
A Dynamic Firing Speculation to Speedup
Distributed Symbolic State-space Generation ∗

Ming-Ying Chung and Gianfranco Ciardo

University of California, Riverside
Department of Computer Science and Engineering

Riverside, CA 92521 USA
{chung, ciardo}@cs.ucr.edu

Abstract

The saturation strategy for symbolic state-space
generation is very effective for globally-asynchronous
locally-synchronous discrete-state systems. Its inher-
ently sequential nature, however, makes it difficult to
parallelize on a NOW. An initial attempt that utilizes
idle workstations to recognize event firing patterns and
then speculatively compute firings conforming to these
patterns is at times effective but can introduce large
memory overheads. We suggest an implicit method to
encode the firing history of decision diagram nodes,
where patterns can be shared by nodes. By preserv-
ing the actual firing history efficiently and effectively,
the speculation is more informed. Experiments show
that our implicit encoding method not only reduces the
memory requirements but also enables dynamic specu-
lation schemes that further improve runtime.

1. Introduction

Formal verification techniques such as model check-
ing [12] are becoming widely used in industry for qual-
ity assurance, as they can be used to detect design
errors early in the lifecycle. State-space generation is
an essential, but very memory-intensive, step in model
checking. Even though symbolic encodings based on
binary decision diagrams (BDDs) [2] and multiway de-
cision diagrams (MDDs) [17] help cope with the inher-
ent state-space explosion of discrete-state systems, the
analysis of a complex system may still rely heavily on
the use of virtual memory. Approaches employing de-
cision diagrams to encode the state space are said to be
symbolic, to distinguish them from explicit approaches
where states are discovered and stored one-by-one.

∗Work supported in part by the National Science Foundation
under grants CNS-0501747 and CNS-0501748.

Much research in this area has focused on paral-
lel and distributed algorithms. For explicit state-space
generation or model checking, [1, 22, 27] introduce al-
gorithms that utilize the overall resources of a network
of workstations (NOW). However, the size of the state
space that can be handled by explicit approaches is
usually much smaller than with symbolic approaches.
For symbolic state-space generation or model checking,
most works employ a vertical slicing scheme to par-
allelize BDD manipulations by decomposing boolean
functions in breadth-first fashion and distributing the
computation over a NOW [16, 19, 28]. This scheme al-
lows algorithms to overlap the application of the next-
state function to a set of states encoded by a decision
diagram node (the so-called image computation), but
no speedup information is reported. We detail this slic-
ing scheme in Sect. 5.

In [5], we instead use MDDs and partition them
horizontally onto a NOW, so that each workstation
exclusively owns a contiguous range of MDD levels.
Thus, the memory required for the state-space encod-
ing is also exclusively partitioned onto the worksta-
tions. Since the distributed state-space generation does
not create any redundant work at all, synchroniza-
tion is avoided. Furthermore, with the horizontal slic-
ing scheme, communication is required only between
neighbor workstations, thus peer-to-peer communica-
tion suffices and scalability is not an issue. Yet, the
approach implies a tradeoff: to maintain canonicity of
the MDD over a NOW, the distributed computation
is sequentialized. At any point in time, all worksta-
tions except one are waiting either for work requests or
for a reply from their neighbors. Thus, this approach
appears to provide no easy opportunity for speedup.

In [6], we tackle this drawback by using workstations
idle time to speculatively fire events on MDD nodes,
hoping that many of of these firings will be needed later
in the computation. To prevent unrestrained specula-
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tion from squandering the overall NOW memory, we
introduce the idea that workstations recognize event
firing patterns, namely sequences of events that have
been fired on MDD nodes, at runtime, then specula-
tively explore only firings conforming to these patterns.

However, storing and recognizing firing patterns to
help workstations improve the accuracy of prediction
requires a nontrivial memory overhead. In this paper,
we introduce an implicit method to encode firing pat-
terns into graphs, so that MDD nodes can share the
encoding of these patterns. This encoding method can
not only reduce the memory overhead required by pat-
tern recognition, but, most importantly, it also pro-
vides better information about the evolution of each
pattern, allowing for more accurate speculation.

