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Abstract

As the size of today’s high performance comput-
ers increases from hundreds, to thousands, and even
tens of thousands of processors, node failures in these
computers are becoming frequent events. Although
checkpoint/rollback-recovery is the typical technique to
tolerate such failures, it often introduces a consider-
able overhead. Algorithm-based fault tolerance is a very
cost-effective method to incorporate fault tolerance into
matriz computations. However, previous algorithm-
based fault tolerance methods for matriz computations
are often derived using algorithms that are seldomly
used in the practice of today’s high performance ma-
trix computations and have mostly focused on platforms
where failed processors produce incorrect calculations.

To fill this gap, this paper extends the existing
algorithm-based fault tolerance to the volatile comput-
ing platform where the failied processor stops work-
ing and applies it to scalable high performance ma-
trix computations with two dimensional block cyclic
data distribution. We show the practicality of this
technique by applying it to the ScaLAPACK/PBLAS
matriz-matriz multiplication kernel. Ezperimental re-
sults demonstrate that the proposed approach is able to
survive process failures with a very low performance
overhead.
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1. Introduction

Today’s long running scientific applications typically
deal with faults by checkpoint/restart approaches in
which all process states of an application are saved into
stable storage periodically. The advantage of this ap-
proach is that it is able to tolerate the failure of the
whole system. However, in this approach, if one process
fails, usually all surviving processes are aborted and the
whole application is restarted from the last checkpoint.
The major source of overhead in all stable-storage-
based checkpoint systems is the time it takes to write
checkpoints into stable storage [1]. The checkpoint of
an application on a, say, ten-thousand-processor com-
puter implies that all critical data for the application
on all ten thousand processors have to be written into
stable storage periodically, which may introduce an un-
acceptable amount of overhead into the checkpointing
system. The restart of such an application implies
that all processes have to be recreated and all data
for each process have to be re-read from stable storage
into memory or re-generated by computation, which
often brings a large amount of overhead into restart.
It may also be very expensive or unrealistic for many
large systems such as grids to provide the large amount
of stable storage necessary to hold all process state of
an application of thousands of processes.

In order to tolerate partial failures with reduced
overhead, diskless checkpointing [1, 2] has been pro-
posed by Plank et. al. By eliminating stable storage
from checkpointing and replacing it with memory and
processor redundancy, diskless checkpointing removes
the main source of overhead in checkpointing [1]. Disk-
less checkpointing has been shown to achieve a decent
performance to tolerate single process failure in [3]. For
applications which modify a small amount of memory



between checkpoints, it is shown in [4] that ,even to tol-
erate multiple simultaneous process failures, the over-
head introduced by diskless checkpointing is still neg-
ligible.

However, for applications, such as matrix-matrix
multiplication, which modify a large mount of mem-
ory between checkpoints, due to the large checkpoint
size, even diskless checkpointing still introduces a con-
siderable overhead into applications. Firstly, a local
in memory checkpoint has to be maintained in disk-
less checkpointing, which introduces a large amount
of memory overhead and hurts the efficiency of ap-
plications. Secondly, the local checkpoint in diskless
checkpointing has to be taken and encoded periodically,
which introduce a considerable performance overhead
into applications. Despite the checksum and reverse
computation technique in [3] has reduced the mem-
ory overhead, the overhead to calculate the checkpoint
encodings periodically does not change. Furthermore
after failures, this technique increase the recovery over-
head by reversing the computation.

Inspired by the existing algorithm-based fault tol-
erance idea in [5], in this paper, we present an
algorithm-based checkpoint-free fault tolerance ap-
proach in which, instead of taking checkpoints peri-
odically, a coded global consistent state of the critical
application data is maintained in memory by modify-
ing applications to operate on encoded data. Although
this approach is not as generally applicable as typi-
cal checkpoint approaches, in parallel matrix computa-
tions where it usually works, fault tolerance for partial
node failures can often be achieved with a surprisingly
low overhead.

