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Abstract

Grid computing and Peer-to-peer (P2P) systems are
emerging as new paradigms for managing large scale
distributed resources across wide area networks. While
Grid computing focuses on managing heterogeneous re-
sources and relies on centralized managers for resource
and data discovery, P2P systems target scalable, decen-
tralized methods for publishing and searching for data. In
large distributed systems, a centralized resource manager
is a potential performance bottleneck and decentralization
can help avoid this bottleneck, as is done in P2P sys-
tems. However, the query functionality provided by most
existing P2P systems is very rudimentary, and is not di-
rectly applicable to Grid resource management. In this
paper, we propose a fully decentralized multidimensional
indezing structure, called DiST, that operates in a fully
distributed environment with no centralized control. In
DiST, each data server only acquires information about
data on other servers from executing and routing queries.
We describe the DiST algorithms for maintaining the de-
centralized network of data servers, including adding and
deleting servers, the query routing algorithm, and failure
recovery algorithms. We also evaluate the performance
of the decentralized scheme against a more structured hi-
erarchical indexing scheme that we have previously shown
to perform well in distributed Grid environments.

1 Introduction

Grid computing is emerging as a new paradigm for
managing large scale distributed resources in wide area
networked computing environments [4]. A Grid is a dis-
tributed computing environment that may cross multi-
ple administrative domains. There are many issues that
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must be addressed to provide a complete Grid comput-
ing infrastructure. One issue is how to locate distributed
resources efficiently. A centralized resource discovery in-
dexing service, such as the MCAT (metadata catalog) in
the Storage Resource Broker [2], can be a performance
bottleneck in large scale systems [2, 16].

In this paper, we propose a fully decentralized multi-
dimensional indexing structure, called DiST (Distributed
Search Tree), that operates in a distributed environment
with no centralized control. We have designed a decen-
tralized indexing structure to solve the scalability and re-
liability problems of a centralized indexing method. De-
centralization is a main goal of Peer-to-Peer (P2P) over-
lay networks, which are attracting a lot of attention in
the distributed systems community. In P2P systems, re-
search is being conducted on efficiently searching for data
objects in a dynamic environment. One of the reasons
why P2P systems have been successful is that they sup-
port distributed data repositories robustly. That prop-
erty of P2P systems has much in common with the goals
of Grid computing, in particular data grids, but Grid
computing is not limited to supporting data sharing. In
the near future we expect that the Grid will need more
efficient data discovery mechanisms, preferably not based
on centralized indexing schemes as in P2P systems. Re-
cently various P2P overlay networks have been proposed
including Chord and CAN [3, 5, 20]. However, support-
ing range queries in P2P systems is still an open problem,
especially for multidimensional data.

Multidimensional range queries are an important class
of problems in Grid computing as well. For instance, con-
sider a set of large-scale distributed machines, located all
over the world. In such a system, users may want to
issue a request to find machines with a given set of con-
straints, such as a machine with at least 1GB of main
memory and a network delay to a particular host of less
than 1 second. Another example of range queries in Grid
application are to datasets with an underlying multidi-
mensional attribute space. For those requests, a user
may issue a query to retrieve a subset of some specific



datasets that may be distributed across multiple sites
(e.g., NASA satellite sensor datasets over a range of lati-
tude, longitude, and time). In order to handle such range
queries efficiently in a Grid environment, a spatial index-
ing scheme is needed that is both more scalable and more
robust than a centralized indexing scheme. Replication
can be used to reduce access latency, improve data lo-
cality, and increase robustness and scalability. In previ-
ous work [16], we have evaluated the performance of two
different distributed multidimensional indexing schemes
that employ replication and hierarchy in different com-
binations. One method has a single centralized index
that can be replicated as needed, while the other em-
ploys a two-level hierarchy with a local index on every
server and a centralized global index (that can also be
replicated) that aggregates the information in the local
indexes. Both schemes reduce the overhead on the index-
ing servers by distributing the workload for searching the
index. However, replication strategies cause high over-
head for updating an index (i.e. adding or deleting data
objects), especially when strong consistency across repli-
cas is needed. In addition, replication requires a sophisti-
cated management mechanism for creating, deleting, and
locating replicas. Since the number of replicas has a sig-
nificant effect on the performance of both index look-up
and update, for the best performance the number and
placement of replicas should be determined dynamically
from workload characteristics.