Our paper is organized as follows. Sect. 2 gives the
necessary background on state-space generation, de-
cision diagrams, Kronecker encoding, and saturation.
Sect. 3 details our implicit method for firing pattern
encoding and introduces two dynamically adjustable
speculation schemes. Sect. 4 shows experimental re-
sults. Sect. 5 compares our approach with other related
work. Sect. 6 draws conclusions and discusses future
research directions.

2. Background

A discrete-state model is a triple (Ŝ, s0,N ), where Ŝ
is the set of potential states of the model, s0 ∈ Ŝ is the
initial state, and N : Ŝ → 2Ŝ is the next-state func-
tion specifying the states reachable from each state
in a single step. We assume that the model is com-
posed of K submodels. Thus, a (global) state i is a
K-tuple (iK , ..., i1), where ik is the local state of sub-
model k, K≥k≥1, and Ŝ = SK ×· · ·×S1 is the cross-
product of K local state spaces. This allows us to use
techniques targeted at exploiting system structure, in
particular, symbolic techniques to store the state space
based on decision diagrams. Since we target globally-
asynchronous locally-synchronous systems, we decom-
pose N into a disjunction of next-state functions [4]:
N (i) =

⋃
e∈E Ne(i), where E is a finite set of events and

Ne is the next-state function associated with event e.
We seek to build the (reachable) state space S ⊆ Ŝ,

the smallest set containing s0 and closed with respect
to N : S = {s0} ∪ N (s0) ∪ N (N (s0)) ∪ · · · = N ∗(s0),
where “∗” denotes reflexive and transitive closure and
N (X ) =

⋃
i∈X N (i).

2.1. Symbolic encoding of S

In the sequel, we assume that each Sk is known a
priori. In practice, the local state spaces Sk can ac-

tually be generated “on-the-fly” by interleaving sym-
bolic global state-space generation with explicit local
state-space generation [9]. We then use the mappings
ψk : Sk → {0, 1, ..., nk −1}, with nk = |Sk|, identify
local state ik with its index ik = ψk(ik), thus Sk with
{0, 1, ..., nk−1}, and encode any set X ⊆ Ŝ in a (quasi-
reduced ordered) MDD over Ŝ. Formally, an MDD is a
directed acyclic edge-labeled multi-graph where:

• Each node p belongs to a level k ∈ {K, ..., 1, 0},
denoted p.lvl .

• There is a single root node r at level K.

• Level 0 can only contain the two terminal nodes
Zero and One.

• A node p at level k > 0 has nk outgoing edges,
labeled from 0 to nk−1. The edge labeled by ik
points to a node q at level k−1; we write p[ik] = q.

• Given nodes p and q at level k, if p[ik] = q[ik] for
all ik ∈ Sk, then p = q, i.e., there are no duplicates.

The MDD encodes a set of states B(r), defined by the
recursive formula:

B(p)=
{⋃

ik∈Sk
{ik}×B(p[ik]) if p.lvl = k>1

{i1 : p[i1]=One} if p.lvl = 1
.

For example, box 10 at the bottom of Fig. 1 shows a
five-node MDD with K = 3 encoding four global states:
(0,0,2), (0,1,1), (0,2,0), and (1,0,0). In our MDDs, arcs
point down and their label is written in a box in the
node from where the arc originates; the terminal nodes
Zero and One and nodes p such that B(p) = ∅, as well
as any arc pointing to them, are omitted.

2.2. Symbolic encoding of N

For N , we adopt a Kronecker representation inspired
by work on Markov chains [3], possible if the model is
Kronecker consistent [7, 8]. Each Ne is conjunctively
decomposed into K local next-state functions Nk,e, for
K≥k≥1, satisfying, in any global state (iK ,..., i1)∈Ŝ,

Ne(iK ,..., i1)=NK,e(iK) × · · · × N1,e(i1).