Despite the fact that there has been much research
on algorithm-based fault tolerance [5, 6, 7] in which
applications are modified to operate on encoded data
to determine the correctness of some mathematical
calculations on parallel platforms where failed proces-
sors produce incorrect calculations, to the best of our
knowledge, this is the first time that applications are
modified to operate on encoded data to maintain a
global consistent state on parallel and distributed sys-
tems where failed processors stop working.

We show the practicality of this technique by apply-
ing it to the ScaLAPACK/PBLAS [8] matrix-matrix
multiplication kernel which is one of the most im-
portant kernels for ScaLAPACK library to achieve
high performance and scalability. Experimental results
for matrix-matrix multiplication demonstrate that the
proposed approach is able to survive a small number of
process failures with a very low performance overhead.

The rest of this paper is organized as follows.
Section 2 specifies the type of failures we focus

on. Section 3 presents the basic idea of algorithm-
based checkpoint-free fault tolerance. In Section
4, we present an example to demonstrate how
algorithm-based checkpoint-free fault tolerance works
in practice by applying this technique to the Scal.A-
PACK/PBLAS matrix-matrix multiplication kernel.
In Section 5, we evaluate the performance overhead of
applying this technique to the ScaLAPACK/PBLAS
matrix-matrix multiplication kernel. Section 6 con-
cludes the paper and discusses future work.

2 Failure Model

To define the problem we are targeting and clarify
the differences with traditional algorithm-based fault
tolerance, in this section, we specify the type of failures
we are focusing on.

Assume the computing system consists of many
nodes connected by network connections. Each node
has its own memory and local disk. The communi-
cation between processes are assumed to be message
passing. Assume the target application is optimized to
run on a fixed number of processes.

We assume nodes in the computing system are
volatile, which means a node may leave the computing
system due to failure, or join the computing system
after being repaired. Unlike in traditional algorithm-
based fault tolerance which assumes a failed processor
continues to work but produce incorrect results, in this
paper, we assume a fail-stop failure model. That is
the failure of a node will cause all processes on the
failed nodes stop working. All data of the processes
on the failed node is lost. The processes on survival
nodes could not either send or receive any message from
the processes on the failed node. Although there are
many other type of failures exist, in this paper, we
only consider this type of failures. This type of failure
is common in today’s large computing systems such as
high-end clusters with thousands of nodes and compu-
tational grids with dynamic resources.

3 Algorithm-Based
Fault Tolerance

Checkpoint-Free

In this section, we present the basic idea of
algorithm-based checkpoint-free fault tolerance. We
restrict our scope to the long running numerical com-
puting applications only. As indicated in Section 4,
this approach can mainly be applied to linear algebra
computations on parallel and distributed systems.



3.1 Failure Detection and Location

It is assumed that fail-stop failures can be detected
and located with the aid of the programming envi-
ronment. Many current programming environments
such as PVM [9], Globus [10], FT-MPI [11], and Open
MPT [13] do provide this kind of failure detection and
location capability. We assume the lost of partial pro-
cesses in the message passing system does not cause
the aborting of the survival processes and it is possi-
ble to replace the failed processes in the message pass-
ing system and continue the communication after the
replacement. FT-MPI [11] is one such programming
environments that support all these functionalities. In
the rest of this section, we will mainly focus on how to
recover the application.

3.2 Failure Recovery

Today’s long running scientific programs typically
deal with faults by checkpoint and rollback recovery
in which all process states of an application are saved
into certain storage periodically. If one process fails,
the data on all processes has to be recovered from
the last checkpoint. The checkpoint and rollback of
an application on a, say, ten-thousand-processor com-
puter implies that all critical data for the application on
all ten thousand processors have to be saved into and
recovered from some storage periodically, which may
introduce an unacceptable amount of overhead (both
time and storage) into the checkpointing system. Con-
sidering that all data on all survival processes are still
effective, it is interesting to ask: is it possible to recover
only the lost data on the failed process?

