DVoDP2P: Distributed P2P Assisted Multicast VoD Architecture *

X.Y. Yang!, P. Herndndez!, F. Cores?, L. Souza!, A. Ripoll!,
R. Suppi!, and E. Luque!

!Universitat Autonoma de Barcelona
ETSE, Computer Science Department
08193-Bellaterra, Barcelona, Spain
xiao.yuan@aomail.uab.es

Abstract

For a high scalable VoD system, the distributed
server architecture (DVoD) with more than one server-
node is a cost-effective design solution. However, such
a design is highly vulnerable to workload variations be-
cause the service capacity is limited. In this paper, we
propose a new and efficient VoD architecture that com-
bines DVoD with a P2P system. The DVoD’s server-
nodes is able to offer a minimum required quality of
service (QoS) and the P2P system is able to provide
the mechanism to increase the system service capacity
according to client demands. Our P2P system is able
to synchronize a group of clients in order to replace
server-nodes in the delivery process. We compared the
new VoD architecture with DVoD architecture based on
classic multicast and P2P delivery policies (Patching
and Chaining). The experimental results showed that
our design is better than previous solutions, providing
higher scalability.

1 Introduction

Video on Demand (VoD) is a service that will gen-
erate one of the largest revenues for private network
companies, which needs performance-effective archi-
tecture solutions that provide high scalability. De-
pending on the number of server-nodes and their re-
lationships, there are four representative approaches:
centralized, independent server nodes, proxy and dis-
tributed servers. The centralized architecture uses only
one server-node and it has high costs and a lack of scal-
ability. The independent server node architecture uses
n isolated server-nodes that move the contents close to
the clients by the video replication technique. This so-

*This work was supported by the MCyT-Spain under contract
TIC 2004-03388.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2Universitat de Lleida

Computer Science & Industrial Engineering, EPS

25001-Lleida, Spain
fcores@diei.udl.es

lution is, however, poor in terms of fault-tolerance and
has high storage requirements. The proxy approach
[2] exploits the existing web proxies’ capacity to cache
media data, which is cost-effective. The scalability of
this approach is limited by bandwidth availability of
the centralized server. The distributed server archi-
tecture (DVoD)[3][16] eliminates the centralized server
and links n server-nodes to create a distributed storage
system. Each server-node only manages a video cata-
logue subset and video replication is only for the most
popular videos, which is highly cost-effective.

In DVoD architecture, there are two types of service:
local service and remote service. In a local service, a
client directly receives video information from its lo-
cal server-node, requiring only local-network resources
and server-node resources. In a remote service, the lo-
cal server-node does not have the requested video in the
storage and another node is required. Thus, a remote
service also requires the resource of inter-connection
network. In order to minimize the resource require-
ments of remote services, researchers have developed
video mapping strategies [3] to calculate the optimal
number of replicated popular videos in each node.

Although the DVoD architecture with video map-
ping strategy has been shown to be effective for the
VoD system, the performance it can provide is still
not considered satisfactory by network companies for
the following reasons. First, the limited bandwidth of
server-nodes and server inter-connection network will
restrict the number of clients to be served simulta-
neously. Second, the server-node’s storage capacity
is limited, and therefore an increase in video cata-
logue size will also increase the number of remote-
services, saturating the inter-connection network. Fur-
thermore, the server-nodes and inter-connection net-
work are highly vulnerable to workload variations,
which easily lead to system bottlenecks when there is

a peak workload.

In this paper, we propose a new distributed P2P
assisted multicast architecture (DVoDP?P). In our
design, server-nodes are inter-connected just like a clas-
sical DVoD. Clients of each server-node, however, are
coordinated to create a P2P system. Each server-node
uses a multicast channel to send video information on
one point of video. The P2P system is able to gener-
ate multiple local multicast channels that simultane-
ously send different points of video. In such a system,
the resources of bandwidth, storage and CPU of the
clients are actively used during the video delivery pro-
cess, achieving high scalability. In our study, we eval-
uated our proposed distributed architecture according
to server-node, inter-connection network and client pa-
rameters. The whole study was performed in compar-
ison with DVoD architectures that use the well-known
Patching multicast delivery policy and the well-known
Chaining P2P policy.

The rest of this paper is organized as follows: in sec-
tion 2, we outline related works. In section 3, we reveal
our DVoDP?P architecture design. Performance eval-
uation is shown in section 4. In sections 5, we indicate
the main conclusions and future works.

2 Related Work

Sophisticated video delivery techniques based on
multicast have appeared, such as Batching, Patching
[21][12], Adaptive Piggybacking [6] and Merging[4].
Even though all these multicast policies could be uti-
lized in DVoD architecture, the performance of a mul-
ticast scheme in reducing resource consumption is lim-
ited. Ome of the most analyzed multicast policies in
DVoD is Patching that is able to dynamically assign
clients to join on-going multicast channels and patches
the missing portion by unicast channels.