Using K · |E| matrices Nk,e ∈ {0, 1}nk×nk , with
Nk,e[ik, jk] = 1 ⇔ jk ∈ Nk,e(ik), we encode Ne as
a (boolean) Kronecker product:

j ∈ Ne(i) ⇔
⊗

K≥k≥1 Nk,e[ik, jk] = 1,

where a state i is interpreted as a mixed-based index in
Ŝ and

⊗
indicates the Kronecker product of matrices.

The Nk,e matrices are extremely sparse, for standard
Petri nets, each row contains at most one nonzero entry.



For example, the middle of Fig. 1 shows the Kro-
necker encoding of N according to events (a, b, c, d) and
levels (x, y, z), listing only the nonzero entries, e.g.,

Ny,b =
{

1 → 0
2 → 1

}
means Ny,b =

[
0 0 0
1 0 0
0 1 0

]
and Ny,b[1, 0] = 1 indicates that if the local state at
level y is 1, event b is locally enabled and firing b, if
globally possible, moves the local state from 1 to 0.

2.3. Saturation-based iteration strategy

In addition to efficiently representing N , the Kro-
necker encoding allows us to recognize event locality
[7, 20] and employ saturation [8]. We say that event
e is independent of level k if Nk,e = I, the identity
matrix. Let Top(e) and Bot(e) denote the highest and
lowest levels for which Nk,e 	= I. An MDD node p at
level k is said to be saturated if it is a fixed point with
respect to all Ne such that Top(e) ≤ k, i.e.,

SK×· · ·×Sk+1×B(p) ⊇ N≤k(SK×· · ·×Sk+1×B(p)),

where N≤k =
⋃

e:Top(e)≤k Ne. To saturate MDD node
p once all its descendants have been saturated, we up-
date it in place so that it encodes also any state in
Nk,e × · · · × N1,e(B(p)), for any event e such that
Top(e) = k. This can create new MDD nodes at lev-
els below k, which are saturated immediately, prior to
completing the saturation of p.

If we start with the MDD encoding the initial
state s0 and saturate its nodes bottom up, the root
r will encode S = N ∗(s0) at the end, because: (1)
N ∗(s0) ⊇ B(r) ⊇ {s0}, since we only add states,
and only through legal event firings, and (2) B(r) ⊇
N≤K(B(r)) = N (B(r)), since r is saturated.

The reachability graph of a three-place Petri net is
shown at the top of Fig. 1. A global state is described
by the local state of place x, y, and z, in that order,
and we index local states by the number of tokens in
the corresponding place. Three global states, (0,1,1),
(0,0,2), and (0,2,0), are reachable from the initial state
(1,0,0). The three local state spaces and the Kronecker
description of N are shown in the middle of Fig. 1. The
list of nonzero entries for matrix Ny,b, for example,
indicates that firing event b decreases the number of
tokens in place y, either from 2 to 1 or from 1 to 0; it
also indicates that b is disabled when place y contains 0
tokens, as no transition is listed from local state 0. The
saturation-based state-space generation of this model
is shown at the bottom of Fig. 1, where solid MDD
nodes are saturated and dashed MDD nodes are not.

1 Initial configuration : Set up the MDD encod-
ing the initial global state (1,0,0).

2 Saturate node 0 at level z : No action is
required, since there is no event with Top(event) =
z. The node is saturated by definition.

3 Saturate node 0 at level y : Top(b) =
Top(c) = y, but neither b nor c are enabled at
both levels y and z, Thus, no firing is possible,
and the node is saturated.

4 Saturate node 1 at level x : Top(a) = x and
a is enabled for all levels, thus event a must be
fired on the node. Since, by firing event a, local
state 1 is reachable from 0 for both levels y and
z, node 1 at level y and node 1 at level z, are
created (not yet saturated), This also implies that
a new global state, (0,1,1), is discovered.

5 Saturate node 1 at level z : Again, no action
is required as the node is saturated by definition.

6 Saturate node 1 at level y : Top(b) = y and
b is enabled for all levels, thus event b must be
fired on the node. Since, by firing event b, local
state 0 is reached from 1 at level y and local state
2 is reached from 1 at level z, node 1 at level y is

extended to 01 and node 2 at level z is created.
This also implies that a new global state, (0,0,2),
is discovered.