Consider the simple case where there will be only
one process failure. Before the failure actually occurs,
we do not know which process will fail, therefore, a
scheme to recover only the lost data on the failed pro-
cess actually need to be able to recover data on any
process. It seems difficult to be able to recover data
on any process without saving all data on all processes
somewhere. However, if we assume, at any time dur-
ing the computation, the data on the i*" process P;
satisfies

P+P+---+ P =P, (1)

where n is the total number of process used for the
computation. Then the lost data on any failed process
would be able to be recovered from (1). Assume the j*
process failed, then the lost data P; can be recovered
from

Pi=P,—(Pi+- -+ Pi1+Piy1+-+Py1)

In this very special case, we are lucky enough to be
able to recover the lost data on any failed process with-
out checkpoint due to the special checksum relationship
(1). In practice, this kind of special relationship is by
no means natural. However, it is natural to ask: is
it possible to design an application to maintain such a
special checksum relationship on purpose?

Assume the original application is designed to run on
n processes. Let P; denotes the data on the i** com-
putation process. The special checksum relationship
above can actually be designed on purpose as follows

e Add another encoding process into the applica-
tion. Assume the data on this encoding process is
C. For numerical computations, P; is often an ar-
ray of floating-point numbers, therefore, at the be-
ginning of the computation, we can create a check-
sum relationship among the data of all processes
by initializing the data C on the encoding process
as

P+P+---+P,=C (2)

e During the executing of the application, redesign
the algorithm to operate both on the data of com-
putation processes and on the data of encoding
process in such a way that the checksum relation-
ship (2) is always maintained.

The specially designed checksum relationship (2) ac-
tually establishes an equality between the data F; on
computation processes and the encoding data C on
the encoding process. If any processor fails then the
equality (2) becomes an equation with one unknown.
Therefore, the data in the failed processor can be re-
constructed through solving this equation.

4 Checkpoint-Free Fault Tolerance for
Matrix Multiplication

As an example to demonstrate how the algorithm-
based checkpoint-free fault tolerance works in prac-
tice, in this section, we apply this technique to
the ScaLAPACK/PBLAS matrix-matrix multiplica-
tion kernel which is one of the most important kernels
for ScaLAPACK to achieve high performance and scal-
ability.

Actually, it is also possible to incorporate fault tol-
erance into many other ScaLAPACK routines through
this approach. However, in this section, we will restrict
our presentation to the matrix-matrix multiplication
kernel.



4.1 Two-Dimensional Block-Cyclic
Distribution

It is well-known [8] that the layout of an applica-
tion’s data within the hierarchical memory of a con-
current computer is critical in determining the per-
formance and scalability of the parallel code. By us-
ing two-dimensional block-cyclic data distribution [§],
ScaLAPACK seeks to maintain load balance and re-
duce the frequency with which data must be trans-
ferred between processes.
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(a). One-dimensional process array  (b). Two-dimensional process grid
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Figure 1. Process grid in ScaLAPACK

For reasons described above, ScaLAPACK organizes
the one-dimensional process array representation of an
abstract parallel computer into a two-dimensional rect-
angular process grid. Therefore, a process in ScalLA-
PACK can be referenced by its row and column coor-
dinates within the grid. An example of such an orga-
nization is shown in Figure 1.
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Figure 2. Two-dimensional block-cyclic ma-
trix distribution

The two-dimensional block-cyclic data distribution
scheme is a mapping of the global matrix onto the rect-
angular process grid. There are two pairs of parameters
associated with the mapping. The first pair of param-
eters is (mb,nb), where mb is the row block size and
nb is the column block size. The second pair of pa-
rameters is (P, Q), where P is the number of process

rows in the process grid and @ is the number of pro-
cess columns in the process grid. Given an element a;;
in the global matrix A, the process coordinate (p;,¢;)
that a;; resides can be calculated by

bi = LﬁJ mod P7
gi = |75 mod @,
The local coordinate (ip,,j,;) which a;; resides in the

process (p;,q;) can be calculated according to the fol-
lowing formula

ip; = LL%JJ .mb+1i mod mb,
Jo; = L%J .nb+14i mod nb,

Figure 2 is an example of mapping a 9 by 9 matrix
onto a 2 by 3 process grid according two-dimensional
block-cyclic data distribution with mb = nb = 2.