Most recently, the peer-to-peer (P2P) paradigm has
been proposed to decentralize the delivery process to
all clients. In delivery schemes such as Chaining (re-
viewed in [13]) or DirectStream [10], each client caches
the most recently received information in the buffer and
forwards it to just one client using one unicast chan-
nel. Other policies such as cache-and-relay [14] and
P2Cast [9] allow clients to forward video information
to more than one client, creating a delivery tree or ap-
plication level multicast (ALM) tree. Other P2P archi-
tectures such as CoopNet[19] or PROMISE[11] assume
that a single sender does not have enough outbound-
bandwidth to send one video and use n senders to ag-
gregate the necessary bandwidth. Nevertheless, these
two architectures are also based on unicast communi-
cations. All previous P2P architectures are designed
for streaming systems in global Internet without IP

multicast support. In [20], we proposed the first P2P
delivery scheme to use multicast communication for a
centralized VoD architecture. Other P2P architecture,
such as NICE[1] or Zigzag[18] adopt hierarchical distri-
bution trees in order to provide VoD service in dynamic
networks where both bandwidth and client availabil-
ity for collaboration are unpredictable. In contrast,
our VoD architecture is targeted at commercial media
providers with large metropolitan networks. In such a
system and in an enterprise network environment, the
IP multicast has been successfully deployed[5]. Fur-
thermore, client behaviour is more limited and more
predictable. One of the most similar works is PROP[S].
In PROP, authors present a proxy architecture where
clients are organized as a P2P system to help proxies
to cache segments of video information. Our architec-
ture distinguishes PROP at several points. First, our
architecture does not require a centralized server. Sec-
ond, we use the multicast communication method for
client collaborations. Third, our architecture does not
require a distributed content lookup protocol [15][17].
To the best of our knowledge, our proposal is the first
VoD architecture that combines a multicast DVoD ar-
chitecture with a P2P multicast system.

3 Distributed P2P Assisted Multicast
VoD Architecture Design

3.1 Architecture Overview

In a video service, video information is sent to clients
through different elements of the server and the net-
work between the server and the client. Figure 1 shows
our DVoDP2?P architecture model that contains 4
main components: server-nodes, inter-connection net-
work, clients and enterprise networks.

The server-node is designed in order to satisfy the
soft real-time requirements of the video delivery and
is only able to provide a limited service bandwidth.
The distributed-architecture design adds a video place-
ment policy that decides which videos are saved to each
node. We addressed this problem using the results of
[3] that divide the storage into 2 parts: cache and mir-
ror. Cache is used to replicate the most popular videos
and mirror is used to create a distributed storage with
capacity for the entire catalogue.

Server-nodes are connected by routers that pro-
vide independent and isolated communication between
server-nodes and clients. All of the routers are in-
terconnected to create the inter-connection net-
work. The inter-connection network establishes a log-
ical topology that defines the neighbour relationship

We define the service bandwidth as the outbound bandwidth
that a server-node is able to support.

Server-node
Local service

Enterprise Network 1

Inter-connection Network

Enterprise Network 2

Remote service

O Clients
O Collaborators

@ Routers

t
Enterprise Network 3

Channel

Figure 1. Distributed P2P assisted multicast VoD architecture. Enterprise Net.1 has a local service;
Net.2 has a remote service; Net.3 has remote service and one channel created by P2P collaboration.

of nodes. In this logical topology, each node has a
number of neighbours that could be used to create re-
mote services. Topologies with redundancy are used to
achieve high resource utilization and load-balancing.
For example, with hyper-cube logical topology, each
node has n neighbour server-nodes, being n the dimen-
sion of hyper-cube. If one neighbour node fails, the
server-node has n — 1 more nodes to forward a client
request to.

The client receives, decodes and displays the video
information. Throughout the process, the client in-
cludes a buffer and is able to cache video informa-
tion for collaboration. Clients are connected with
the server-node by the local enterprise network.
We assume that the clients are able to deliver video
information to the local network using the multi-
cast technique and that each local client can sup-
port outbound-bandwidth for one video stream and
inbound-bandwidth for two video streams. These re-
quirements are quite compatible with such current
telecommunication networks as xDSL.

Video information is assumed to be encoded at a
Constant Bit-Rate(CBR). The video information is de-
livered in network packets; packet size is invariable
and each packet contains a block of video-information
bytes. We call this block a video block. We enumerate
the video blocks of a video from 1 to L, where L is the
size of a video in video blocks.

In our architecture, each client is responsible for
announcing their availability to collaborate with the
server. Each client has to send an announcement mes-
sage to the local server-node and indicates the video
blocks that are in the client’s buffer. The announce-
ment message is sent only once, so the network over-
head is negligible. The announcement is registered by
each server-node and creates a local collaborator-table
that provide the content localization mechanism. No-
tice that each local server-node only knows the collab-
oration capacity of local clients.

Utilizing the collaborator-table information, our ar-
chitecture defines two client collaboration policies to

organize each local enterprise network in a P2P sys-
tem. The two policies are called Patch Collaboration
Manager (PCM) and Multicast Channel Distributed
Branching (MCDB). The PCM and MCDB policies
complement each other and are able to create local
multicast channels utilizing client collaborations. PCM
is executed when a client requests a video service and
MCDRB is periodically performed by each server-node.

3.2 Service Admission Process by PCM

The objective of PCM is to create multicast channels
to service groups of clients in the service request admis-
sion process. PCM policy defines the communication
protocol between server-nodes to establish the deliv-
ery process and allows clients to collaborate with the
server in the delivery of portions of video. With PCM,
clients receive video information from both a multicast
and unicast channel. The multicast channels are cre-
ated by a server-node (local or remote), while unicast
channels could be created by a server-node or clients.
Multicast channels deliver every block of a video while
unicast channels only send the first portion of a video.
We call the multicast channel a Complete Stream and
the unicast channel a Patch Stream.

