 6 VPs and 12 FPs, the FP program is executed
at least 213 times as much as the VP program. Therefore,
in typical GPGPU implementations, we will achieve higher
performance as we move more instructions, even though the
VP program takes more time.

Although our technique achieves 39–40% reductions,
these percentages are not the same as those observed in the
total time T (15–19%). These less reductions are due to
the readback time, which takes relatively long time as com-
pared with the filtering time. Thus, the readback of textures
is not so fast on our machine whose GPU is connected by an
AGP bus. Because the AGP bus provides a low bandwidth
of 266 MB/s from video memory to main memory (2.1 GB/s
for the opposite direction), this problem will be resolved by
using faster interconnects such as PCI Express buses, which
provide a bandwidth of 4 GB/s for both directions.

4.2. Improvability

We next apply our technique to a variety of GPU pro-
grams: (1) 4 kernels each implementing 1-D and 2-D con-
volution, integer sorting, and summation; (2) 13 kernels
composing a Navier-Stokes fluid simulator [27]. Because
it originally does not have a VP program, we have added a
VP program that simply pass data to FPs, as presented in
Figure 3(a); and (3) 9 shader programs [9] as examples of
graphics (non-GPGPU) applications. These shaders apply a
visual effect to rendering objects.

As shown in Tables 5 and 6, our technique successfully

Table 5. Number of instructions before and
after applying our technique. Ratio repre-
sents the reduction percentage of FP slots.

Kernel
Before After Ratio
V F V F RF (%)

1-D convolution 2 63 23 44 30
2-D convolution 2 55 40 47 15
Sorting 2 40 14 40 0
Summation 2 16 9 9 44

Table 6. Number of instructions in a fluid sim-
ulator [27].

Kernel
Before After Ratio (%)
V F V F RF Rt

ActuallyRender 2 1 2 1 0 —
Clear 2 2 2 2 0 —
Copy 2 2 2 2 0 —
Add 2 6 2 6 0 —
Splat 2 9 2 9 0 —
Scroll 2 11 8 5 55 15
Scroll2 2 11 8 5 55 11
Vortex 2 16 2 16 0 —
Divergence 2 17 10 9 47 37
Subgradient 2 19 10 11 42 39
Jacobi 2 21 10 13 38 37
Advect 2 34 2 34 0 —
Display 2 41 10 33 20 20

reduces the number of instruction slots F in 9 out of 17
kernels. Among these kernels, Scroll and Scroll2 kernels
achieve the best reduction of 55% in terms of slots F . These
kernels are similar to the example in Figure 3, because they
mainly consists of address computation for two texture ref-
erences. Thus, address computation is one of the typical
computations that can offload FPs to VPs. Note here that the
55% reduction results in about 15% less time in these cases.
This small effect is due to the initialization time mentioned
in Section 4.1, because this overhead is relatively large in
these small kernels.

On the other hand, Advect kernel results in no improve-
ment, though it consumes relatively many instruction slots
F , as compared to the others. The reason for this is that, it
performs many texture references, which are not executable
on VPs, and moreover, all instructions have data dependen-
cies from these texture data. Also, Sorting kernel in Table
5 fails to reduce instruction slots F . However, this kernel
is improved by exchanging the execution order of instruc-
tions, which is automatically generated by a compiler. This
can be explained as follows. Suppose that we have two in-
structions, r = a then r+= b, and operands a and b are un-

Table 7. Number of instructions in shader
programs [9].

Shader program
Before After Ratio
V F V F RF (%)

Multitexture shader 8 3 8 3 0
Dot-3 bump mapping 19 3 19 3 0
Toon shader 28 9 28 9 0
Ambient shading 6 — 6 — —
Diffuse shader 9 — 9 — —
Lambertial diffuse shader 12 — 12 — —
Shilhouette shader 20 — 20 — —
Fresnel shader 20 — 20 — —
Phon-blinn 25 — 25 — —

movable and movable, respectively. In this case, we cannot
move both instructions, but if we exchange them, r=b then
r+=a, we can move the first instruction to VPs.

In contrast to the GPGPU programs mentioned above,
all shader programs fail to reduce instruction slots F (Table
7). These shaders do not utilize the programmability of FPs,
and thus do not have FP programs.

In summary, address computation for texture references
is typically movable instructions. Reordering instructions
could yield further improvement. On the other hand, there
will be no improvement if the FP program has (1) few in-
struction and (2) many data dependencies from texture data,
especially if such dependencies exist in the beginning of the
FP program.