4.2 Encoding Two-Dimensional Block
Cyclic Matrices

In this section, we will construct different encod-
ing schemes which can be used to design checkpoint-
free fault tolerant matrix computation algorithms in
ScaLAPACK.

Assume a matrix M is originally distributed in a
P by @ process grid according to the two dimensional
block cyclic data distribution. For the convenience of
presentation, assume the size of the local matrices in
each process is the same. We will explain different
coding schemes for the matrix M with the help of the
example matrix in Figure 3. Figure 3 (a) shows the
global view of an example matrix. After the matrix is
mapped onto a 2 by 2 process grid with mb =nb =1,
the distributed view of this matrix is shown in Figure
3 (b).
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Figure 3. An example matrix

Suppose we want to tolerate a single process failure.
We dedicate another P + @ + 1 additional processes
and organize the total PQ + P + @ + 1 process as a
P +1 by Q + 1 process grid with the original matrix
M distributed onto the first P rows and () columns of
the process grid.

The distributed column checksum matriz M€ of the
matrix M is the original matrix M plus the part of data



on the (P + 1) process row which can be obtained by
adding all local matrices on the first P process rows.
Figure 4 (b) shows the distributed view of the column
checksum matrix of the example matrix from Figure 1.
Figure 4 (a) is the global view of the column checksum
matrix.
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(a). Column checksum matrix from global view  (b). Column checksum matrix from distributed view

Figure 4. Distributed column checksum ma-
trix of the example matrix

The distributed row checksum matriz M" of the ma-
trix M is the original matrix M plus the part of data
on the (Q + 1)** process columns which can be ob-
tained by adding all local matrices on the first @) pro-
cess columns. Figure 5 (b) shows the distributed view
of the row checksum matrix of the example matrix from
Figure 1. Figure 5 (a) is the global view of the row
checksum matrix.
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(a). Row checksum matrix from global view (b). Row checksum matrix from distributed view

Figure 5. Distributed row checksum matrix of
the original matrix

The distributed full checksum matriz M/ of the ma-
trix M is the original matrix M, plus the part of data
on the (P + 1) process row which can be obtained by
adding all local matrices on the first P process rows,
plus the part of data on the (Q + 1)** process column
which can be obtained by adding all local matrices on
the first ) process columns. Figure 6 (b) shows the
distributed view of the full checksum matrix of the ex-
ample matrix from Figure 3. Figure 6 (a) is the global
view of the full checksum matrix.

4.3 Maintaining Global Consistent States
by Computation

Assume A, B and C are distributed matrices on a P
by @ process grid with the first element of each matrix
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(a). Full checksum matrix from global view

Figure 6. Distributed full checksum matrix of
the original matrix

on process (0,0). Let A°, B" and C/ denote the corre-
sponding distributed checksum matrix. Let A5 denote
the j** column block of the matrix A¢ and B]T-T denote

the j** row block of the matrix B". We first prove
the following fundamental theorem for matrix matrix
multiplication with checksum matrices.

Theorem 1 Let S; = C/ + Y9_0 A¢ % BiT, then S;
is a distributed full checksum matrix.

It is straightforward that AS * B is a distributed
full checksum matrix and the sum of two distributed
full checksum matrices is a distributed checksum ma-
trix. S is the sum of j distributed full checksum ma-
trices, therefore is a distributed full checksum matrix.

b
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Figure 7. The jt* step of the fault tolerant
matrix-matrix multiplication algorithm

Theorem 1 tells us that at the end of each iteration of
the matrix matrix multiplication algorithm with check-
sum matrices, the checksum relationship of all check-
sum matrices are still maintained. This tells us that a
coded global consistent state of the critical application
data is maintained in memory at the end of each it-
eration of the matrix matrix multiplication algorithm
if we perform the computation with related checksum
matrices.