Figure 2 shows the sequence diagram of a client
video request process under PCM. In a service request,
a client sends a 1: Request(BufferSize) control message
to the local server (NodeA). The PCM tries to find a
local on-going multicast channel sending the requested
video to service the client. Only on-going multicast
channels (Ch) with offset (O(Ch)) smaller than Buffer-
Size can be used to service the client request. If there
is no such on-going channel, the server tries to create
a new multicast channel.

If the requested video is not in local storage, the
PCM decides upon the best remote server (NodeB) and
sends a 2: Forward(BufferSize) message. The client
will not receive the first portion of the video from the

The offset of channel Ch (O(Ch)) is the number of the video
block that the channel Ch is currently sending.

Client NodeA NodeB Collaborator

B

1: Request

2: Forward‘

L
3 ColFind

o\ .
4: ColFlndAC&
»
6: RequestACK
/

5: ColReq

«—H —>

Figure 2. PCM Communication Protocol

multicast channel, since these video blocks have al-
ready been delivered by the channel. With message
8: ColFind and 4: ColFindACK, the remote server
finds a local collaborator that is able to send the Patch
Stream. The remote server-node sends a message J:
ColReq(PatchStreamLength) to the collaborator in or-
der to request its collaboration. If there is no avail-
able collaborator, the remote server creates the unicast
channel to send the Patch Stream.

In the last PCM step, the PCM sends a 6: Re-
questACK (Serverld, MulticastChannelld, collaborator)
message to the client to start the delivery process. The
client joins the multicast channel (Complete Stream),
establishes communication with the collaborator and
starts receiving video blocks. The video blocks that
are received from the Patch Stream are immediately
displayed and blocks from the Complete Stream are
cached for later display.

3.3 Multicast Channel Distributed
Branching by MCDB

The objective of MCDB is to establish a group of
clients to eliminate on-going multicast channels that
have been created by PCM. The MCDB replaces an on-
going multicast channel (Ch2) with a local multicast
channel Ch2. In order to create the local channel, a
group of collaborative clients are synchronized to cache
video blocks from another multicasting channel (Ch1).
The cached blocks are delivered by the collaborative
clients to generate the channel Ch2. When Ch2 is
replaced by Ch2, we say that Ch2 is branched from
Ch1 and Ch2 is a branch channel of Chl.

Figure 3 shows the main idea behind the MCDB.
In this example, we have two channels (Chl and Ch2)
that are separated by a gap of 2 video blocks. In order
to replace channel C'h2, MCDB selects clients C1 and
C2 to create the group of collaborators. Clients C1
and C2 are both able to cache 2 blocks and a total of 4
video blocks can be cached by these two collaborators.
The C1 caches every block of Chl whose block-number

The separation or gap (G(Ch2, Chl)) between two channels
is calculated as O(Chl) — O(Ch2), being O(Chl) > O(Ch2).

Inter-connectio
] Network

Remote | }
Server-node Router

1f2]3]4]s|e|[7]8]9o] .. |

<& ale sle sle sle

Figure 3. MCDB Collaboration Process

is 4i+ 1 or 4i + 2, being ¢ = [0..L/4 — 1]. For example,
C1 has to cache blocks 1, 2, 5, 6 and so on. C2 caches
every block of Chl whose block-number is 47 + 3 or
4i+4 (3,4, 7, 8 and so on). All the cached blocks have
to be in the collaborator’s buffer for a period of time.
In this case, the period of time is the playback time
of 2 video-blocks. After the period of time, the cached
blocks are delivered to channel Ch2 which is used to
replace Ch2. It is not difficult to see that the MCDB
is able to create multiple local multicast channels with
different offsets to collaborate the delivery process of
several points of a video. In the case of Figure 3, the
offset of the local multicast channels (Ch2) is 2 video-
blocks lower than C'hl’s.

In the branching process, two parameters are de-
termined by the MCDB: 1) The client collaboration
buffer size (B¢,). It is the buffer size of client C; used
by MCDB. 2) Accumulated buffer size (BL) is the to-
tal size of the collaborative buffer (3. o Bc;, being
CG the group of clients). The value of these two pa-
rameters is determined by MCDB under 2 constraints:
a) A client cannot use more buffer than it has. b) A
client only uses one channel in the collaboration pro-
cess. For more details, see the [20].

3.4 Channel Selection by MCDB

MCDRB is able to replace every channel that is send-
ing information to a local client. In the event of
MCDB being able to replace more than one chan-
nel, our policy establishes an order of replacement.
The first-replaced channel is the one that releases the
most network resources and requires less client buffer.
We define two parameters: 1) NetResource(Ch): the
network resource associated with a channel Ch to
send information to the local clients. The value of
NetResource(Ch) is 1, if the channel is from the lo-
cal server. In another case, the value is calculated ac-
cording to the distance between the remote server and
the local network. 2) Cost(Ch): is the gap (G), in
video blocks, between channel C'h and the other chan-

V110 V£:15 V320 V{30 V7:40

\ 4 {V V} V} {}
id €EDIED€ S >
Video 1 3 3 10 < 10
V35 V15 V325 V3:40
\ 4 \ 4 v v
Video 2 [€ o D€ I Sl T >

Figure 4. MCDB Ramification Order Example

Branching | Net. Resour- Performan-

Pair(j — 1) ce(i) Cost(i) ce(i) Order
VP = Ve 1 10 0.1 7
Vi —Vv3 1 10 0.1 6
VP — V2 1 5 0.2 5
VE — Vi 1 5 0.2 4
V4 — v3 3 15 0.2 3
V3 — v22 3 10 0.3 2
V2 — v1 3 10 0.3 1

Table 1. MCDB Ramification Order

nel that Ch will be branched from. The MCDB cal-

culates Per formance(Ch) = %W for each

channel and chooses the multicast channel with the
highest Per formance(Ch) value as the channel to re-
place. In the case of there being more than one channel
with the same value in Per formance(Ch), the MCDB
chooses the channel with the smallest offset.

