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Abstract

We propose a novel heterogeneous scalable desktop grid
system, WaveGrid, which uses a peer-to-peer architec-
ture and can satisfy the needs of applications with fast-
turnaround requirements. In WaveGrid, hosts self-organize
into a timezone-aware overlay network, which supports
straightforward, quick resource discovery. Scheduling meth-
ods in WaveGrid take heterogeneity into account in select-
ing scheduling and migration targets. WaveGrid then rides
the wave of available cycles by migrating jobs to hosts lo-
cated in idle night-time zones around the globe. We evalu-
ate WaveGrid using a heterogeneous host CPU power profile
based on empirical data collected from the global computing
project BOINC. The simulation results show that WaveG-
rid perform consistently well with fast turnaround time and
low migration overhead. It performs much better than other
systems with respect to turnaround, stability and minimal
impacts on hosts.

1 Introduction

A peer-based desktop grid system [2, 4, 15, 9, 8] al-
lows cycle donors with similar interests to self-organize
into a cycle sharing community by joining an owver-
lay network, similar to those used by peer-to-peer file
sharing systems. In contrast to the institutional-based
Grid systems [7, 20], load sharing systems in local
networks [13, 23], and client-server-based global com-
puting projects [1, 6, 3], peer-based desktop grid sys-
tems circumvent the performance bottleneck of central
servers and are capable of achieving much larger scale.
Moreover, a peer-based desktop grid system allows each
peer to be a potential donor of idle cycles as well as
a potential source of tasks for automatic scheduling
in the virtual resource pool. The peer-based model is
distinctly different from the client-server-based global
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computing projects such as BOINC, SETI@home and
Stanford Folding. In these systems all the volunteer
machines donate idle cycles to a single scientific appli-
cation but reap no benefits for their own computational
needs.

A key challenge in the design of peer-based desktop
grid systems is scheduling to meet the requirement of
fast turnaround. It is difficult to collect accurate in-
formation about host availability in a large scale and
dynamic environment. The resources in a peer-based
desktop grid are volatile: peers may join and leave, and
hosts may withdraw their resources at any time. In or-
der to respect autonomy of the hosts, local jobs should
have higher priority than foreign jobs. As a result,
the foreign job will make slower progress since it can
only access a fraction of the host’s CPU availability.
Desktop grids are highly heterogeneous, as hosts have
different CPU clock rates, different memory sizes and
different operating systems. Finally, each node is an
autonomous system, so scheduling in peer-based desk-
top grid systems must be non-intrusive. Scheduling
methods relying on heavy performance monitoring are
inappropriate as users, especially home machine cycle
donors, will find it intrusive to report their CPU usage
periodically to some remote clients.

Our solution to the problem, WaveGrid, is moti-

vated by the natural distribution pattern of idle cycles.
Most users have daily routines with few idle day-time
cycles and large chunks of idle night-time cycles. In
addition, hosts are geographically distributed in dif-
ferent timezones on the Internet. During the 24 hour
daily cycle, the area which contains the most idle hosts
changes over time.
Self-organized timezone-aware overlay network.
WaveGrid allows hosts to organize themselves by time-
zone to indicate when they have large blocks of idle
time. WaveGrid uses a timezone-aware overlay network
built on a structured overlay network such as CAN [16],
Chord [19] or Pastry [17].

The timezone-aware overlay network provides a



mechanism for clients to find idle hosts without the
high overhead of traditional blind-search-based re-
source discovery strategies [10, 22]. It takes constant
time for the scheduler to choose the targeted area to
search for available hosts based on the node-label, then
a limited scope expanding ring search is conducted in
that area to discover a group of candidates.

Efficient scheduling and migration. Under
WaveGrid, a client initially schedules its job on a
host in the current night-time zone. When the host
machine is no longer idle, the job is migrated to a
new night-time zone. Thus, jobs ride a wave of idle
cycles around the world to reduce turnaround time.
When migrating, WaveGrid selects the host with the
highest performance potential. In this study, we focus
on CPU speed, but our model is easily generalized
to other criteria. WaveGrid is the first desktop grid
system to explore the power of migration strategies
for fast turnaround.