However, in a distributed environment, different
process may update there local data asynchronously.
Therefore, if when some process has updated their lo-
cal matrix and some process is still in the communi-
cation stage, a failure happens, then the relationship

(b). Full checksum matrix from distributed view



of the data in the distributed matrix will no be main-
tained and the data on all processes would not form
a consistent state. But this could be solved by simply
performing a synchronization before performing local
update. Therefore, in the following algorithm in Fig-
ure 8, there will always be a coded global consistent
state ( i.e. the checksum relationship) of the matrix
A¢, B" and Cf in memory. Hence, a single process
failure at any time during the matrix matrix multipli-
cation would be able to recovered from the checksum
relationship.

Despite in this algorithm, the only modification to
the library routine is to perform a synchronization be-
fore local update. However the amount of modifica-
tion necessary to maintain a consistent state is highly
dependent on the characteristic of an algorithm. For
example, in LU factorization, due to the damage of
the linear relationship by the global row pivoting, one
also needs to adjust the encodings appropriately when
performing pivoting to maintain a consistent encoded
state in memory.

construct checksum matrices A°, B”, and C7;
for j =0,1,...

row broadcast Aj;

column broadcast B]’-“T;

synchronize;

Cr =0’ + A5 « BT,
end

Figure 8. A fault tolerant matrix-matrix multi-
plication algorithm

4.4 Overhead and Scalability Analysis

In this section, we analysis the overhead introduced
by the algorithm-based checkpoint-free fault tolerance
for matrix matrix multiplication.

For the simplicity of presentation, we assume all
three matrices A, B, and C are square. Assume all
three matrices are distributed onto a P by P process
grid with m by m local matrices on each process. The
size of the global matrices is Pm by Pm. Assume
all elements in matrices are 8-byte double precision
floating-point numbers. Assume every process has the
same speed and disjoint pairs of processes can commu-
nicate without interfering each other. Assume it takes
a + Bk seconds to transfer a message of k bytes re-
gardless which processes are involved, where « is the
latency of the communication and % is the bandwidth

of the communication. Assume a process can concur-
rently send a message to one partner and receive a mes-
sage from a possibly different partner. Let v denote the
time it takes for a process to perform one floating-point
arithmetic operation.

4.4.1 Time Complexity for Parallel Matrix
Matrix Multiplication

Note that the sizes of all three global matrices A,
B, and C are all Pm, therefore, the total number of
floating-point arithmetic operations in the matrix ma-
trix multiplication is 2P3m?. There are P? process
with each process execute the same number of floating-
point arithmetic operations. Hence, the total number
of floating-point arithmetic operations on each process
is 2Pm3. Therefore, the time Tyyatriz_comp for the com-
putation in matrix matrix multiplication is

_ 3
Tmatriw_comp =2Pm Y-

In the parallel matrix matrix multiplication algo-
rithm in Figure 8, the columns of A and the rows of B
also need to broadcast to other column and row pro-
cesses respectively. To broadcast one block columns
of A using a simple binary tree broadcast algorithm,
it takes 2(a + 8bmp) log, P, where b is the row block
size in the two dimensional block cyclic distribution.
Therefore, the time Ty,atriz_comm for the communica-
tion in matrix matrix multiplication is

P
Tratriz_comm = QOCTm 10g2 P+ 165Pm2 10g2 P.