Figure 4 shows an example of the delivery process
of video 1 and video 2. Assume that video 1 is deliv-
ered by the local server-node and video 2 is sent by a
remote server-node. The local server-node uses 5 mul-
ticast channels (V{) to simultaneously deliver blocks
10, 15, 20, 30 and 40 of video 1. In the case of the
remote server-node, there are 4 channels (V) to send
video 2. Assuming also that the distance between the
local network and the remote server-node is 3, the Ta-
ble 1 shows the value of NetResource(Ch), Cost(Ch)
and Performance(Ch) for each possible pair of mul-
ticast channels. The ramification order is in the fifth
column. In this case, the MCDB will try to replace
channel V3! of video 2 with a branch-channel from V2.

3.5 Collaborator Selection by MCDB

Each server-node has a list of clients that are will-
ing to collaborate in the MCDB branching process.
The objective of the collaborator-selection mechanism
is that of choosing a group of clients that produces low
network overhead in the collaboration process. Our
intuition is to try to select clients that are very close
together. Our selection strategy is based on partial ac-
knowledgment of collaborators. Each collaborator ran-
domly selects k collaborators to estimate the distance
in number of network-hops. The distance information
is collected by the server in the collaborator-table.

Figure 5 shows a possible local network configura-

'
'
'
'
'
!
H
'
|

m@// TR

:
: g b G

' ~

: @""”B - :

[}
@ : Other Clients ° : Clients of Video 1 (Block 10)

. : Clients of Video 1 (Block 15) @ : Collaborators

Figure 5. Net. Configuration with 17 Clients

Distances between collaborator ¢ and j

Collaborator 7 Distance 1 Distance 2 Distance 3
1(Ch?) 1—-3=2 1—-8=4 1—13=6

3 (Ch?) 3—1=2 3—14=6 3—6=4
4(Ch1) 4—1=2 4 —-6=4 4 —14=6

6 (Ch2) 6 —8=2 6—13=6 6—14=6

8 (Chl) 8—3=4 8 —4=4 8 —13=6
13 (Ch?) 13—-3=6 13—14=4 13 —-6=6
14 (Chl) 14 —13=4 14 —-8=6 14—3=6

Table 2. Distance Information, being k=3

tion. In this case, there are 7 routers (A-G) and 17
clients. There are 3 clients (black nodes) that are re-
ceiving block 10 of video 1 by channel C'h2. There are 6
clients (grey nodes) are receiving block 15 of video 1 by
channel Chl. There are also 6 clients (1, 3, 4, 6, 8, 13
and 14) that are willing to collaborate with the server-
node, represented by nodes surrounded by a cycle. The
white nodes represent clients that are receiving other
videos by channel Ch?. We assume that the value of k
is 3 and Table 2 shows the distance information that is
estimated by the 7 collaborators. For instance, collab-
orator 1 estimated the distance to the 3 collaborators
3, 8 and 13. The distance between collaborator 1 and
collaborator 13 is 6 (represented as 1 — 13 = 6); one
message from 1 to 13 has to perform 6 hops. If Ch2 is
the channel that we are interested in replacing, based
on the distance information, MCDB follows 4 steps to
select the list of collaborators:

Step 1: Initialize the CollaboratorList with all the
collaborators that are also receiving from channel Ch2.
Step 2: If there are enough collaborators, End.

Step 3: C' < the collaborator at the shortest dis-
tance from any collaborator of Collaborator List

Step 4: CollaboratorList < CollaboratorList + C
and jump to Step 2.

The reasoning behind step 1 is that if a collabora-
tor is already receiving from channel C'h2, the collab-
orator will not consume any more network resource to

send the information to the same channel. In each it-
eration, steps 3 and 4 insert a new collaborator into
the CollaboratorList. In accordance with Table 2, the
strategy will select collaborator 6 to be the first collab-
orator. With 4 iterations, the CollaboratorList will be
[6],6,8],]6,8,3],[6,8,3,1]. As we can see, collaborators
[6,8,3,1] are connected to router A and B, therefore,
the branching process only consumes the network re-
source of links between A-C and B-C.

3.6 MCDB Policy Complexity

In order to select the best multicast channel to per-
form the branching process, the MCDB policy has to
calculate the gap (in number of blocks) between every
pair of multicast channels and the distances (in number
of network hops) of every remote server-node. The gap
between channels depends on the time that two chan-
nels are created by PCM. Furthermore the gap between
two channels is constant because we use CBR videos.
Therefore, the gap computation only happens once. In
order to estimate the distance between two nodes, we
could use ping-pong messages to measure the message
latency and therefore infer the number of hops between
two points in the network.

The collaborator selection mechanism not only in-
troduces network overhead associated with collabora-
tor distance estimation, but also computation overhead
in server-node. Being k the number of collaborators
that have to estimate the distance, m the total number
of collaborators and ¢ the number of messages associ-
ated with each distance estimation, the network over-
head is ¢ X k x m. In each iteration i, the selection
mechanism has to compare ¢ x k values in order to select
a new collaborator. Thus, the computation complex-
ity of the selection mechanism to select n collaborators
is S0 i x k =k x 2204 &~ O(52). Note that the

value of n is usually smaylbl; about 5.