Another contribution of our paper is an empirical
heterogeneous host profile model for evaluating the per-
formance of Internet-wide desktop grid systems. Previ-
ous research projects on desktop grid systems either do
not consider heterogeneity of the hosts or use profiles
of a small number of lab or office machines. We use
statistical data from the BOINC project to generate
the host profile, using it to analyze the performance
of WaveGrid compared with systems using a range of
non-timezone-based migration strategies.

Our simulation results show that: (a) WaveGrid out-
performs other systems with respect to turnaround,
stability and minimal impacts on hosts; (b) WaveG-
rid reduces migration delay and minimizes rescheduling
attempts; and (c) All systems benefit from scheduling
strategies that take host heterogeneity into account.

2 WaveGrid Architecture

The design of WaveGrid springs naturally from the
observation that millions of machines are idle for large
chunks of time. It is also influenced by the notion of
prime time v. non-prime time scheduling regimes used
by parallel job schedulers [14], which schedule long jobs
at night to improve turnaround time.

There are many motivations for the design of Wave-
Grid. First, resource information, such as when the
host will be idle and how long the host will continue
to be idle with high probability, will help the sched-
uler make much better decisions. WaveGrid builds this
information into the overlay network by having hosts
organize themselves into the overlay network accord-
ing to their timezones. Second, efficient use of large
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Figure 1. Job initiation and migration in WaveGrid

and relatively stable chunks of idle cycles provides the
best performance, in contrast to using sporadic short
periods of idle cycles which may be countered by high
resource discovery and scheduling overhead. Therefore,
WaveGrid proposes to use long idle night-time cycles.
Third, the cycle donors are geographically distributed,
so that their idle times are well dispersed on the hu-
man 24-hour time scale. Machines enter night-time in
the order of the timezones around the world, making it
well-suited for efficient migration. Fourth, the sched-
uler should not be intrusive to users’ privacy. Wave-
Grid only needs minimal user input such as timezone
information.

2.1 Overlay Construction and Scheduling

WaveGrid builds a timezone-aware, structured over-
lay network and it migrates jobs from busy hosts to
idle hosts. WaveGrid can utilize any structured overlay
network such as CAN [16], Pastry [17], and Chord [19].
The algorithm we present here uses a CAN overlay [16]
to organize nodes located in different timezones and
migration of jobs happens when the current host is no
longer available(see Figure 1).

e Wavezones in the CAN overlay. We divide
the CAN virtual overlay space into several wavezones.
Each wavezone represents several geographical time-
zones. A straightforward way to divide the CAN space
is to select one dimension of the d-dimensional Carte-
sian space used by CAN and divide the space into sev-
eral wavezones along that dimension. For example, a
1 x 24 CAN space could be divided into 4 wavezones
each containing 6 continuous timezones. Adjustments
will be made for timezones with low user population.

e Host nodes join the overlay: A host node that
wishes to offer its night-time cycles knows which time-
zone it occupies, say timezone 8. It randomly selects
a node label in wavezone 2 containing timezone 8 such



as (0.37, 7.12) and sends a join message to that node.
According to the CAN protocol, the message will reach
the physical node in charge of CAN node (0.37, 7.12)
who will split the portion of the CAN space it owns,
giving part of it to the new host node.

e Client selects initial nightzone: The scheduler
for a workpile application knows which timezones are
currently nightzones. It selects one of these nightzones
(based on some selection criteria) and decides on the
number h of hosts it would like to target.