Therefore, the total time to perform parallel matrix
matrix multiplication is

Tmatriw_comp + TmatTiw_comm
Pm
b
+168Pm?log, P. (3)

Tmatriw_mult

2Pm3y + 2a—— log, P

4.4.2 Overhead for Calculating Encoding

To make matrix matrix multiplication fault tolerant,
the first type of overhead introduced by the algorithm-
based checkpoint-free fault tolerance technique is (1)
constructing the distributed column checksum matrix
A° from A; (2) constructing the distributed row check-
sum matrix B" from B; (3) constructing the dis-
tributed full checksum matrix C¥ from C;

The distributed checksum operation involved in con-
structing all these checksum matrices performs the
summation of P local matrices from P processes and
saves the result into the (P + 1)!* process. Let



Teach_encode denote the time for one checksum oper-
ation and Tiotai_encode denote the time for constructing
all three checksum matrices A°, B”, and C7, then

Ttotal_encode = 4Teach_encode

By using a fractional tree reduce style algorithm [14],
the time complexity for one checksum operation can be
expressed as

log, P\ "/*
Teach_encode = 8m2ﬁ (1 +0 ((%)

+0(alog, P) + O(m*y)

Therefore, the time complexity for constructing all
three checksum matrices is

1 P 1/3
Ttotal_encode = 32m2ﬂ (1 + 0 ((Og—z) ))
m

+0(alog, P) + O(m?y). (4)

In practice, unless the size of the local matrices m is
very small or the size of the process grid P is extremely
large, the total time for constructing all three checksum
matrices is almost independent of the size of the process
grid P.

The overhead (%) Riotal_encode fOr constructing
checksum matrices for matrix matrix multiplication is

R _ Tiotal_encode
total_encode — Ti
matric-mult

= 0(5-) )

From (5), we can conclude

1. If the size of the data on each process is fixed (m
is fixed), then as the number of processes increases
to infinite (that is P — 00), the overhead (%) for
constructing the checksum matrices decreases to
zero with a speed of O(+)

2. If the number of processes is fixed (P is fixed), then
as the size of the data on each process increases to
infinite (that is m — oo) the overhead (%) for
constructing the checksum matrices decreases to
zero with a speed of O(%)

4.4.3 Overhead for Performing Computations
on Encoded Matrices

The fault tolerant matrix matrix multiplication algo-
rithm in Figure 8 performs computations using check-
sum matrices which have larger size than the original

matrices. However, the total number of processes de-
voted to computation also increases. A more careful
analysis of the algorithm in Figure 8 indicates that the
number of floating-point arithmetic operations on each
process in the fault tolerant algorithm (Figure 8) is ac-
tually the same as that of the original non-fault tolerant
algorithm.

As far as the communication is concerned, in the
original algorithm, the column (and row) blocks are
broadcast to P processes. In the fault tolerant algo-
rithms (in Figure 8), the column (and row) blocks now
have to be broadcast to P + 1 processes.

Therefore, the total time to perform matrix matrix
multiplication with checksum matrices is

Pm
Tmatriz-mult_checksum = 2Pm3’7 + ZQT IOgZ (P + 1)

+168Pm?log, (P + 1).

Therefore, the overhead (time) to perform compu-
tations with checksum matrices is

Tove’r’head_matriz_mult = Tmatrz’z_mult_checksum

b

The overhead (%) Roverhead_matriz_muit for perform-
ing computations with checksum matrices in fault tol-
erant matrix matrix multiplication is

Toverhead_matTim_mult

Rove’r‘head_matrix_mult - T
matriz_-mult

= 0(5-) ™

From (7), we can conclude that

1. If the size of the data on each process is fixed (m
is fixed), then as the number of processes increases
to infinite (that is P — o00), the overhead (%) for
performing computations with checksum matrices
decreases to zero with a speed of O(4)

2. If the number of processes is fixed (P is fixed), then
as the size of the data on each process increases to
infinite (that is m — o0) the overhead (%) for
performing computations with checksum matrices
decrease to zero with a speed of O(L)

4.4.4 Overhead for Recovery

The failure recovery contains two steps: (1) recover the
programming environment; (2) recover the application
data.

matric-mult

P 1
(2a—2 +163Pm?)log,(1 + =)-

(6)



The overhead for recovering the programming en-
vironment depends on the specific programming envi-
ronment. For FT-MPI [11] which we perform all our
experiment on, it introduce a negligible overhead (refer
Section 5).