3.7 Discussion

In spite of the fact that the two collaboration poli-
cies of DVoDP?P architecture are complementary to
each other, the main client contribution in the deliv-
ery process is from MCDB because the multicast chan-
nels consume most of the resources. Both PCM and
MCDB have to create multicast channels. We assumed
that the underlying network provides QoS-aware mul-
ticast mechanisms that include routing, resource reser-
vation, reliability, and flow and congestion control pro-
tocols. See more details in [5]. Even though all these
mechanisms are available in enterprise networks, the IP
multicast service model is extremely complex to imple-
ment on the Internet. The DVoDP?P architecture
only needs IP multicast support in each local network

and multicast service for remote service could be im-
plemented with software-based overlay multicast.

The MCDB collaborator selection mechanism is
based on network topology information. Such infor-
mation, however, is very difficult to obtain and make
it be impossible to get the optimal collaborator selec-
tion. The MCDB design is not able to get the optimal
selection because it is based on partial acknowledge-
ments. The main advantage of the MCDB selection
mechanism is the low complexity and overhead. How-
ever, the mechanism performance closely depends on
the value of & which should be determined according
with the local network topology complexity.

The general tendency in P2P system design is head-
ing towards server-less architecture. However server-
less architecture for VoD has several inconveniences: 1)
Peers are responsible for initializing the video content,
which could involve copyright problems. 2) The system
cannot provide a minimum required service capacity, if
peers decide not to collaborate. 3) Due to fault toler-
ance questions, the information is duplicated in peers.
Since the majority of videos (80%) in a VoD system are
unpopular, a server-less architecture may achieve poor
peer efficiency. The two first questions are very impor-
tant for commercial applications and the last question
is related to architecture performance. None of these 3
problems are present in DVoDP?P architecture.

4 Performance Evaluation

In this section, we show the simulation results for
DV oDP?P architecture, Contrasted with DVoD archi-
tecture that utilizes a Patching multicast policy and
Chaining P2P policies. The Patching policy in DVoD
is widely analyzed in [3]. However there is no study
that analyses the performance of Chaining policy in
a DVoD. Furthermore, there is no comparative study
of Chaining and Patching[13]. We adapted the Chain-
ing technique in a DVoD architecture in order to make
comparisons. In our modification of the Chaining,
clients collaborate with the server-node (local or re-
mote) in order to deliver video information to local
clients. Like the PCM+MCDB, under the adapted
Chaining policy, a client is not allowed to send video
information to clients in another local network.

We evaluated parameters associated with server-
nodes and clients. In terms of server-nodes, we changed
the total storage size and the number of the most
popular videos replicated on each server. These two
parameters especially affect the number of remote
client requests. In terms of clients, we evaluated
DVoDP?P with different client-buffer sizes that af-
fect the client collaboration capacity. We also evalu-
ated DVoDP?P with different client-request rates and

Parameter Default Analyzed Values
Zipf Skew Factor 0.729 0.729
Video Length 90 90 Minutes
Simulation Time 7500 7500 Seconds
Video Replication 50% 20-80%)
Video Catalogue Size 100 50-400 Videos
Client-buffer size 5 (2,3,...15) Minutes
Request Rate 30 (5-40) LequesixServer
Storage Size 22 (10-100) Videos
Topology || Hyper-Cube | Hyper-Cube, Torus,
P-Tree, Double P-Tree

Table 3. Simulator Environment Parameters

numbers of videos in the catalogue in order to show the
scalability of our architecture.

4.1 Workload and Metrics

In our experiments, we assumed that the inter-
arrival time of client requests follows a Poisson arrival
process with a mean of %, where \ is the request rate.
We used Zipf-like distribution to model video popu-
larity. The probability of the i*” most popular video
being chosen is ﬁ where N is the catalogue

size and z is the skew Lfatcjtor that adjusts the probabil-
ity function[7]. For the whole study, the skew factor
and the video length are fixed at 0.729 (typical video
shop distribution) and 90 minutes, respectively. The
simulation time is fixed at 7500 seconds (125 minutes),
which is enough to determine performance metric val-
ues. We evaluated 4 inter-connection network topolo-
gies: Hyper-cube, Torus, P-Tree and Double P-Tree.
P-Tree and Double P-Tree are proposed in [3] and are
tree-based topologies. Due to the space limitation, we
only show the results for Hyper-Cube topology with
32 server-nodes. The analyzed values of the param-
eters are summarized in Table 3. Default values are
indicated in the second column.

The comparative evaluation is based on 3 metrics
calculated at the end of the simulation. 1) the Server-
node load is defined as the mean number of streams
active in each server-node at the end of the simulation.
2) The Inter-connection network load is defined as the
mean number of streams crossing one network link in
the inter-connection network. 3) the Local-network
overhead is the average number of streams opened by
delivery policies to allow for client collaboration. Each
metric is evaluated as the number of streams represent-
ing the sum of multicast channels and unicast channels.

4.2 Server Node Storage Capacity Effect

We change the storage size of each server node from
10 to 80 videos (10-80% of the catalogue size). All
other parameters have default values (Table 3). Fig-
ure 6.a shows the average load in each server node.