There are a variety of nightzone selection criteria

for selecting the initial wavezone and the wavezone to
migrate to, including (a) schedule the task to the wave-
zone whose earliest timezone just entered night-time,
(b) schedule the task to a random night-time zone,
and (c) schedule the task to a wavezone that currently
contains the most night-time zones. The first option
performs better than the others, since it provides the
maximal length of night-time cycles. However, it may
be better to randomly select a nightzone if many jobs
simultaneously require scheduling to avoid collisions.
e Host Discovery: The scheduler randomly gener-
ates h node labels in the wavezone containing the tar-
get nightzone and sends request messages to the target
node labels using CAN routing. Each contacted host
does an expanding ring search in a limited scope to
discover more candidates.
e Host Selection: The application scheduler chooses
the best host from the candidate group to schedule
the foreign job on. The primary selection criteria in a
desktop grid system is the availability of the host.

To address the concern that foreign jobs will disturb
a user’s local work, WaveGrid uses a strict host avail-
ability model, where CPU cycle sharing is limited to
the time when owners are away from their machines
and the CPU load from local applications is light. Fig-
ure 2 illustrates a sample host profile of available idle
cycles under a strict user local policy in WaveGrid:
The host is available only when the CPU load is less
than 75% and there is no mouse or keyboard activity
for 15 minutes. In reality, many cycle sharing systems
use a conservative CPU availability model. Condor
supports strict owner policies: users can specify a min-
imum CPU load threshold for cycle sharing, or spec-
ify specific time slots when foreign jobs are allowed on
that host. SETI@home uses a screensaver model: it
runs when no mouse or keyboard activities have been
detected for a pre-configured time; otherwise it sleeps.

Secondary selection criteria includes the CPU
power, memory size and type of operating system, etc.
In this study, we focus on CPU power which is directly
related to the execution time of the foreign job. When
a group of candidates is selected based on CPU avail-

ability, the host with the best CPU power is chosen.
After negotiations, the application scheduler ships
code to the chosen hosts.
e Migration to next timezone: When morning
comes to a host node and the host is no longer avail-
able, it selects a new target nightzone, randomly selects
a host node in that nightzone, and after negotiating
with that host, migrates the unfinished job to the new
host.
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Figure 2. Sample host profile of available idle cycles

2.2 Migration

The type of applications which are suitable to sched-
ule and migrate in WaveGrid are large Workpile (Bag-
of-tasks) jobs. Each job consists of a number of in-
dependent tasks requiring large amounts of CPU cy-
cles but little if any data communication. Examples
of workpile applications include state-space search al-
gorithms, ray-tracing programs, gene sequencing and
long-running simulations. Often these applications
have higher performance requirements such as faster
turnaround time and higher throughput . Some of the
above applications may have real time constraints, such
as weather forecasting and medical diagnosis for a pa-
tient, or scientific simulations that must be completed
in time for a scheduled reporting deadline.

The migration cost is higher in global peer-based cy-
cle sharing systems than in local area networks because
the code and data are transferred on the Internet. If
a short running job is migrated many times in its life
span, the accumulated migration cost may well counter
the migration benefit. Long jobs which run for hours
or even for months receive maximal benefit from mi-
gration. For such jobs, the cost of migration, which
includes resource discovery overhead to find a migra-
tion target, checkpointing, and cost to transfer the code
and data is negligible compared to the total runtime.



Many long running applications satisfy the migra-
tion criteria: small size and minimal data commu-
nication. For example, the average data moved per
CPU hour by users of SETI@home is only 21.25 KB,
which is feasible even for users with slow dial-up con-
nections. With respect to program size, Stanford Fold-
ing is only about 371KB, and SETI@Qhome is around
791KB. These applications run for a long time. The
average computation time of each SETI@Qhome job is
about 6 hours.

3 Simulated Peer-based Desktop Grid
Systems

To evaluate the performance of WaveGrid, we com-
pare it with a no-migration system and a random-
migration system.

3.1 Components of the Simulated Peer-
based Desktop Grid Systems

In our simulator, we implement the peer-based desk-
top grid systems using the following components: over-
lay network construction, host selection criteria, host
discovery strategy, local scheduling policy, and schedul-
ing scheme. The systems we evaluated use the same
host discovery method and local scheduling policy,
but differ in overlay network construction, host selec-
tion criteria and scheduling schemes. We present the
scheduling schemes, in section 3.2.