5. Related Work

To the best of our knowledge, there are a few papers
[7,12,16,17] that try to improve the performance of GPGPU
applications. Hall et al. [12] present cache-aware algo-
rithms for matrix multiplication on the GPU. Their algo-
rithms are evaluated by Fatahalian et al. [7] using real
GPUs. These cache-aware algorithms are specific to ma-
trix multiplication. On the other hand, our technique does
not depend on particular applications. Also our technique
is a post-compile optimization approach, so that it does not
need any modification to underlying algorithms.

Jiang et al. [17] also try to improve the performance of
matrix multiplication. They automate the tuning process by
selecting the best implementation from multiple versions
according to empirical evaluation. Their tuning strategy
is similar to that in ATLAS [31] in terms of employing
parameterized code generators that can generate multiple
codes according to input tuning parameter values. A similar
study [16] is also presented for LU decomposition. Because
these projects optimize only the FP program, our optimiza-
tion approach is unique in that it offloads FPs to VPs.

Because our technique optimizes assembly programs, it
can be integrated with high-level compilers. For example,
it can work as a post-compile optimization technique by us-
ing assembly code generated by high-level compilers such
as Brook [6] and Cg [22]. Note here that Brook is designed
for GPGPU applications but it employs only FPs as a com-
putational engine. Cg generates efficient code but the opti-
mization is independently applied to each of the VP and FP
programs.

With respect to graphics applications, many techniques
have been proposed to improve the rendering performance
[8]. These techniques first find a performance bottleneck in
the pipeline execution, and then try to reduce the amount
of data streams that go through the bottleneck. For exam-
ple, they simplify or eliminate polygonal objects to reduce
the number of vertices if VPs limit the entire performance.
These reduction-based techniques are effective to graphics
applications, which are allowed to reduce the level of de-
tails in the output scene. However, they cannot be applied
to GPGPU applications, which must not omit computations
that change the computational results.

As we presented in Figure 2, moving instructions from
FPs to VPs corresponds to moving them outside the inner
fragment loop. Therefore, in this interpretation, our code
motion technique can be regarded as a loop-invariant code
motion technique [2, 4], which aims at reducing the com-
putational amount of the entire loop. This computational
reduction is also effective for future GPUs that will inte-
grate VPs and FPs into unified sharders. Such GPUs will be
capable of dynamically allocating unified sharders to vertex
or fragment operations, so computational reduction plays an
important role in achieving the best resource allocation.

6. Conclusions

We have presented a code motion technique that aims
at accelerating GPU applications by moving assembly in-
structions from FPs to VPs. Our technique differs from
prior techniques in terms of the following points: our ap-
proach offloads FPs to VPs, so that differs from other ap-
proaches that independently optimizes each of the VP and
FP programs; our post-compile optimization can be inte-
grated with high-level compilers; and our technique keeps
the same I/O specification between the CPU and the GPU,
allowing us to use CPU programs without any modification.

The experimental results show that (1) our technique re-
duces execution time of a Gaussian filter by approximately
40%; (2) it successfully reduces the FP workload in 10 out
of 18 GPGPU programs; and (3) there is a linear relation-
ship between the reduction of FP instruction slots and that
of the filtering time. Thus, The effectiveness of the tech-
nique depends on the number of instructions moved to VPs.
In current GPUs, this is usually limited by the number of

registers that pass data from VPs to FPs.
One future work is to verify the computational results in

terms of error. As we mentioned before, FPs and VPs have
different designs. Therefore, by moving instructions from
FPs to VPs, the results might be changed due to this dif-
ference. Although we have confirmed that the experimental
programs return the same results, we think more detailed
verifications are needed, because the GPU seems not be rig-
orous with errors [14]. We are also planning on developing
a tool to automate the code motion procedure.

References

[1] General-Purpose Computation Using Graphics Hardware,
2005. http://www.gpgpu.org/.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, editors. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, Read-
ing, MA, 1986.

[3] T. Akenine-Möller and E. Haines, editors. Real-Time Ren-
dering. Morgan Kaufmann, San Mateo, CA, second edition,
July 2002.

[4] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing. ACM Comput-
ing Surveys, 26(4):345–420, Dec. 1994.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse ma-
trix solvers on the GPU: Conjugate gradients and multigrid.
ACM Trans. Graphics, 22(3):917–924, July 2003.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
computing on graphics hardware. ACM Trans. Graphics,
23(3):777–786, Aug. 2004.

[7] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding
the efficiency of GPU algorithms for matrix-matrix multipli-
cation. In Proc. SIGGRAPH/EUROGRAPHICS Workshop
Graphics Hardware (GH’04), pages 133–137, Aug. 2004.