Compared with Patching, DVoDP?P produces 33-
57% less server load. Compared with a Chaining pol-
icy, both DVoDP?P and Patching are far better so-
lutions if storage size is lower than 30%. If storage
capacity is low (10-20%), the distributed system has
only one copy of each unpopular video. In this sit-
uation, all client requests for an unpopular video are
forwarded to one server-node. Client requests from dif-
ferent nodes can share one multicast channel in multi-
cast policies (Patching or DVoDP?P). With a storage
size of 50% of the catalogue, a Chaining policy is bet-
ter than Patching. However, a DVoD+Chaining is still
improved by DVoDP?P, which requires 30% less of
the server node bandwidth.

In terms of inter-connection network load (Fig-
ure 6.b), DVoDP?P is 19-53% lower than
DVoD+Patching policy. Compared with a
DVoD+Chaining policy, the DVoDP?P decreases the
network load by 8-27%. These results indicate that
P2P collaboration can reduce the inter-connection
network bandwidth requirements, independently of
the amount of server-node storage capacity.

Figure 6.c shows the local network overhead gen-
erated by Chaining and PCM+MCDB policies. The
Patching policy does not introduce any local overhead.
The Chaining policy generates a constant network
overhead, regardless of storage size. These results are
to be expected, because clients collaborate only with
the server-node in delivering the most popular videos.
The number of collaborations of Chaining depends on
the client-request rate and video-popularity distribu-
tion. The local-network overhead of PCM+MCDB is
73-88% lower than a Chaining policy.

We also changed the percentage of storage that each
server-node dedicates to video replication from 20%
to 80% of storage capacity. The results show that
the requirement reduction provided by DVoDP?P
in terms of server-node load and local-network load
is not changed by the number of replicated popu-
lar videos, suggesting that DVoDP?P will be better
than DVoD+Patching and DVoD+Chaining, indepen-
dently of the video mapping policy. Compared with
DVoD+Patching and DVoD+Chaining, DVoDP?P is
able to reduce server-node load by 24-30% and 51-54%,
respectively, when we change the storage capacity for
video replication.

4.3 Client-request Rate Effect

In this experiment, we changed the client-request
rate from 5 to 40 requests per minute in each server-
node. The other system parameters are assumed to
have the default values in Table 3. Figure 7 shows the
results of the 3 performance metrics with 3 delivery

°
900 - [500 2500
DVoD+Patching -~ 9 . DVoD+Patching —X— g
o 800 [DVoD+Chaining —8-— — T N DVoD+Chaining — & 9 i 0
© DVODP2P &~ i) 400 > DVODP2P G-~ [2000
own 700 [O)] . [Ol)] .
— £ SE 350 2 E DVoD+Patching -
oo 600 20 300 0 1500 DVoD+Chaining =]
e H 0 o SH @ 2 H DVODP2P ---©---
9% 5007 oh o 250 H D
52 o3 g 23
47 400 0 200 - 5% 1000
[N =R O N S Y S S o N [y}
IR A 150 % & A
5 300 9 ~-0 Ty !
ko e o 100 iy N s 500
. o N 9
200 T o 50 Y Q
D A
100 E' 0 0
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

Storage Size (%)

a) Server-node Load

Storage Size (%)

b) Inter-connection Network Load

Storage Size (%)

c) Local-network Overhead

Figure 6. Server-node Storage Size Effect on Hyper Cube

550 3 450 - 3500 -
500) 3} &] S DVoD+Patching -~ g DVoD+Patching -~ i
S 400 [~DVoD+Chaining —8 Q 3000 [-DVoD+Chaining —8
BDvoD+Patching —x L et g S o 2 P D e
E w 450 DVoD+Chaining 8 B 350 DVobp2P /0,,« Bo oo DVoDP2P -0 i)
= E 400 I DVODP2P -0+ S E L 2E
o] T oo 300 > B & 0 o

G5 350 SH T) %5 2000
) pwm 250 P . - owm o
S 300 O F# 23 1500
L i 9. 200 o 95 H
o 250 A
> g (o 1000 &
b 200 - S 150 le, -
K P ' [£ =

150 ¢ ;.; 100 8 500 O

2 A g
100 E' 50 0
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
#Requests per Minute #Request per Minute #Request per Minute
a) Server-node Load b) Inter-connection Network Load ¢) Local-network Overhead
Figure 7. Client-request Rate Effect on Hyper Cube
policies. The results show that our architecture sig- decreases in accordance with client-buffer size. With

nificantly reduces the sever-node and inter-connection
network load. Compared with the DVoD+Patching,
DVoDP?P is able to reduce average server-node load
by 37%, and inter-connection network load by 33%.

Compared with DVoD+Chaining, our design can
reduce server-node and inter-connection network load
by 56% and 18%, respectively. In terms of
server-node load, DVoD+Chaining is worse than
DVoD+Patching because the client collaboration with
the DVoD+Chaining occurs only at a very high request
rate. Furthermore, unpopular videos are serviced by
unicast channels. In terms of local-network overhead,
and compared with DVoD+Chaining, DV oDP?P re-
duces such overhead by 72%. The low local-network
overhead is due to PCM+MCDB P2P policy design
replacing only multicast channels and the number of
multicast channels per video being independent of the
client-request rate.

4.4 Client-buffer Size Effect

All system parameters are fixed at default values,
except for client-buffer size, which changes from 1
to 15 minutes. Figure 8.a shows the mean server
node load of 3 architectures. The server-node load
of DVoD+Patching, DVoD+Chaining and DV oD P?P

11-13 minutes of buffer, DVoD+Chaining achieves the
same performance as DVoDP?P. Compared with
DVoD+Chaining, the server-load of DVoDP?P is 47-
25% lower (if the buffer size is lower than 11 minutes).
Compared with DVoD+Patching, the server-load of
DVoDP?P is 27-60% lower.