The procedure to recover the three matrices A, B,
and C is similar to calculating the checksum matrices.
Except for matrix C, it can be recovered from either
the row checksum or the column checksum relationship.
Therefore, the overhead to recover data is

1/3
Trecover_data = 24m2ﬂ (1 +0 ((10g22p) ))
m

+0(alog, P) + O(m?y)  (8)

In practice, unless the size of the local matrices m is
very small or the size of the process grid P is extremely
large, the total time for recover all three checksum ma-
trices is almost independent of the size of the process
grid P.

The overhead (%) Rrecover.data fOr constructing
checksum matrices for matrix matrix multiplication is

R Trecover-data
recover_data T
matriz-mult

O(5-) ©)

5 Experimental Evaluation

In this section, we experimentally evaluate the per-
formance overhead of applying the algorithm-based
checkpoint-free fault tolerance technique to the ScaLLA-
PACK matrix-matrix multiplication kernel. We per-
formed four sets of experiments to answer the following
four questions:

1. What is the performance overhead of constructing
checksum matrices?

2. What is the performance overhead of performing
computations with checksum matrices?

3. What is the performance overhead of recovering
FT-MPI programming environments?

4. What is the performance overhead of recovering
checksum matrices ?

For each set of experiments, the size of the problems
and the number of computation processes used are
listed in Table 1.

All experiments were performed on a cluster of 32
Pentium IV Xeon 2.4 GHz dual-processor nodes. Each
node of the cluster has 2 GB of memory and runs the

Table 1. Experiment Configurations

Size of original matrix 12,800 | 19,200 | 25,600
Size of checksum matrix | 19,200 | 25,600 | 32,000
Process grid without FT | 2by 2 | 3by 3 | 4 by 4
Process grid with FT 3by3 |4by4 | 5by b

Linux operating system. The nodes are connected with
a Gigabit Ethernet. The timer we used in all measure-
ments is MPT_Wtime.

The programming environment we used is FT-
MPI [11]. FT-MPI is a fault tolerant version of MPI
that is able to provide basic system services to support
fault survivable applications. FT-MPI implements the
complete MPI-1.2 specification, some parts of the MPI-
2 document and extends some of the semantics of MPI
for allowing the application the possibility to survive
process failures. FT-MPI can survive the failure of n-1
processes in a n-process job, and, if required, can re-
spawn the failed processes. However, the application is
still responsible for recovering the data structures and
the data of the failed processes.

Although FT-MPI provides basic system services to
support fault survivable applications, prevailing bench-
marks show that the performance of FT-MPI is com-
parable [12] to the current state-of-the-art MPI imple-
mentations.

5.1 Overhead for Constructing Checksum
Matrices

The first set of experiments is designed to evalu-
ate the performance overhead of constructing checksum
matrices. We keep the amount of data in each process
fixed (that is the size of local matrices m fixed), and
increase the size of the test matrices (hence the size of
process grid).

Table 2. Time and overhead (%) for construct-
ing checksum matrices

Size of original matrix 12,800 | 19,200 | 25,600

Time for original matrix 442.9 | 695.0 | 989.8

Time for encoding 38.0 40.8 43.2

Overhead (%) of encoding | 8.6% | 5.9% | 4.4%

Table 2 reports the time for performing computa-
tions on original matrices and the time for constructing
the three checksum matrices A, B", and C/.



From Table 2, we can see that, as the size of the
global matrices increases, the time for constructing
checksum matrices increases only slightly. This is be-
cause, in the formula (4), when the size of process grid
P is small, 32m?2p is the dominate factor in the time
to constructing checksum matrices. Table 2 also indi-
cates that the overhead (%) for constructing checksum
matrices decreases as size of matrices increases, which
is consistent with our theoretical formula (5) about the
overhead for constructing checksum matrices.