Overlay network construction. Both the no-
migration system and the random-migration system use
the CAN overlay network [16]. WaveGrid uses the
CAN-based timezone-aware structured overlay network
described above.

Local Scheduling. The local scheduling policy on
a host determines the type of service a host gives to a
foreign job that it has accepted. We use a strict screen-
saver model. We assume that one host can only accept
one foreign job, and foreign jobs can only run when
it is admitted by local user policy such as there is no
recent mouse/keyboard activity and the CPU utiliza-
tion is low. When the host is available, the foreign job
concurrently shares cycles with other local jobs.

Host selection criteria. A client uses its host selec-
tion criteria to select one host among multiple candi-
dates. The primary selection criteria in a desktop grid
system is host availability. As discussed in section 2,
we use a strict host availability model. The follow-
ing terms define the criteria regarding CPU availability
which we use in the simulation. Unclaimed means that
there is no foreign job on that host. Awvailable means
that there is no foreign job on that host and the host

is idle. The host’s local user policy described in local
scheduling is used to decide whether the host is idle.

Different systems use different host availability cri-
teria. The simple no-migration system relaxes this cri-
teria to use any unclaimed hosts, while WaveGrid and
random-migration try to schedule foreign jobs on avail-
able hosts for instant execution.

All three systems use CPU power as a criteria to
choose the best host among all the candidates.
Host Discovery. The purpose of the host discovery
scheme is to discover candidates hosts to accept the
foreign job. WaveGrid does an expanding ring search
in the targeted zone, while the other two systems do
expanding ring search in the neighborhood of the client
or a random area of the system. The benefit of the
latter approach is to create a balanced load in case of
a skewed client request distribution in the overlay.

3.2 Simulated Scheduling Strategies

The scheduling scheme has two distinct steps: initial
scheduling and later migration. In initial scheduling,
the initiator of the job uses host discovery to discover
hosts satisfying the host selection criteria and schedules
the job on the chosen host. The migration schemes also
use host discovery to discover candidate hosts.

The no-migration system follows the SETI@home
model. It uses the more relaxed host selection criteria:
any unclaimed host can be a candidate.
No-migration: With no-migration, a client initially
schedules the task on an unclaimed host, and the
task never migrates during its lifetime. The task runs
in screensaver mode when the user is not using the
machine, and sleeps when the machine is unavailable.

WaveGrid and random-migrate all use migration
schemes, which differs in where to migrate. WaveG-
rid migrates jobs to available night-time hosts, while
random-migrate migrates jobs to random available
hosts. In regarding to when to migrate, WaveGrid
and random-migrate both adopt three different op-
tions: immediate migration, linger migration and adap-
tive migration.

Immediate migration. With immediate migration,
the client initially schedules the task on an available
host. When the host becomes unavailable, the for-
eign jobs are immediately migrated to another avail-
able host. In the best case, the task begins running
immediately, migrates as soon as the current host is
unavailable, and continues to run right away on a new
available host.

Linger migration. With linger migration, a client
initially schedules the task on an available host. When



the host becomes unavailable, linger migration allows
the task to linger on the host for a random amount of
time. If the host is still unavailable after the lingering
time is up, it then migrates. Linger migration avoids
unnecessary migration as the host might be temporar-
ily unavailable. Linger migration can also be used to
avoid network congestion or contention for available
hosts.
Adaptive migration. For initial scheduling, adaptive
migration tries to find a host that is available. If it
cannot, migration-adaptive schedules the task on an
unclaimed host. When the host becomes unavailable,
adaptive migration tries to migrate the task to a new
host that is available. If it cannot find such a host,
it allows the job to linger on the current host for a
random amount of time and tries again later. A cycle
of attempted migration and lingering is repeated until
the job finishes.

Adaptive migration is designed to avoid reschedul-
ing. However, it puts a bigger burden on the host since
it may retry several times on behalf of the foreign task.