In this paper, we focus on a fully decentralized index-
ing scheme that does not require such an adaptive man-
agement strategy for scientific applications that navigate
through large distributed multidimensional datasets. A
fully decentralized indexing structure promises to scale to
thousands of servers without a central bottleneck. Every
server in the DiST decentralized indexing scheme con-
tains a local index for data stored on that server, as in the
two-level hierarchical scheme discussed earlier, but also
contains partial global index information. DiST does not
require a dedicated server to store and search the global
index, as does the two-level hierarchical scheme. Based
on incomplete global information, any server in the DiST
system can forward a query to other servers as needed
to satisfy a query. The DiST query routing algorithm
guarantees that queries will be delivered to the correct
destination servers, potentially routing through interme-
diate servers, unless the destination servers have left the
system or failed. In addition to evaluating the basic per-
formance of the DiST algorithms, we also describe how
to reduce the number of network hops needed for query
routing to improve performance, and also how to recover
from server failures or departures to make DiST more
robust.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss other research related to distributed in-
dexing. In Section 3 we introduce our fully decentralized

multidimensional indexing scheme, and show experimen-
tal results in Section 4. In Section 5 we conclude and
discuss future work.

2 Related Work

Since Kamel and Faloutsos proposed the first par-
allel R-trees (Multiplexed R-trees) [9], for a machine
with a single CPU and multiple disks, several parallel
multidimensional indexing structures, such as Master R-
trees [10] and Master Client R-trees [18], have been de-
veloped to extend Multiplexed R-trees. The Master R-
tree was designed for a shared nothing environment (i.e.
a distributed memory parallel machine, or cluster) [10].
A single server maintains all the internal nodes of the
R-tree except the leaf level data nodes, which are declus-
tered across the other servers. The Master Client R-tree
is a two-level distributed R-tree that has a single master
index on a master server and local client indexes on the
other servers. The Master Client R-tree is similar to the
Master R-tree in the sense that it declusters leaf level
nodes across data servers. However each data server cre-
ates its own local index using the leaf level nodes that
are assigned to it.

Master R-trees and Master Client R-trees require at
least one dedicated server to maintain global status infor-
mation about the distributed index, which is a potential
bottleneck. To avoid centralized accesses, several fully
decentralized indexing structures have been proposed,
and are collectively called SDDS (Scalable Distributed
Data Structures). These include LH* [13], which gen-
eralizes Linear Hashing to distributed systems, and dis-
tributed random trees (DRT) [11]. Our decentralized in-
dexing scheme is similar to DRT in that we are using
KD-trees as the basic indexing data structure and that
each server maintains some part of the overall global KD-
tree, which we will describe in detail later.

In fully distributed systems (i.e., pure P2P systems)
peers are directly addressed, typically via a hashing
scheme, to return the data objects they contain. The
Chord [19] and CAN [17] systems implement distributed
hash tables to provide efficient lookup of a given key
value. These systems assign a unique key to each data
object (i.e., a file) and forward queries to specific servers
based on a hash function. Although these systems guar-
antee locating a data object within a bounded number of
network hops, they require tight control over data place-
ment and the topology of the overlay network that they
create. In a Grid environment, arbitrary data place-
ment is not always feasible due to both organizational
and technical issues (e.g., the size of the datasets). In
broadcast-based P2P systems (also called unstructured
P2P systems) such as Gnutella [6], message flooding is
employed to forward queries, since each peer does not
have data placement information. Message flooding does
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not guarantee accurate query results, thus is not feasible
for typical requests in a Grid environment that require
accurate query results.

The recently developed P-tree, a fully decentralized
B+-tree, enables one dimensional range queries in a pure
P2P network [3]. The P-tree assumes that a peer stores
only a single data object, thus in order to store more
than one data object each peer needs to be mapped to by
multiple virtual peers. The routing algorithm in a P-tree
is based on virtual peers, thus a peer may be accessed
multiple times while routing to virtual peers. For this
reason, the P-tree is not suitable for a system that stores
many data objects. Also a one dimensional range query
is not adequate for scientific data analysis applications
that access and process multidimensional data.