5.2 Overhead for Performing Computa-
tions on Encoded Matrices

The algorithm-based checkpoint-free fault tolerance
technique involve performing computations with check-
sum matrices, which introduces some overhead into the
fault tolerance scheme. The purpose of this experiment
is to evaluate the performance overhead of performing
computations with checksum matrices.

Table 3. Time and overhead (%) for perform-
ing computations on encoded matrices

Size of original matrix 12,800 | 19,200 | 25,600
Size of checksum matrix | 19,200 | 25,600 | 32,000
Time for original matrix | 442.9 | 695.0 | 989.8
Time for encoded matrix | 462.6 | 716.4 1013.3
Increased time 19.7 21.4 23.5
Overhead (%) 44% | 31% | 2.4%

Table 3 reports the execution time for performing
computations on original matrices and the execution
time for performing computations on checksum matri-
ces for different size of matrices.

Table 3 indicates the amount time increased for per-
forming computations on checksum matrices increases
slightly as the size of matrices increases. The reason
for this increase is that, when perform computations
with checksum matrices, column blocks of A¢ (and row
blocks of B") have to be broadcast to one more process.
The dominate time for parallel matrix matrix multipli-
cation is the time for computation which is the same
for both fault tolerant algorithm and non-fault toler-
ant algorithm. Therefore, the amount time increased
for fault tolerant algorithm increases only slightly as
the size of matrices increases.

5.3 Overhead for Recovering FT-MPI
Environment

The overhead for recovering programming environ-
ments depends on the specific programming environ-
ments. In this section, we evaluate the performance
overhead of recovering FT-MPI environment.

Table 4. Time and overhead (%) for recover-
ing FT-MPI environment

Size of original matrix | 12,800 | 19,200 | 25,600

Time for original matrix | 442.9 | 695.0 | 989.8

Time for recover FTMPI | 0.6 1.1 1.6

Overhead (%) 0.14% | 0.16% | 0.16%

Table 4 reports the time for recovering FT-MPI
communication environment with single process fail-
ure. Table 4 indicates that the overhead for recovering
FT-MPI is less than 0.2% which is negligible in prac-
tice.

5.4 Overhead for Recovering Application
Data

The purpose of this set of experiments is to evalu-
ate the performance overhead of recovering application
data from single process failure.

Table 5. Time and overhead (%) for recover-
ing rpplication data

Size of original matrix 12,800 | 19,200 | 25,600
Time for original matrix | 442.9 | 695.0 | 989.8
Time for recovery data 28.5 30.6 324
Overhead (%) 6.4% | 4.4% | 3.3%

Table 5 reports the time for recovering the three
checksum matrices A¢, B", and C/ in the case of single
process failure. Table 5 indicates that ,as the size of
the matrices increases, the time for recovering check-
sum matrices increases slightly and the overhead for
recovering checksum matrices decreases, which again
confirmed the theoretical results in Section 4.4.4.



6 Conclusion and Future Work

In this paper, we presented an algorithm-based
checkpoint-free fault tolerance approach in which, in-
stead of taking checkpoint periodically, a coded global
consistent state of the critical application data is main-
tained in memory by modifying applications to op-
erate on encoded data. Although the applicabil-
ity of this approach is not so general as the typical
checkpoint /rollback-recovery approach, in parallel ma-
trix computations where it usually works, process fail-
ures can often be tolerated with a surprisingly low over-
head.

We showed the practicality of this technique by ap-
plying it to the ScaLAPACK/PBLAS matrix-matrix
multiplication kernel which is one of the most im-
portant kernels for ScaLAPACK library to achieve
high performance and scalability. Experimental re-
sults demonstrated that the proposed checkpoint-free
approach is able to survive process failures with a very
low performance overhead.

For the future, we plan to incorporate this fault tol-
erance technique into more ScaLAPACK library rou-
tines and more high performance computing applica-
tions. We would also like to evaluate this technique on
systems with larger number of processors.
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