4 Heterogeneous Host CPU Power

Profile

We use a heterogeneous host CPU power profile de-
rived from statistical data from the BOINC project in
this study [3]. BOINC is client-server-based Internet-
wide cycle sharing system, which attracts millions of
users. BOINC supports several scientific applications
and uses a credit-rewarding scheme to motivate hosts
to donate cycles. Each time when a host returns a
result, once the result is verified, the host is awarded
some credits. Therefore the number of credits a host
earns is directly proportional to the number of results it
generates. For each application supported by BOINC,
there is statistical data (http://www.boincstats.com)
providing information such as total number of cred-
its and average number of credits grouped by type of
CPU, or type of operating system, or geographic re-
gions. Table 1 shows some sample entries from the
BOINC statistics website, which is grouped by types
of CPUs.

We processed the statistical data about different
CPUs in the system to generate the heterogeneous host
CPU power profile via the following method. Hosts
with the same type of CPU are regarded as in the same
group. We exclude those groups with a very small pop-
ulation, e.g. rare kind of CPUs such as high-end multi-
processors or vanishing types of CPUs. As the credits
assigned to one host is directly related to the number
of results returned by it, we use the average number of
credits per CPU to predict the power of that type of

CPU. For each CPU group, we compute the credit ra-
tio as maximal average number of credits earned among
all different groups divided by average number of cred-
its earned by hosts in that group, and the population
of that group as a percentage of the total number of
hosts. The smaller the credit ratio is, the better the
CPU power of that group is.

Figure 3 shows the cumulative distribution graph,
in which each data point represents one group. The
graph shows that for different types of applications, the
distribution of CPU power is different, probably related
to the structure of the particular program and the type
of users attracted to that particular project. Except
for Climateprediction.net, the other three applications
exhibit a distribution similar to a normal distribution:
a large number of groups have a similar ratio.
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Figure 3. CPU powers of different CPU groups using
empirical data from BOINC (collected in Aug. 2005).
The credits are averaged over all the CPUs in the
same group.

We further convert the credit ratio into power rank.
If the credit ratio of a group falls in the range of
[k,k 4+ 1), the rank of that group equals k. The results
in Figure 4 confirm that the distribution of the CPU
power is far from a uniform distribution. The majority
of the hosts are clustered on one or a few ranks. We
use the information in Figure 4 as the heterogeneous
host CPU power profile in our simulation.

The empirical data from BOINC also shows that the
types of operating systems used by different hosts are
quite uniform. About 89.1% of the hosts use Windows
operating system, and 7.6% of the hosts use Linux. In
our simulation study, we assume that all the hosts use
the same type of operating system or invoke the same
type of virtual machines to run the foreign job. The
BOINC data provides some information about the geo-
graphic distribution of the hosts, in which it shows that
the majority of the hosts reside in North America. We
believe that this is biased information which derives



Pos. | CPU #CPU | Total credit Average credit | Credit Average credit
per CPU | per CPU
1 Intel(R) Pentium(R) 4 CPU 3.00GHz | 27,910 | 249,454,384.00 | 2,100,610.25 8,937.81 | 75.26
AMD Athlon(tm) Processor 13,934 | 47,707,040.00 | 356,019.28 3,423.79 | 25.55

Table 1. Sample statistical data for SETI@home organized by types of CPUs. (Note: ” Average credit” is the average
credit granted over the last few days to the hosts with this type of CPU.)
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Figure 4. Percentage of CPU groups by rank

from the fact that North America is the birthplace of
the BOINC project, and thus it attracts many users
in North America. According to statistics about the
population of Internet users [11], 34.2% Internet users
are in Asia, 28.5% Internet users are in Europe, and
23.4% Internet users are in North America. Therefore
considering the fast growth of the Internet and the end
host connection speed, the population of hosts in dif-
ferent parts of the world on a symmetric global desktop
grid system will be more equalized geographically than
what is indicated by BOINC data.