SkipIndex is a distributed indexing overlay network
that uses the Skip Graph data structure [20]. Since Skip
Graph only works for one dimensional data, SkipIndex
first builds a KD-tree for multidimensional data, then
builds the 1D Skip Graph on the leaves of the KD-tree.
Although DiST and SkipIndex use the same KD-tree
style partitioning strategy, the major difference between
SkipIndex and DiST is their scalability. Since SkipIndex
targets large scale P2P overlay networks, it limits the
number of remote peers that can be directly accessed by
a given peer, as for most P2P overlay networks. However,
this may cause high traffic for peers close to the root in
the KD-tree hierarchy. If the number of peers directly
accessible by a single peer is limited, the number of rout-
ing hops generally increases. Since our main concern is
designing a decentralized indexing scheme rather than a
scalable P2P overlay network, we do not limit the num-
ber of peers directly accessible to a single peer to give the
best range query performance.

3 Fully Decentralized Indexing

Scientific instruments can produce hundred of giga-
bytes of spatio-temporal data daily, consisting of billions
of individual data elements. Storing each data element
into a multidimensional indexing data structure is im-

practical, because the size of the index would become
very large, and the performance of queries could be poor
due to the size of the index. Instead, we can build a
bounding box in space and time for a part of the dataset
with data elements having nearby spatio-temporal coor-
dinates (a chunk). That allows storing only the bounding
boxes into the index to reduce its size and make index
searches faster [14].

When datasets are distributed across multiple servers,
it is also important to distribute the index itself to get the
benefits of parallelism. Figure 1 shows a two level hier-
archical indexing scheme, as an example of a distributed
index. In two level hierarchical indexing, each data server
has an index for data stored on that server (a local index).
To search the index, a global index is used to determine
which local index(es) must be accessed. The global in-
dex stores the Minimum Bounding Boxes (MBBs) of the
root nodes of the local indexes, each of which is only big
enough to span all the bounding boxes of the data chunks
in a local server. When a range query is submitted to the
server owning the global index, the server compares the
range with those MBBs and returns the list of servers
that have overlapping MBBs with the given range. Since
the global index does not contain any information about
the actual data stored in the servers, it is possible for
the global index server to return local servers for a query
when, in fact, those local servers do not have any data
that overlaps the query range. More details about the
two level indexing scheme can be found in [16].

One way of decentralizing the index is to replicate the
global index across all the servers. However, full replica-
tion requires broadcast messages when the index needs
to be updated. For a relatively small number of servers,
full replication can be a good choice, especially when the
frequency of index search operations is much greater than
the frequency of index updates. However, as the number
of servers increases, index updates become a serious per-
formance problem. In order to make a distributed index
scalable, several challenges must be considered [3, 5]:

e Distribution: The index needs to be partitioned
across a large number of servers, in order to avoid
potential bottlenecks and ensure load balance.

e Dynamism: Nodes may join, leave or fail at any
time. Therefore we need an efficient recovery mech-
anism to ensure correctness. And the number of
servers involved for any index update should be min-
imized.

e Correctness: A search for data object o succeeds
if 0 is stored in a server that has not failed. If some
servers in the query routing path fail, a recovery
mechanism should find another routing path to the
destination server.

e Efficiency: The number of network hops for a query
should be at most logarithmic. Also, the number
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of servers involved for a query should be at most
logarithmic, since broadcasting is not efficient.

We describe how our decentralized indexing scheme,
DiST, satisfies these properties.

Distribution: DiST is a decentralized version of
the two level indexing scheme. Each server has a local
index for the data stored on that server, and the global
index is distributed across all the servers, as shown in Fig-
ure 2. DiST obviously satisfies the distribution property.
The global index of DiST partitions the complete multi-
dimensional attribute space (i.e. it is a space partitioning
spatial index), as is done for KD-trees, and each leaf node
in the tree corresponds to an MBB of a local index. Data
partitioning spatial indexing schemes, such as R-trees [7]
and its variants, are not suitable for a fully decentral-
ized environment, because their partitioning strategies
are very dynamic and allow overlapping partitions be-
tween sibling nodes in the tree. Overlapping partitions
and frequent updates may result in a large number of
partition update messages for a decentralized index.