7 Saturate node 2 at level z : Again, no action
is required, as the node is saturated by definition.

8 Saturate node 01 at level y : Top(c) = y and
c is enabled for all levels, thus event c must be
fired on the node. Since, by firing event c, local
state 2 is reachable from 1 at level y and local
state 0 is reachable from 1 at level z, node 01 at

level y is extended to 012 and node 0 at level z,
which has been created and saturated previously,
is referenced. This also implies that a new global
state, (0,2,0), is discovered.

9 Saturate node 012 at level y : After exploring
all possible firings, the node is saturated.

10 Saturate node 01 at level x : Since no firing
can find new global states, the root is saturated.

Saturation consists of many “lightweight” nested
“local” fixed-point image computations and is com-
pletely different from the traditional breadth-first ap-
proach that employs a single “heavyweight” global
fixed-point image computation. Results in [8, 9, 10]
consistently show that saturation outperforms breadth-
first symbolic state-space generation by several orders
of magnitude in both memory and time, making it
arguably the most efficient state-space generation al-
gorithm for globally-asynchronous locally-synchronous
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Figure 1. Reachability graph (top), Sx,Sy,Sz, and N (middle), evolution of the MDD (bottom).

discrete event systems. Thus, it makes sense to at-
tempt its parallelization, while parallelizing the less ef-
ficient breadth-first approach would not offset the enor-
mous speedups and memory reductions of saturation.

2.4. Distributed version of saturation

In [5], we present SaturationNOW, a message-
passing algorithm that distributes the MDD nodes en-
coding the state space onto a NOW, to study large
models where a single workstation would have to rely
on virtual memory to perform reachability analysis. On
a NOW with W ≤ K workstations numbered from
W down to 1, each workstation w has two neighbors:
one “below”, w − 1 (unless w = 1), and one “above”,
w +1 (unless w = W ). Initially, we evenly allocate the
K MDD levels to the W workstations accordingly, by
assigning the ownership of levels �w · K/W 
 through
�(w − 1) ·K/W 
+ 1 to workstation w. Local variables
mytopw and mybotw indicate the highest- and lowest-
numbered levels owned by workstation w, respectively.

For distributed state-space generation, each work-
station w first generates the Kronecker matrices Nk,e

for those events and levels where Nk,e 	= I and
mytopw ≥ k ≥ mybotw, without any synchronization.
Then, the sequential saturation algorithm begins, ex-
cept that, when workstation w > 1 would normally is-

sue a recursive call to level mybotw −1, it must instead
send a request to perform this operation in workstation
w−1 and wait for a reply. A linear organization of the
workstations suffices, since each workstation only needs
to communicate with its neighbors.

In addition, [5] introduces a nested memory load
balancing approach to cope with dynamic memory re-
quirements by reassigning MDD levels, i.e., changing
mybotw and mytopw−1 of two neighbors. Since mem-
ory load balancing requests can propagate, each work-
station can effectively rely on the overall NOW mem-
ory, not just that in its neighbors, without the need for
global synchronization or broadcasting.

2.5. Parallel version of saturation

Our horizontal slicing approach effectively parti-
tions the MDD memory onto the workstations, but
it also strictly sequentializes the distributed computa-
tion, making it a challenge to achieve a speedup. Thus,
we introduced the idea of using idle workstation time to
fire events e with Top(e)>k on saturated MDD nodes
at level k a priori, hoping to reduce the time required
to saturate MDD nodes at levels above k [6].

An MDD node p at level k is saturated if all events
e with Top(e) = k have been fired exhaustively on p.
However, an event f with Top(f) = l > k ≥ Bot(f)
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Figure 2. Updating the firing pattern graph.

may still need to be fired on p when saturating some
MDD node q at level l. To reduce the time to saturate
such hypothetical MDD node q, we speculatively create
the (possibly disconnected) MDD node p′ correspond-
ing to the saturation of the result of firing f on p, and
cache the result. Later on, firing f on p immediately
returns the result p′ found in the cache.