[8] R. Fernando, M. Harris, M. Wloka, and C. Zeller. Program-
ming graphics hardware. In EUROGRAPHICS 2004 Tuto-
rial Note, Aug. 2004.

[9] R. Fosner. Real-Time Shader Programming. Morgan Kauf-
mann, San Mateo, CA, 2003.

[10] N. Galoppo, N. K. Govindaraju, M. Henson, and
D. Manocha. LU-GPU: Efficient algorithms for solving
dense linear systems on graphics hardware. In Proc. Int’l
Conf. High Performance Computing, Networking, Storage
and Analysis (SC2005), Nov. 2005.

[11] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduc-
tion to Parallel Computing. Addison-Wesley, Reading, MA,
second edition, Jan. 2003.

[12] J. D. Hall, N. A. Carr, and J. C. Hart. Cache and bandwidth
aware matrix multiplication on the GPU. Technical Report
UIUCDCS-R-2003-2328, University of Illinois, Mar. 2003.

[13] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra.
Physically-based visual simulation on graphics hardware.
In Proc. SIGGRAPH/EUROGRAPHICS Workshop Graph-
ics Hardware (GH’02), pages 109–118, Sept. 2002.

[14] K. E. Hillesland and A. Lastra. GPU floating point paranoia.
In Proc. 1st ACM Workshop General-Purpose Computing on
Graphics Processors (GP2’04), pages C–8, Aug. 2004.

[15] K. E. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha.
Fast computation of generalized Voronoi diagrams using
computer graphics hardware. In Proc. SIGGRAPH’99,
pages 277–286, Aug. 1999.

[16] F. Ino, M. Matsui, and K. Hagihara. Performance study of
LU decomposition on the programmable GPU. In Proc. 12th
Int’l Conf. High Performance Computing (HiPC’05), pages
83–94, Dec. 2005.

[17] C. Jiang and M. Snir. Automatic tuning matrix multiplica-
tion performance on graphics hardware. In Proc. 14th Int’l
Conf. Parallel Architectures and Compilation Techniques
(PACT’05), pages 185–196, Sept. 2005.

[18] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson,
J. Namkoong, J. D. Owens, B. Towles, A. Chang, and
S. Rixner. Imagine: Media processing with streams. IEEE
Micro, 21(2):35–46, Mar. 2001.

[19] E. S. Larsen and D. McAllister. Fast matrix multiplies using
graphics hardware. In Proc. Int’l Conf. High Performance
Computing and Communications (SC2001), Nov. 2001.

[20] J. Lengyel, M. Reichert, B. R. Donald, and D. P.Greenberg.
Real-time robot motion planning using rasterizing computer
graphics hardware. In Proc. SIGGRAPH’90, pages 327–
335, Aug. 1990.

[21] W. Li, X. Wei, and A. Kaufman. Implementing lattice Boltz-
mann computation on graphics hardware. The Visual Com-
puter, 19(7/8):444–456, Dec. 2003.

[22] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard.
Cg: A system for programming graphics hardware in a C-
like language. ACM Trans. Graphics, 22(3):896–897, July
2003.

[23] Microsoft Corporation. DirectX,
Asm Shader Reference, 2005.
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/directx9 c/directx/graphics/reference/reference.asp.

[24] J. Montrym and H. Moreton. The GeForce 6800. IEEE
Micro, 25(2):41–51, Mar. 2005.

[25] G. E. Moore. Cramming more components onto integrated
circuits. Electronics, 38(8):114–117, Apr. 1965.

[26] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. In EU-
ROGRAPHICS 2005, State of the Art Report, pages 21–51,
Aug. 2005.

[27] V. Palmer. Navier-Stokes fluid simulator, Dec. 2004.
http://www.strangebunny.com/techdemo stokes.php.

[28] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL Pro-
gramming Guide. Addison-Wesley, Reading, MA, fourth
edition, Dec. 2003.

[29] D. Stevenson. A proposed standard for binary floating-point
arithmetic. IEEE Computer, 14(3):51–62, Mar. 1981.

[30] H. Takizawa and H. Kobayashi. Multi-grain parallel pro-
cessing of data-clustering on programmable graphics hard-
ware. In Proc. 2nd Int’l Symp. Parallel and Distributed
Processing and Applications (ISPA’04), pages 16–27, Dec.
2004.

[31] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimizations of software and the ATLAS project.
Parallel Computing, 27(1/2):3–35, Jan. 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