When a server joins the system, it becomes an owner of
a specific partition in the multi-dimensional space, which
corresponds to a leaf node in a KD-tree. The partition
is determined by the KD-tree insertion algorithm, which
assigns ownership of partitions to servers. Each server

that joins the system already has its own local index,
and the MBBs of the local indexes are stored in the de-
centralized, partitioned global index. When a new server
joins the system and inserts the MBB of its local index
into the global index, that MBB will fall inside an area in
the multi-dimensional space that is owned by an existing
server. The MBB will map into exactly one partition,
owned by one existing server, since we convert the MBB
into a single high dimensional point for insertion into the
tree. More details on that conversion will be provided
shortly. The insertion algorithm has the previous owner
divide its current space into two parts, and assigns one
of the newly split partitions to the new server. However,
the previous owner does not need to forward that split
update to all other servers in the system. The reason
is that the query routing algorithm we describe later, in
Section 3.1, can deal with stale index information.

3.1 Correctness: Range Query Routing

The DiST query routing algorithm guarantees correct-
ness, because any range query will eventually be for-
warded to the actual destination owner server that has
the requested data, although the query can be submit-
ted to any server, and none of the servers in the system
has a complete and up-to-date global index. Therefore
we allow inconsistent global information across servers,
so long as we can guarantee correct search results. So
whenever a server joins the system, only one other server
must update its global index to ensure correct query re-
sults. Minimizing information propagation is one reason
why we chose a static space partitioning method, KD-
trees, as the global index spatial data structure instead
of a data partitioning method.

Figure 3 shows how DiST guarantees correct range
query results. When a query is submitted to server A, the
server searches its global index and forwards the query
to server B, since the global index of server A indicates
that the query range falls inside the region owned by
server B. However that region turns out to have been split
previously, when another server, F, joined the system.
Although server A does not have complete, up-to-date,
global index partitioning information, the query can still
be forwarded to the right server (server F'in the example),
since server B can forward the query to server F. In this
way, the query can be delivered to the right server(s) with
a small number of network messages.

The DiST query routing algorithm guarantees correct
search results, because the split information that a server
has in its global index (from other servers joining the sys-
tem) is always correct. If split positions are allowed to
change dynamically, the change must be propagated to
all the servers in the system. Otherwise the DiST query
routing algorithm will not be able to find the correct des-
tination for the query. Static space partitioning methods
such as KD-trees satisfy this requirement, but KD-trees



Algorithm 1

Range Query Routing Algorithm
procedure

RangeQuery(QueryBBX, Queryl D, QueryHistory,
Sender)

1: OwnerID := GetOwner(RootBBX)
2: if QueryID is already processed then

3:  QueryResultForward(Sender, NULL)

4: else

5:  OwnerIDList := GetOwnerList(QueryBBX)

6: QueryHistory+ = OwnerIDList

7:  for all OwnerID in OwnerIDList do

8: if OwnerID == me then

9: Result += LocalSearch(QueryBBX)

10: else if OwnerID is not in QueryHistory then

11: QueryRequestForward(OwnerID,
QueryBBX, Queryl D, QueryHistory, me)

12: Forwarded := TRUE

13: end if

14: end for

15:  Result += WaitQueryResults(QueryI D, OwnerIDList)
16:  QueryResultForward(Sender, Result)

17: end if

end procedure

Algorithm 2
Node Join Algorithm

procedure
NodeJoin(RootBBX, NewNode)
: OwnerID := GetOwner(RootBBX)
if OwnerID == me then
Insert(GlobalIndex, RootBBX, NewNode)
GlobalIndexzCopyForward(NewNode, GlobalIndex)
else
JoinRequestForward(OwnerID, RootBBX, NewNode)
end if

end procedure

only work for point (not rectangular) data. If the data
objects are not points (in our case, the MBB of the local
indexes), then space partitioning methods that require
disjoint sub-partitions are unsuitable. Therefore, we need
to design a new static space partitioning method for rect-
angular data. Otherwise, we could convert a rectangular
bounding box into a higher dimensional point. Henrich et
al. studied a transformation method that converts rect-
angular data into high dimensional point data [8] (i.e.,
a rectangle in 2D becomes a 4D point). More details
about the transformation method and its optimization
techniques can be found in [8, 15].