Unfortunately, we cannot know a priori whether
such an event will be fired on a node p. A näıve spec-
ulative firing that lets an idle workstation compute all
possible firings starting above the level k of each MDD
node p it owns, Eall(p) = {e ∈ E : Top(e)>k≥Bot(e)},
may require excessive memory. Thus, we explored an
informed prediction based on firing patterns.

For each MDD node p at level k, let Epatt(p) be the
set of events e that will be fired on p after p has been
saturated, thus, Top(e) > k and Epatt(p) ⊆ Eall(p).
We could then partition the MDD nodes at level k ac-
cording to their patterns, i.e., MDD nodes p and q are
in the same class iff Epatt(p) = Epatt(q). Of course,
Epatt(p) can be known only a posteriori, but it should
be observed that most models exhibit clear firing pat-
terns during saturation, i.e., most classes contain many
MDD nodes and most patterns contain several events.
The idea is to speculate the pattern of a given MDD
node p based on the history of the events fired on p so
far, Ehist(p) ⊆ Epatt (p). Thus, if ∅ ⊂ Ehist(p) ⊂ Ehist(q),
we can speculate that each e ∈ Ehist(q) \ Ehist(p) will
eventually need to be fired on p as well, which is true
if Epatt(p) = Epatt(q) at the end.

3. Implicit encoding method

To improve the efficiency and accuracy of specula-
tion, we now explore how to encode the evolution of fir-
ing patterns for the MDD nodes. At the same time, we
also seek to reduce the memory requirements to store
this auxiliary information, which were already shown
to be potentially substantial for the approach of [6].
The idea is to encode firing patterns implicitly, so that
MDD nodes can share the encoding of the same pat-
terns, while reducing overhead at same time.

3.1. Firing pattern graph

In our implicit encoding, firing patterns are stored in
a directed acyclic graph, Gk = (Vk, Ek) for K ≥ k ≥ 1.
To distinguish the nodes of this graph from the MDD
nodes, from now on, we refer to them as pattern graph
(PG) nodes. Every PG node v ∈ Vk represents a set of
events that has been fired so far on one or more MDD
nodes at level k after saturating them, Ev ⊆ E>k =
{e ∈ E : Top(e) > k ≥ Bot(e)}. Then, each MDD
node p at level k does not store its own firing history
Ehist(p) explicitly, it instead references the PG node v ∈
Vp.lvl such that Ev is exactly the set of events that has
been fired on p so far during state-space generation, i.e.,
Ehist(p) = Ev. Note that Vk contains only PG nodes
corresponding to the current patterns of the current
MDD nodes, thus, in practice, |Vk| � 2|E>k|.

In addition, for any pair of distinct PG nodes u and
v in Vk, there is an arc (u, v) in Ek iff Eu ⊂ Ev. In
other words, the graph describes a hoped-for evolution
of patterns during saturation for the MDD nodes at
level k. In our implementation, every v ∈ Vk maintains
a set of PG node pointers, v.parent = {u ∈ Vk : (v, u) ∈
Ek}, and a reference counter v.ref > 0 recording the
number of MDD nodes having firing pattern Ev. If v.ref
becomes 0, PG node node v is not referenced by any
MDD node, thus it can be removed. The time required
to update the graphs is nontrivial, but workstations
perform these updates only when idle.

Fig. 2 shows three examples of this graph updat-
ing. (I) shows the initial runtime snapshot of a firing
pattern graph. (II) shows the updating due to firing
event δ on the MDD node with current firing pattern
{α, β}. (III) shows the updating due to firing event δ
on a newly created MDD node (not referencing any PG
node). (IV) shows the updating due to firing event δ
on one of the two MDD nodes with firing pattern {γ}.

3.2. Pattern graph based speculation

Obviously, applying our implicit method to the fir-
ing pattern encoding not only dramatically reduces the
memory overhead introduced by pattern recognition,
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but, most importantly, it also records more information
about the evolution of each pattern, so that the spec-
ulation on event firings has the potential to be more
accurate.