The average inter-connection network load is plot-
ted in Figure 8.b. With 1 minute of buffer, the network
load for DVoD+Chaining and DVoD+Patching is al-
most the same. With more buffer, DVoD+Patching
and DVoD+Chaining performance increases. With 8
minutes, the DVoD+Chaining generates a lower inter-
connection network load than DVoDP?P.

Analysis of the effect of client-buffer size on the
local-network overhead is shown in Figure 8.c. In
DVoD+Chaining, the local-network overhead increases
along with a higher buffer size, while the DVoDP?P
is able to keep overhead levels at between 466 and
981 channels. Compared with DVoD+Chaining,
DVoDP?P introduces 15-82% less local-network over-
head. These results suggest that DVoDP?P is able
to achieve better performance than DVoD+Chaining
with low buffer requirements (1-10 minutes). Further-
more, the low local-overhead of DVoDP?P indicates
that PCM+MCDB are low cost P2P delivery policies
to organize P2P systems.

ke
1400 - © 700 - 3000
o DVoD+Patching - S R DVoD+Patching - g
- 1200 DVoD+Chaining & . 600 3 DVoD+Chaining — & 9 2500 N e e |
S DVODP2P ---0--- N . DVODP2P ---©--- S g
92 1000 22 so00 g9 o B
© % © O\‘ = oc 2000
% S 800 A 5 8 S 400 5 ‘\X v S 5| DVoD+Patching —- DHemeee
°a Q aa e} E‘"“ 5& 1500 DVoD+Chaining =
¥ 600 v 300 o B DVODP2P -~
5a % < - [R 95 1000 |6
g 400 S 200 . i T
19 o) XQ o HO | -
% O T X ? @ o % 500 S ot oY
200 e 9 100 o]
TO B] 8 Q
e =
0 & 0 0
0 2 4 6 8 10 12 14 16 0 2 4 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Buffer Size (Minutes) Buffer Size (Minutes) Buffer Size (Minutes)
a) Server-node Load b) Inter-connection Network Load ¢) Local-network Overhead
Figure 8. Buffer Size Effect on Hyper Cube
ke
© [
1400 I 600 o 2500
o 550 o R
- 1200 . ,,,~1>§'"""‘E & i
5, s $. 500 : 5, 2000 &
S92 1000 = S E 450 ZE T
. 2 T 5 ° g
L0 g0 ;! 59 400 i o9 1500 -
[oRS} =D 5og [
i ie e $%
5 600 > 97 300 [@ 5% 1000 | DVoD+Patching
> 400 . . g 250 / DVoD+Patching B DVoD+Chaining ——8
E X . i / DVoD+Chainin = & DVoDP2P -—~-©--
w0 - DVoD+Patching Hewmme 7 200 | DV DP2% o S 500 o
200 g DVoD+Chaining =] $ 150 Y o 8 """"""
DVODP2P ---&--- o e 3
0 & 100 0
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Numbre of Videos

a) Server-node Load

Number of Videos

b) Inter-connection Network Load

Number of Videos

c) Local-network Overhead

Figure 9. Video Catalogue Size Effect on Hyper Cube

4.5 Video Catalogue Size Effect

The number of videos in the catalogue is modified
from 50 to 400 videos in this experiment. Each server
node is assumed to have sufficient storage size to save
up to 20% of the catalogue, and 50% of the storage is
dedicated to the replication of the most popular videos.
Other system parameters are fixed with default values
in Table 3. Figure 9.a shows the mean server-node load
in DVoD+Patching, DVoD+Chaining and DV oD P?P.
Regardless of the delivery policy, the server load in-
creases with more videos. However, the increase in
DVoD+Chaining is much higher than 2 multicast ar-
chitectures. The explanation of such a high increase is
that a Chaining policy uses unicast channels to send
unpopular videos. More videos in the catalogue neces-
sarily imply more unpopular videos and consequently,
the server load drastically increases with a Chain-
ing policy. Compared with a DVoD+Chaining, the
DVoDP?P is able to reduce server load by 55%. This
reduction is around 24-40%, if we compare DV oDP?P
with DVoD+Patching.

In terms of inter-connection network (Figure 9.b),
DVoDP?P is able to reduce network load by 16-42%,
compared with DVoD+Patching. DVoD+Chaining in-
troduces nearly the same network load as DVoDP?P
when the number of videos is 50. With a catalogue of
300 videos, DVoD+Chaining requires the same network

resource as a DVoD+Patching.

Figure 9.c shows the local-network overhead. A
decrease in the network overhead of DVoD+Chaining
indicates that Chaining-policy performance decreases
with catalogue size. DVoDP?P is able to maintain
the number of local multicast channels when the cata-
logue is large, suggesting that DV oD P? P performance
will not degrade in accordance with the number of
videos. Furthermore, the local-network overhead of
DVoDP?P is 71-86% lower than DVoD+Chaining.

5 Conclusions and Future Work

We have proposed and evaluated new distributed
VoD architecture that combines the distributed server
architecture (DVoD) with multicast P2P system. In
DVoDP?P, every client is able to collaborate with
server-nodes, regardless of the video they are watch-
ing. Instead of independent collaborations between the
server and a client, our P2P system design synchronizes
groups of clients in order to create branch local mul-
ticast channels that replaces on-going channels, reduc-
ing both server-node load and inter-connection network
load. The DVoDP?P design is able to delegate clients
to send both popular and unpopular videos.