3.2 Dynamism: Decentralized Node Join

The server join algorithm is described in Algorithm 2,
and Figure 4 shows an example. Whenever a new server
joins the system, the server sends a join request to any ex-
isting server, and the recipient of the join request, call it
R, searches its global index. If the bounding box of the
new server falls inside the region owned by R, R splits
the multi-dimensional space it owns and the new server
becomes the owner of one of the new partitions. Other-
wise, R forwards the join request to the server that R’s
global index says owns the sub-partition containing the
bounding box of the new server. The join request rout-
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Figure 4. Node Join in DiST

ing algorithm is the same as the query routing algorithm
described in Algorithm 2. As shown in Figure 4, if server
C sends a join request to server A, server A searches its
global index and forwards the request to server B, since
the bounding box for server C is inside the region the
index says is owned by server B. Server B also searches
its global index and determines that the root bounding
box of server C falls inside the space it owns, so B splits
its space and forwards a copy of its global index to server
C.

Figure 4d shows the state of each global index after
server D joins via contacting server A. Note that each
global index may contain different global information.
However, all servers always have split information that
does not change, unless servers leave or fail. If a server
leaves or fail, the global split information must be up-
dated, and that will affect the correctness of the DiST
algorithms. Hence we must handle servers leaving or fail-
ing in a robust way, to guarantee correct search results.
Recovery from a server leaving or failing will be described
in Section 3.3.

Since we convert the bounding box of the root of the
local index into a higher dimensional point to insert it
into the partitioned global index, the converted point can
move within the high dimensional space when the root
bounding box changes (i.e., an update to the local index
on a server propagates to the root of the local tree). If the
converted point does not cross the boundary of the par-
tition that the point currently is in, no global partition
update to other servers is necessary. In the case where
the converted point does cross the boundary of its cur-
rent partition, there are two steps required to update the
global index. The first step is to delete the old partition
from the global indexes in a few servers - the server itself
and the neighbor servers. The second step is forwarding
the join request to the server that owns the partition that
the new point falls into, just as for a new server.

As we discussed earlier, one of the properties that de-
centralized indexing must satisfy is dynamism. When an
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update of the global index is required, the number of
servers involved in the update should be as few as possi-
ble. In DiST, the partition information for a server can
be stored in any server in the system. This implies that
many servers may need to receive global index update
messages. However it is not efficient in a dynamic envi-
ronment for each server to keep track of all the servers
that must be updated when an update occurs. Thus,
DiST updates the global index in a lazy manner. Some
servers in DiST may have stale partition information due
to the updates. But the routing algorithm of DiST will
deliver all queries to the destination servers that are sup-
posed to be forwarded to without affecting the correct-
ness of index searches. In order to improve search perfor-
mance, by making the global indexes converge to consis-
tent states quickly, we describe a piggyback index update
strategy in Section 3.4.

3.3 Dynamism: Decentralized Node Failure
and Recovery

If a server leaves the system or fails, that can cause
an unexpected network partition. Suppose there are four
servers, each with its own global index, as shown in Fig-

ure 5. In the example, server B knows the partition
owned by server C, but server A does not. If server B fails
or leaves, a range query submitted to server A cannot be
forwarded to server C) nor can correct query results be
returned, because of the network partition.

The danger of this problem can be reduced by allow-
ing multiple servers to own a single partition, as shown
in Figure 6. If server B! fails and another server A1 de-
tects that B1 is not responding, server A1 can forward a
query to another owner, in this example B2, for the same
partition. Servers BI and B2 will have different data and
local indexes, but when a server forwards a query for the
partition owned by B1 and B2, it forwards to only one
of them since both know the exact bounding boxes for
other servers in the same partition.