Every path in the graph reveals a possible evolu-
tion of some pattern. Each outgoing arc of a PG node
indicates one possible growth of the corresponding pat-
tern. A basic event firing speculation for MDD node p
at level k referencing PG node v ∈ Vk consists of firing
event e = Eu \Ev on p, for some u ∈ v.parent such that
|Eu \ Ev| = 1. There might be multiple ways to choose
PG node u starting from v. More aggressive specula-
tions may consider all such choices, or even consider
PG nodes u such that |Eu \ Ev| > 1. The next section
discusses different heuristics to use this graph.

Our goal is to maximize the usefulness of the spec-
ulative firing results while minimizing the space and
time overhead. To this end, we dynamically adjust the
speculation aggressiveness based on a runtime metric,
the speculation hit rate, i.e., the fraction of speculative
firing results put in the cache that is actually requested
at least once later for actual (non speculative) firings
originated from MDD nodes above. Each workstation
records this hit rate dynamically for each MDD level
and, if the hit rate increases, a workstation can adjust
its speculation to become more aggressive at that level;
on the other hand, if the hit rate is poor, a workstation
can become more conservative in its speculation.

3.3. Pattern length based speculation

To perform a dynamically adjustable speculation
through the firing pattern graph, each workstation
can initialize a variable, MaxDiff , indicating the max-
imum number of events that can be fired specula-
tively to reach a PG node from another. Whenever
a workstation is idle, for each MDD node p referenc-
ing PG node v, the workstation speculatively fires e
on p for e ∈ Eu \ Ev, for any u ∈ v.parent satisfying
|Eu| − |Ev| ≤ MaxDiff . Thus, a workstation can make
speculation more aggressive by increasing its value of
MaxDiff , and more conservative by reducing it.

For example, in Fig. 3, when MaxDiff = 1, a work-
station managing MDD node p with firing pattern

{β, δ} may fire events α and γ on p, since the firing
patterns {α, β, δ} and {β, γ, δ}, both present in the fir-
ing pattern graph, differ from the firing pattern of p by
just one more element. If MaxDiff = 2, the worksta-
tion may instead fire events α, γ, and λ on p, since now
also the size of pattern {β, γ, δ, λ} is within MaxDiff
of that of the firing pattern of p (pattern {α, β, γ, δ}
also qualifies, but it is already obtained as the union of
patterns {α, β, δ} and {β, γ, δ}).

3.4. Weighted score based speculation

The previous heuristic uses the reference counter
only to discard patterns when no MDD node refer-
ences them. A finer speculation scheme could instead
have workstations adjust the aggressiveness of predic-
tion based on the value of the reference counters (higher
count indicates more popular patterns), and the length
of the involved patterns (if the target pattern differs
by having many more elements, it is more expensive
to reach and perhaps less likely to be a good guess).
Thus, we define the weighted score from u to v as

Score(u, v) = v.ref /(|Ev| − |Eu|).
Then, a workstation calculates the score of each PG
node pair (u, v) and performs the speculative firing of
the events in Ev \ Eu on the PG nodes having pattern
Eu if Score(u, v) meets some threshold value MinScore.
Again, if the hit rate is good, the workstation can dy-
namically make speculation more or less aggressive by
decreasing or increasing the value of MinScore.

For example, in Fig. 3, if MinScore = 6, a work-
station managing MDD node p with firing pattern
{β, δ} may fire events γ and λ on p, since, consider-
ing PG node {β, γ, δ, λ} with reference count 16, we
have 16/(4− 2) = 8 ≥ MinScore. If MinScore = 4, the
workstation may instead fire α, γ and λ on p, since now,
considering PG node {α, β, γ} with reference count 4,
we have 4/(3 − 2) = 4 ≥ MinScore.

The workstations can initialize, and, especially, up-
date, MaxDiff or MinScore differently from each other,
depending on the range of MDD levels they own and on
how aggressive they want to be based on the fraction
of idle time and amount of memory they have.



4. Experimental results

We implemented both heuristic schemes in
SmArTNow [5], the MPICH-based distributed version of
our tool SmArT [11], and evaluated their performance
by using saturation to generate the state space of the
following models, all parametrized by a value N .