The experimental results show that DVoDP?P
needs fewer resource requirements than a DVoD with
multicast delivery policy, managing to reduce the

server-node load and inter-connection network load by
37% and 33%, respectively. These results corroborate
the high scalability of our design when there are a large
number of client requests. Furthermore, the P2P sys-
tem design has a lower local-network overhead than a
Chaining P2P system. A reduction of up to 72% in
local-network overhead is observed in the experimental
results. All these results demonstrate that DV oD P?P
is a highly scalable and cost-effective distributed VoD
architecture.

We are extending DVoDP?P in several directions.
First, clients can also collaborate with the server to
implement VCR operations. Second, DVoDP?P has
to implement some kind of fault tolerance schemes;
backup clients could be used in the collaboration pro-
cess. Third, with current broadband network technol-
ogy, clients could be connected to the network even
if they are not watching any video. All these “non-
active” clients could also collaborate in the delivery
process.

References

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
Scalable application layer multicast. In Proceeding of
SIGCOMM °02, pages 205-217, New York, NY, USA,
2002. ACM Press.

[2] S. Chen, H. Wang, X. Zhang, B. Shen, and S. Wee.
Segment-based proxy caching for internet streaming
media delivery. IEEE MultiMedia, 12(3):59-67, July-
September 2005.

[3] F. Cores, A. Ripoll, X. Y. Yang, B. Qazzaz, R. Suppi,
P. Hernéndez, and E. Luque. Improving bandwidth ef-
ficiency in distibuted video-on-demand architectures.
Parallel Processing Letters, 13 No. 4:589-600, 2003.

[4] D. Eager, M. Vernon, and J. Zahorjan. Bandwidth
skimming: A technique for cost-effective video-on-
demand. In IS&T/SPIE Conf. on Multimedia Com-
puting and Networking (MMCN 2000), pages 206-215,
San Jose, January 2000.

[5] A. Ganjam and H. Zhang. Internet multicast video de-
livery. Proceedings of the IEEE, 93(1):159-170, 2005.

[6] L. Golubchik, J. C. S. Lui, and R. R. Muntz. Adaptive
piggybacking: a novel technique for data sharing in
video-on-demand storage servers. Multimedia Syst.,
4(3):140-155, 1996.

[7] C. Griwodz, M. B., and L. C. Wolf. Long-term movie
popularity models in video-on-demand systems: or the
life of an on-demand movie. In Proceedings of the fifth
ACM international conference on Multimedia, pages
349-357. ACM Press, 1997.

[8] L. Guo, S. Chen, S. Ren, X. Chen, and S. Jiang. Prop:
A scalable and reliable p2p assisted proxy stream-
ing system. In 2/th International Conference on Dis-
tributed Computing Systems (ICDCS’04), 2004.

9] Y. Guo, K. Suh, J. Kurose, and D. Towsley. P2cast:
peer-to-peer patching scheme for vod service. In

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

WWW ’03: Proceedings of the twelfth international
conference on World Wide Web, pages 301-309. ACM
Press, 2003.

Y. Guo, K. Suh, J. Kurose, and D. Towsley. A peer-to-
peer on-demand streaming service and its performance
evaluation. In 2003 IEEE International Conference
on Multimedia & Expo (ICME 2003), Baltimore, MD,
July 2003.

M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhar-
gava. Promise: peer-to-peer media streaming using
collectcast. In Proceedings of the eleventh ACM inter-
national conference on Multimedia, pages 45-54, New
York, NY, USA, 2003. ACM Press.

K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast
technique for true video-on-demand services. In ACM
Multimedia Conf., Bristol, U.K., September 1998.

K. A. Hua, M. Tantaoui, and W. Tavanapong. Video
delivery technologies for large-scale deployment of
multimedia applications. In Proceedings of the IEEE,
volume 92, September 2004.

S. Jin and A. Bestavros. Cache-and-relay streaming
media delivery for asynchronous clients. In NGC’02,
Boston, MA, USA, October 2002.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
In Proceedings of SIGCOMM’01, pages 161-172, New
York, NY, USA, 2001. ACM Press.

C. Shahabi and F. Banaei-Kashani. Decentralized re-
source management for a distributed continuous media
server. IEEE Trans. Parallel Distrib. Syst., 13(7):710—
727, 2002.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
’01: Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for
computer communications, pages 149-160, New York,
NY, USA, 2001. ACM Press.

D. A. Tran, K. A. Hua, and T. T. Do. A peer-to-
peer architecture for media streaming. IEEE Journal
on Selected Areas in Communications, 22(1), January
2004.

P. Venkata, N., H. J. Wang, P. A. Chou, and K. Sri-
panidkulchai. Distributing streaming media content
using cooperative networking. In Proceedings of the
12th inter. workshop on Network and operating sys-
tems support for digital audio and video, pages 177—
186, New York, NY, USA, 2002. ACM Press.

X. Yang, P. Herndndez, F. Cores, A. Ripoll, R. Suppi,
and E. Luque. Distributed p2p merging policy to de-
centralize the multicasting delivery. In 31st EuroMicro
Conference on Softhware Engineering and Advanced
Applications, pages 322-329, Porto, Portugal, Agust-
September 2005.

W. T. Ying Cai and K. A. Hua. Enhancing patch-
ing performance through double patching. In 9th Intl
Conf. On distributed Multimedia Systems, pages 72—
77, September 24-26 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