5 Simulation Experiments

We compare WaveGrid with two other peer-based
desktop grid systems, no-migration and random-
migration, using varied migration schemes described in
section 3 under an empirical heterogeneous host CPU
power model. We used four metrics to evaluate the per-
formance of the system: slowdown, makespan, number
of rescheduling attempts, and migration overhead.

5.1 Simulation configuration

In all simulation runs, we use a 5000 node structured
overlay network built with the CAN protocol.

Workload. A random group of peers (10% to
90%) are chosen as clients. Each client sends out one

workpile application at a random time during the day.
The runtime of a task is defined as the time needed for
the task to finish on a dedicated machine with median
CPU power rank over all the hosts in the system. This
means that it will take a slow dedicated host more than
the runtime to finish the job, and it will take a fast ded-
icated host less than the runtime to finish the job. The
median CPU power is computed based on our empirical
host CPU power profile, and the runtime is randomly
distributed from 12 hours to 24 hours. Tasks belonging
to the same application have the same runtime.

Profile of available cycles on hosts. A coarse-
grain hourly synthetic profile is generated for each ma-
chine as follows: during the night-time (from 12am to
6 am), the host is available with a very low CPU uti-
lization level, from 0% to 10%. During the daytime,
for each one hour slot it is randomly decided whether
the machine is available or not. The local CPU load in
a free daytime slot is generated from a uniform distri-
bution ranging from 0% to 30%. We assume that when
a host is running a foreign job, it can still initiate re-
source discovery for migration and relay messages for
other hosts. The percentage of available time during
the day varies from 10% to 90%.

The computation power of the hosts follows the het-
erogeneous model discussed in section 4. The amount
of available time on each host is weighted by its CPU
power. The normalized available time equals the un-
weighted available time multiplied by the CPU power
divided by the median CPU power in the whole system.

Rescheduling. When a client fails to find an avail-
able host during initial scheduling or a host fails to
find an available host to migrate the job to, it will try
to reschedule the task after a random amount of time.
The waiting time in the simulation is chosen between 1
to 2 hours, which includes the time to restart the task.
The amount of time the rescheduling takes is included
in the total execution time of the task.

Host discovery parameters. The search scope
for expanding ring search is 3 hops for all three systems,
based on earlier studies on expanding ring search [22].

Migration parameters. The migration delay is
added into the total execution time. The migration



delay includes time to discover available hosts, record
the current status of the program, ship the code and
data to the new host and restart the program on new
hosts. For most of the simulations, the migration delay
is 5 minutes, which is a fairly conservative figure for the
type of applications suitable to run in WaveGrid.

We explored a range of lingering times for linger
migration and adaptive migration. The results pre-
sented are representative, and these experiments ran-
domly choose the lingering time in the range 1 to 2
hours. For eager migration, we tested different wakeup
intervals and chose to do background host discovery
hourly.

Wave scheduler. For the Wave scheduler, a 1x 24
CAN space is divided into 6 wavezones, each containing
4 time zones based on its second dimension.

5.2 Simulation Metrics

Average slowdown factor: The slowdown of a task
is its turnaround time (time to complete execution in
the peer-to-peer desktop grid system) divided by the
task runtime. Turnaround time includes both migra-
tion time and waiting time due to rescheduling. We
average the slowdown over all tasks. The slowdown
of one task can be less than 1 in this scenario as the
runtime of the task is defined using the median CPU
power of the system while the actual execution time on
one host is weighted by its CPU power.

Average makespan: The makespan of an application
is the time the first task of that application is submitted
until the last task finishes, divided by runtime of the
task (Tasks in one application have equal runtime.).
We averaged the makespan over all applications.
Average number of migrations per task: the
number of times a task migrates during its lifetime in
the system, averaged over all tasks.

Average number of retries per task: the number
of times a task is rescheduled during its lifetime in the
system, averaged over all tasks.

5.3 Simulation Results

Our simulation study investigates the performance
gains achievable through timezone-aware organization
of the hosts, efficient migration, and scheduling strate-
gies that consider the heterogeneity of the system.