• Flexible manufacturing system [20] models a man-
ufacturing system with three machines to process
three different types of parts. N is the number of
each type of parts.

• Slotted ring network protocol [24] models a proto-
col for local area networks. N is the number of
nodes in the network.

• Round robin mutex protocol [14] models a round
robin solution to the mutual exclusion problem.
N is the number of processes involved.

• Runway safety monitor [26] models an avionics
system monitoring T targets with S speeds on a
grid represented as a X × Y × Z grid.

We run our implementation on this four models
using a cluster of Pentium IV 3GHz workstations
with 512MB RAM each, connected by Gigabit Eth-
ernet and running Red-Hat 9.0 Linux with MPI2 on
TCP/IP. Table 1 shows runtimes, total memory re-
quirements for W workstations, and the maximum
memory requirements for any workstation, for se-
quential SmArT (SEQ) [8] and the original SmArTNow

(DISTR) [5], and the percentage change w.r.t. DISTR
for the näıve (NAÏVE) [6], history-based (HIST) [6],
and the new pattern-length-adjusted (LENGTH) and
weighted-score-adjusted (SCORE) speculative firing
predictions; “d” means that dynamic memory load bal-
ancing is triggered, “s” means that, in addition, mem-
ory swapping occurs. For the LENGTH heuristic, we
initialize MaxDiff to 2 and increase/decrease it by 2
whenever the speculation hit rate increases/decreases
5%. For the SCORE heuristic, we initialize MinScore
as 100 and divide/multiply it by 2 whenever the specu-
lation hit rate increases/decreases 5%. For each model,
the size of the state space is also reported.

Experiments on the flexible manufacturing system
model show that both LENGTH and SCORE outper-
form HIST in terms of runtime and memory consump-
tion. Thus, both approaches outperform the original
DISTR in terms of runtime as well, more so (up to 50%)
as the number of workstations W increases. Also, the
memory overhead required to store patterns for either
LENGTH or SCORE is much less than for HIST.

The experiments on the slotted ring network pro-
tocol show a best-case example for HIST. While all

heuristic speculative approaches improve over DISTR,
neither LENGTH nor SCORE outperforms HIST in
terms of runtime, since the firing patterns within this
model is somewhat regular in comparison to other mod-
els. The time invested in organizing these relatively
regular firing patterns into graphs actually slows down
the parallel computation, since less time is spent on
speculative firing. However, the new implicit encod-
ing method nevertheless reduces the memory overhead
required by pattern recognition.

The experiments on the round robin mutex proto-
col show a worst-case example for the speculative ap-
proach, as no useful firing pattern exists. However, at
least, the memory overhead of LENGTH and SCORE
is much smaller than for HIST because of the efficient
encoding of patterns. Even more importantly, both
LENGTH and SCORE approaches exhibit only a small
worsening of their runtime, showing that their heuris-
tics make them refrain from performing too many use-
less speculation, while this is not the case for HIST.

Finally, the experiment on the last model, a real
system being developed by National Aeronautics and
Space Administration (NASA) [26], shows that both
LENGTH and SCORE approaches again outperform
the HIST approach in terms of both runtime or mem-
ory consumption, suggesting that our implicit encod-
ing method and dynamically adjustable speculation
schemes work well on realistic models.

5. Related work

The symbolic approach is attractive because it al-
lows decision diagram nodes to share not only state
encodings but also intermediate results, during sym-
bolic state-space generation. Since intermediate results
are cached with respect to each decision diagram node
and since these nodes are canonical, image computa-
tion greatly benefits when there is a high hit rate on
these caches. In other words, the more state encod-
ings and intermediate results are shared, the greater
efficiency symbolic approaches exhibit with respect to
explicit ones. However, this makes parallelizing sym-
bolic state-space generation extremely challenging. Re-
searchers working on distributed symbolic state-space
generation over a NOW have merely focused on ef-
fectively utilizing the overall memory rather than the
overall computational power.