If we restrict the number of servers for a partition,
call that number K, to either 2 or 3, a server should
only split its partition when a new server joins and more
than 3 bounding boxes would end up in the same par-
tition server. After the split, each partition will then
have 2 server bounding boxes. If we want to increase
the fault tolerance of the overall system, we can increase
the number of servers that own a partition. Note that
P2P systems based on distributed hash tables, such as
CAN or Chord, cannot recover from multiple simultane-
ous neighbor failures [17, 19]. This problem also applies
to the DiST recovery algorithm.

If all the servers in the same partition fail, we require
an alternative recovery mechanism to the one just de-
scribed. One (expensive) option is broadcasting or flood-
ing recovery messages [6], which is inefficient.

Another recovery option is similar to the CAN mech-
anism in the sense that each server has to maintain a
neighbor server list [17]. In DiST, remote servers may
send queries directly to the failed server. After detect-
ing a server failure, the remote server simply deletes
the failed server from its global index. When a node is
deleted from the KD-tree index, a sibling node or subtree
takes over the partition for the deleted node. In DiST,
this means that the sibling server(s) becomes a replace-
ment server(s) and take over the partition for the failed
server. When a server joins the systems and inserts its
MBB into the global index, the server that ends up split-
ting its partition to give to the new server must forward a
global index update message to its neighbors, in order to
maintain correct neighbor information. If a failed node is
detected during a global index search, the node is deleted
as just described, and the search continues. This failure
recovery algorithm works in a lazy manner, thus it does
not cause high overhead and does not affect correctness.
However the DiST recovery algorithm has the same prob-
lem as other decentralized indexing schemes, and cannot
recover from multiple simultaneous server failures. If we
combine the recovery algorithm with the partition shar-
ing approach, DiST would be even more fault tolerant,
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but recovery is still not always possible. We plan to inves-
tigate failure recovery algorithms more deeply in future
work.

3.4 Efficiency: Piggyback Updates

Maintaining only a partial global index at each server
may result in more network messages for search queries
compared to fully propagating global index updates, as
shown in Figure 7. In the example, server A must for-
ward a query to server B, since A does not have partition
information for servers C or D. If server A has partition
information for servers C' and D, the message from server
A to server B is not needed, since the partition for server
B does not overlap the given query range, as seen in the
Figure 7(b).

When the global index is not a balanced tree, the par-
tial global index may cause a long message chain. This
effect not only increases the number of messages, but also
increases the size of the messages because intermediate
servers must collect and merge query results to return
them back up the chain . If the global index is completely
skewed, the number of messages in the worst case is NV,
where N is the total number of servers. Although this is
a rare case, it violates the desirable efficiency property
from Section 3.

To improve performance, we have adopted the lazy
update technique from distributed random tree (DRT)
algorithms [11]. Two incomplete global indexes can be
merged as they are traversed in either breadth or depth
first order. With tree merging, as a server obtains a
global index that is close to complete, it is likely that
the number of network hops needed for any range query

search operation will be close to 1. Even if a global in-
dex on a server is not complete, the number of network
hops will be logarithmic in most cases, if the global in-
dex is well balanced. DiST without piggyback updates
satisfies the efficiency property most of the time, and the
piggyback update scheme further improves performance,
as will be shown in the experiments in Section 4.

Unlike P2P overlay networks, DiST does not limit the
number of servers directly accessible by a single server,
and piggyback index updates can increase the number of
directly accessible servers. As a server maintains more
information about other servers, the scalability of the in-
dexing scheme is compromised. In order to make DiST
work in global scale systems, we must design a mecha-
nism that controls the number of servers that are directly
accessible by a single server. However, since our target
applications are not pure P2P applications, but scientific
data analysis applications, we are more concerned with
range query performance than scalability to very large
numbers of servers. In most applications, range queries
are much more frequent than update requests, thus pig-
gyback index updates will make the partial global indexes
become complete and consistent quickly. As a result of
piggyback updates, the number of network hops for any
single query will converge to 1 as in centralized two level
indexing, and the traffic load for servers close to the root
in the KD-trees will be reduced.

Piggyback updates are triggered when a server receives
a query and detects that the query sender did not directly
send the query to one or more servers that should receive
the query. Query forwarding history is required to imple-
ment piggyback updates and to eliminate duplicate query
processing. When a query is forwarded, each server has
to attach information on what servers have already seen
the query. Even with query forwarding history, a server
can receive the same query multiple times due to query
routing. Therefore we need to assign a unique query id to
each query, which should increase monotonically. Using
the query id, servers can detect duplicate queries.