In this section, the legends in each graph are ordered
from top to bottom to match the relative position of the
corresponding curves. Each data point is the average
over 15 simulation runs.

1) Overall Performance of WaveGrid

The overall performance of WaveGrid is stable and
is better then the other systems with limited available
cycles, as WaveGrid efficiently organizes hosts accord-
ing to timezone and migrates using this timezone in-
formation.

Figure 5 shows the makespan of applications when
the percentage of available time on hosts varies. Fig-
ure 6 shows the slowdown of applications in the same
scenario. All systems perform better as the amount
of available time increases. No-migration performs the
worst, as a lot time is wasted waiting for the hosts to
be available again.

The performance of WaveGrid is quite stable over
different host availabilities. When the available time
on hosts during the day changes from 90% to 10%, the
performance of WaveGrid degrades less than 10%. In
contrast,the performance of random-migrate degrades
more than 85%.

WaveGrid performs better than all the other sys-
tems as it makes efficient use of large chunks of night-
time cycles, when the available cycles are limited.
Random-migration improves with increasing host avail-
ability. When the hosts are mostly available during the
day, it performs slightly better than WaveGrid. The
reason for that is random-migration selects candidate
hosts from a larger pool than WaveGrid, i.e. it is not
restricted to the hosts in the next wavezone. Thus it
has higher chance to identify some hosts with better
CPU power in this heterogeneous system.
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Figure 5. Average makespan vs host availability
(The percentage of clients is 20%)

Figure 7 confirms that systems utilizing migration
perform better than the no-migration option. The
makespan of applications in the no-migration system
has a long-tailed distribution, and in the extreme case
the makespan is as high as 8. In contrast, the makespan
of applications in migration-based systems, except for
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those using linger migration strategies, is less than
2. WaveGrid using immediate migration strategy per-
forms the best with the highest percentage of applica-
tions having a makespan which is less than 1. Recall
that makespan can be less than 1, since it is defined in
terms of a host with median CPU power.
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Figure 7. Histogram of distribution of makespan
(Percentage of clients is 20%. Percentage of available
time on hosts during the day is 40%.)

2) Effective migration in WaveGrid

The migration schemes used by WaveGrid effectively
reduce the number of migrations, migration delay and
number of rescheduling attempts.

Figure 8 shows the average number of migrations.
As expected, jobs scheduled with WaveGrid finished
with fewer migrations, because it exploits the long
available intervals at night while the others may end
up using short, dispersed time slots during the day.
WaveGrid minimizes disturbance to hosts as it uses
fewer hosts in migration and therefore contacts fewer
hosts for resource discovery, which is important to cycle
donors.

The graph also shows that when the percentage of
host availability increases, the number of migrations in
random-migration increases first then decreases. The
reason is that there are two factors that influence the
number of migrations: the number of currently avail-
able hosts and the length of free time slots on the hosts.
With more available hosts, there is higher chance of
migration success and therefore a larger number of mi-
grations. With longer free time slots, the need for the
jobs to migrate is reduced. With higher percentage of
free time, the amount of currently available hosts in-
creases and the length of free time slots also increases.

Random-migration(adaptive) —&—
Random-migration(immediate) —>—
Random-migration(linger) —¥—
| Wave(adaptive) —8—
Wave(immediate) —ili—

Wave(linger) —6—
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Percentage of Available Time on Hosts during the Day(%)

Figure 8. Average number of migrations (Percentage
of clients is 20%)

Figure 9 shows how makespan varies as a function
of migration delay. It shows that makespan increases
with the increasing migration delay. The migration
delay has a much larger impact on the performance
of random-migration than WaveGrid. When the mi-
gration delay increases from 2 minutes to 22 min-
utes, the makespan in random-migration(immediate)
increases about 19.4%, while the makespan in WaveG-
rid(immediate) only increases about 6%.

Figure 10 shows that WaveGrid has much fewer
scheduling retries than random-migration. The rea-
son for that is in random-migration the scheduler has
no knowledge about where to find potential hosts with
available cycles.