[16, 19, 28] employ a vertical slicing scheme to par-
allelize BDD manipulations by decomposing boolean
functions in breadth-first fashion and distributing the
image computation over a NOW. Each workstation w
computes a single slice of the global image, Sw ⊆ S,
and S =

⋃
1≤w≤W Sw. Fig. 4 shows an example of
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Figure 4. Vertically sliced MDD.
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Figure 5. Speculative firing at work.

slicing a six-level MDD vertically into three portions
according to the value of variable x4. However, some
MDD nodes at levels 6, 5, 2, and 1 are duplicated in
multiple workstations. A poor slicing creates many
additional decision diagram nodes, and it is generally
agreed that finding a good slicing is not trivial [21].

Even though this slicing scheme allows algorithms to
overlap the distributed image computation, occasional
synchronization is required to minimize redundancy,
which can harm the scalability of algorithms. To im-
prove scalability, researchers have recently focused on
workload distribution. [15] suggests to employ a host
processor to manage the job queue for load-balance
purposes, and to reduce the redundancy in the over-
lapped image computation by slicing it according to
boolean functions that use an optimal choice of vari-
ables in order to minimize the peak number of BDD
nodes required by the workstations. However, as far as
we know, no speedup has been reported so far.

Instead, in our horizontal slicing scheme where each
workstation owns a contiguous range of decision dia-
gram levels, the distributed image computation does
not create any redundant work at all, and global syn-
chronization is avoided. Furthermore, the scheme re-
quires only communication between neighbors, so scal-
ability is not an issue, given the right hardware (e.g.,
a ring interconnection). Largely independent specu-
lative computing on event firing can then be used to

speedup the computation, while the pattern recogni-
tion approach we introduced is effective at avoiding
excessive speculation in pathological models.

Of course, just like the redundant work introduced
by vertical slicing, our approach also can introduce
some useless work. More precisely, even though the
portion of the MDD reachable from the root remains
canonical, additional disconnected MDD nodes can be
generated. Fig. 5 shows how speculative firing can cre-
ate useless MDD nodes at work, where the “dashed”
boxes indicated the disconnected MDD nodes. In the
middle of the figure, workstations 2 and 1 have pre-
dicted and computed firings for α and β at level 4, γ
at level 3, and δ at level 2. On the right, the MDD
nodes resulting from firing α or γ are now connected,
as they were actually needed and found in the cache.
However, two disconnected MDD nodes remain, since
the firing of γ and δ turned out to be useless.

Our implicit encoding method and dynamically ad-
justable speculation schemes further improve the accu-
racy of speculation (thus accelerate distributed state-
space generation) and contain the growth of use-
less MDD nodes (thus reduce the memory overhead).
While our approach at best achieves a speedup of 17%
with respect to the best sequential implementation,
it opens the door for greater speedups, while exhibit-
ing near-optimal memory distribution and perfect node
partitioning (no MDD node duplication) over a NOW.



6. Conclusions and future work

We presented an implicit method to efficiently en-
code the pattern of firings computed on the nodes of
the decision diagram used to encode the state space of
a discrete-state model, as it is being built. These pat-
terns are then used by the workstations on a NOW to
carry on informed speculative event firings on the de-
cision diagram nodes, in the hope that they are needed
later on in the computation. The implicit encoding
can not only reduce the memory overhead required for
pattern recognition, but also effectively record the evo-
lution of each firing pattern, so that it is possible to
dynamically adjust the speculation aggressiveness. Ex-
periments show improvements on a realistic model.

We envision several possible extensions. First, hav-
ing showed the potential of low-overhead speculative
firing, we plan to apply the idea of speculative firing
to the general problem of temporal logic model check-
ing. In particular, while our idea is implemented for
a saturation-style iteration, it is also applicable to the
simpler breadth-first iteration needed by some of the
CTL model checking algorithms, a fact we intend to
explore. Second, we plan to develop heuristics to per-
form symbolic state-space generation with a variable
number of workstations, so that the parallel computa-
tion uses only the least number of workstations needed,
while still having a chance to obtain greater speedups.
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