4 Experiments
4.1 Experimental Environment

We have measured the performance of DiST on 41
server machines in a Linux cluster. Each of the 41 servers
has a Pentium IIT 650 MHz processor and 768MB mem-
ory, and the servers are connected by channel-bonded
Fast Ethernet (200Mb/sec per server). In order to em-
ulate a larger configuration of more than 40 servers,
for some of the experiments we also ran multiple in-
dex servers on a single machine. Intercommunication
between index servers is done via LAM/MPI [12].

Three dimensional satellite image datasets were used
to evaluate DiST. The satellites gather remotely sensed
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Figure 8. Search performance varying the number of clients

AVHRR (Advanced Very High Resolution Radiometer)
GAC (Global Area Coverage) level 1B datasets, stored
as a set of arrays. The datasets includes geo-location
fields (latitude and longitude), time fields, and some ad-
ditional metadata. As the satellite moves along a ground
track over the earth, it records sensor and time values,
with the geo-location metadata information then com-
puted from satellite orbit models. Because the sensor
swings across the ground track, the sensor and meta-
data values are stored as two dimensional arrays. We
partitioned those 2D arrays into equal sized rectangu-
lar chunks, built three dimensional bounding boxes (lat-
itude, longitude, and time) for each chunk, and stored
the boxes into the local indexes in each server. For each
chunk, the leaf node in the index contains the local server
name, local file name, and the array offset within the file
for the data for that chunk. We used SH-trees as the
multidimensional data structure for local index on each
server, since we have shown that SH-trees provide better
performance than R-tree based indexing structures for
chunked datasets [14].

The dataset used was collected over one month (Jan-
uary 1992), and has a total size of more than 30GB,
with the volume of data for a single day about 1GB.
The dataset was partitioned into 700,000 chunks. We
assigned 5,000 chunks to each of 136 virtual servers. In
order to create range queries, we modeled common query
behaviors into the satellite datasets using a variation of
the Customer Behavior Model Graph (CBMG) technique
to match queries to a realistic workload, including hot
spots in the data corresponding to areas of high inter-
est [1].

4.2 Experimental Results

Figure 8 shows the search performance of the hierar-
chical two level index, with a centralized global index, vs.
DiST for different numbers of clients. The total number
of server machines that were used for DiST is 40 (the

servers with the data), and we used an extra server as
a dedicated global index server (41 total) for the two
level indexing scheme. The clients are distributed evenly
across the 40 server machines and each of them submits
2000 queries, waiting for one query to complete before is-
suing the next query. Since there is no front end in DiST,
any client can connect to any server. For the two level in-
dexing, a client can connect to any server as well, but all
queries must be forwarded to the global index server. For
the DiST measurements, each server joined the system in
random order, so the global index is moderately balanced
in this experiment. Figure 8(a) shows the average elapsed
wall clock time per client for its 2000 queries, and Fig-
ure 8(b) shows the average number of network messages
received at each server. In terms of both time and net-
work messages, the search cost increases linearly as the
number of clients increases from 80 to 1040. Figure 8
shows that two level indexing generates only about 1/4
the number of messages as DiST without the piggyback
global index update method, and about half the number
of messages as DiST with piggyback updates. This is
because the maximum number of network messages for
a single query for two level indexing is always 2 for the
global index search and 2 for each local index search,
which is optimal. The number of network messages elim-
inated by DiST piggyback updates is approximately half
of the total number of network messages in our experi-
ments. As more queries are submitted using DiST with
the piggyback global index update, the number of net-
work messages may decrease. However, the global index
in DiST suffers from the dead space search problem, since
we convert the bounding boxes into higher dimensional
point data, but that is not a problem for the two level
indexing that directly uses the bounding boxes.

The results from Figure 8(a) show that two level index-
ing is also faster than DiST. With 1040 clients, searching
the two level index took about 2/3 the time to search
with DiST and piggyback updates, on average, and less
than half the time of DiST without piggyback updates,
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on average. These times are consistent with the number
of network messages shown in Figure 8(b). We doubt
that it is possible to make DiST generate fewer network
messages than does two level indexing, because of the
nature of decentralized indexing, i.e. complete global in-
formation is not guaranteed to be available.