3) Heterogeneous Environment

Performance of all systems improves when the
scheduling strategy chooses the most powerful host
from multiple candidates.

Figure 11 shows the slowdown of applications when
the scheduler selects one random host instead of the
most powerful host among multiple candidates. (Only
selected strategies are shown due to limited space.)
Figure 12 shows the percentage of performance im-
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Figure 9. Average makespan when the migration de-
lay varies (Percentage of clients in the system is 20%.
Percentage of free time on hosts during the day is

50%.)

Random-migration(immediate) —%—
Random-migration(linger) —%—
‘Wave(immediate) —#—
Wave(linger) —6—
Random-migration(adaptive) —8&—
6 Wave(adaptive) —e— |4
No-migration —+—

#of Rescheduling
IS
:
.

0 -
0.1 02 03 04 05 0.6 0.7 08 0.9
Percentage of Available Time on Hosts during the Day(%)

Figure 10. Average number of retries during the job
execution (Percentage of clients is 20%)

provement for all the strategies. Owur results show
that WaveGrid’s superior performance is not greatly
impacted by using the host selection strategy based
on CPU power, although it does improve performance.
We also see that this host selection strategy yields sig-
nificant improvements for no-migration and random-
migration.

6 Related Work

Our work belongs to the group of peer-based desk-
top Grid systems [2, 4, 15, 8], which harness idle cy-
cles on desktop machines using peer-to-peer techniques.
Each node in these systems can be either a single ma-
chine or an institution joining the peer-to-peer overlay
network. Each peer can be both a cycle donor and a
cycle consumer. OurGrid [2] proposed an accounting
scheme to aid equitable resource sharing in order to
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Figure 11. Average slowdown vs host availability
when using random host selection (Percentage of
clients is 20%)
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Figure 12. Percentage of performance improvement
when using the most powerful host selection instead
of a random host selection (Percentage of clients is

20%)

attract nodes to join the system. Flock of Condors [4]
organized the nodes in a Pastry [17] overlay network.
SHARP [8] is aimed at secure resource sharing. Our
CCOF project [15] is a generic scalable modular peer-
to-peer cycle sharing architecture which supports au-
tomatic scheduling for arbitrary client applications.

Migration was originally designed for load sharing in
distributed systems to move processes from a heavily
loaded machine to a lightly loaded machine. Theoret-
ical and experimental studies have shown that migra-
tion can be used to improve turnaround time [5, 18].
We are the first to investigate migration strategies in a
peer-based desktop grid systems [21].

To our best knowledge, none of the previous work
has addressed the fast turnaround scheduling problem
in a scalable peer-based cycle sharing system. A re-
cent paper [12] describes scheduling for rapid applica-
tion turnaround on enterprise desktop grids. A central



server chooses the best host based on criteria such as
clock rate and number of cycles delivered in the past.
Their work did not considering migration schemes, and
it is limited to scheduling within one institution.

7 Conclusion

We propose a novel heterogeneous scalable fast-
turnaround desktop grid system, WaveGrid. WaveGrid
allows hosts to register themselves in a structured over-
lay network according to their long idle time slots at
night. A client can quickly target an area to search
for available hosts without sending a large amount of
messages. Application schedulers migrate jobs from
busy hosts to idle hosts with a potentially large chunk
of available time, maximizing utilization of available
cycles. The simulation results show that WaveGrid
outperforms other systems with respect to turnaround,
stability and minimal impact on hosts.

Heterogeneity is inherent to the nature of peer-based
desktop grid systems. To accommodate heterogeneity
of the system, we used a host selection criteria based
on CPU power. In our simulation, we used a heteroge-
neous host CPU power model based on empirical data
from BOINC. This model is helpful for designing and
evaluating other global desktop grid systems.

Our future work includes a number of extension to
WaveGrid, extending the night-time concept to any
long interval of available time, a peer-to-peer check-
pointing scheme using the underlying DHT to store
program state, and merging or splitting wavezone ac-
cording to population of the hosts in the geographic
areas.
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