We also evaluated the scalability of DiST with respect
to the number of servers. We increased the number of
servers from 8 to 136. Since we ran this experiments on
40 machines, multiple servers ran in a single machine.
For instance, with 120 servers we ran 3 servers on each
machine. We compared two policies for DiST, with and
without piggyback global index updates, and with two
different global index structures, one a relatively bal-
anced tree and the other an almost linear skewed tree
structure. The global index in DiST is a binary KD-
tree, which is not guaranteed to be balanced. We con-
trolled the server join sequence in order to compare the
search performance of balanced and skewed global in-
dexes. When the global index for DiST is skewed, the
number of network messages for a single range query is
linear in the worst case, i.e. the total number of servers in
the system. However with piggyback updates, the num-
ber of network messages decreases as more updates are
performed, since each server will eventually obtain the
entire global partitioning information, so can directly for-
ward queries to the correct destination server(s).

Figure 9(b) shows that the number of messages in-
creases as the number of servers increases. This is partly
because the number of network messages increases with
larger systems, and also because we ran more clients with
more servers. When a new server joins, we also create a
new client, which connects to the new server and submits
2000 range queries, as in the earlier experiments. The
performance gap between the balanced global index and
the skewed global index is quite substantial. A balanced
global index generates only about 1/3 the number of net-
work messages as with the skewed global index, without
piggyback updates for the global index. With piggyback

Number of Index Update Messages per Server

" Balanced Global Index —&—
80 I Skewed Global Index &

70 -
60 - =}
50 - g8
40 o

30 -

# of messages
o)

20 o

8 16 24 32 40 48 56 64 72 80 8 96 104 112 120 128 136
Number of Servers

Figure 10. Number of piggy-back global index up-
date messages

index updates, the message gap between the balanced
global index and skewed global index decreases. How-
ever the balanced global index generates 3/4 the number
of messages as for the skewed global index. If there are
no server failures and no new servers join the system,
eventually all the servers would have a complete global
index. In such a case, no matter how much a global index
is skewed and no matter what server receives a query, the
number of messages for a query would be exactly 2.
Figure 10 shows the average number of piggyback
global index update messages delivered to each server.
When there are 136 servers in the system and the global
index for those servers is skewed, 89 global index update
messages are delivered to each server on average. Com-
pared to the average total number of messages delivered
(92,393) to each server, 89 additional messages is negli-
gible, which means piggyback global index updates im-
prove performance without much overhead. Since in the
experiments each server has a single client and each client
submits 2000 queries, the probability that a server re-
ceives a global index update message for any given query
is about 4.5%. When the global index is balanced, the
average number of global index updates per server is 34,
thus the probability drops to 1.7%. If servers join or leave



the system frequently, the number of global index update
messages would increase.

5 Conclusion and Future Work

In this paper we presented the design of a new decen-
tralized multidimensional indexing scheme, DiST, that
targets large distributed systems without centralized con-
trol. DiST accelerates multidimensional range query per-
formance in distributed environments with no obvious
performance bottlenecks, so that it shows comparable
performance to a centralized two level indexing scheme,
and provides improved scalability and reliability com-
pared to centralized indexing.

There are still many interesting issues for decentral-
ized indexing. We need to investigate more deeply the
scalability of DiST and two level indexing, which we mea-
sured only with a relatively small number of data servers.
In order to observe the scalability of DiST compared to
two level indexing, we need to scale to at least hundreds
of data servers, and we do not yet have access to that
many server machines. Thus, we plan to do a simulation
study in the near future. Also, we need to measure the
performance effects of assigning multiple servers to the
same partition, since the servers within the same par-
tition must know each other’s bounding boxes exactly,
likely increasing the number of update messages required,
but also decreasing the number of search messages due to
the reduced search path length. Having multiple servers
in the same partition has the same effect as reducing the
number of servers in the system. Another direction of this
work is to adapt other decentralized indexing schemes for
P2P systems for the global index in a two level indexing
scheme.
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