Efficient Client-to-Server Assignments for Distributed Virtual
Environments

Duong Nguyen Binh Ta!, Suiping Zhou!

'Nanyang Technological University
School of Computer Engineering
Singapore 639798
{pa0236892b, asspzhou}@ntu.edu.sg

Abstract

Distributed Virtual Environments (DVEs) are dis-
tributed systems that allow multiple geographically dis-
tributed clients (users) to interact simultaneously in
a computer-generated, shared virtual world. Applica-
tions of DVEs can be seen in many areas nowadays,
such as online games, military simulations, collabora-
tive designs, etc. To support large-scale DVEs with
real-time interactions among thousands or more dis-
tributed clients, a geographically distributed server ar-
chitecture (GDSA) is generally needed, and the virtual
world can be partitioned into many distinct zones to
distribute the load among the servers. Due to the ge-
ographic distributions of clients and servers in such
architectures, it is essential to efficiently assign the
participating clients to servers to enhance users’ ex-
perience in interacting within the DVE. This problem
1s termed the client assignment problem. In this pa-
per, we propose a two-phase approach, consisting of
an initial assignment phase and a refined assignment
phase to address this problem. Both phases are shown
to be NP-hard, and several heuristic assignment algo-
rithms are then devised based on this two-phase ap-
proach. Via extensive simulation studies with realistic
settings, we evaluate these algorithms in terms of their
performances in enhancing interactivity of the DVE.

1. Introduction

In recent years, advances in high-speed network-
ing technologies, computer graphics and CPU pro-
cessing power have enabled the rapid development of
Distributed Virtual Environments (DVEs). DVEs are
distributed systems that allow multiple geographically

1-4244-0054-6/06/$20.00 ©2006 IEEE

distributed clients (users) to explore and interact with
each other in real-time within a shared, computer-
generated 3D virtual world [23], where each client is
represented by an avatar. A client controls the behav-
ior of his/her avatar by various inputs, and the updates
of an avatar’s state need to be sent to other clients
in the same zone of the virtual world to support the
interactions among clients. DVEs have been applied
in many areas, such as collaborative design, military
simulations, e-learning and multi-player games [23].

Developing DVEs faces many challenges. In partic-
ular, various resources are needed, e.g., network band-
width, CPU cycles, etc. The resource requirements of
DVEs may increase quickly as the number of simultane-
ous clients increases. In addition, the network latency
may damage the interactivity and consistency of DVEs
[26]. Moreover, since DVEs are human-in-the-loop ap-
plications, cheating is also an important problem that
need to be considered. Thus, usually a server-based
communication architecture is employed for DVE ap-
plications. For example, popular Massively Multi-
player Online Games (MMOGs) such as Everquest [3]
and Ultima Online [6] are operating on large clusters
of servers. However, putting all servers at a central
geographic location may result in high communica-
tion delays for clients which are far from the servers.
Therefore, a geographically distributed server architec-
ture (GDSA) is desirable [18, 8]. With this architec-
ture, multiple geographically distributed servers are
connected to each other, usually via well-provisioned
connections. Each client is connected to one of these
servers, and clients interact with each other through
these servers.

In order to deal with large-scale DVEs with hun-
dreds, or even thousands of clients interacting simul-
taneously, usually the virtual world is spatially parti-

tioned into several distinct zones, with each zone man-
aged by only one server, asin [3]. A client only interacts
with other clients in the same zone,' and may move to
other zones. As a server only needs to handle one or
more zones instead of the entire virtual world, the sys-
tem is more scalable. In this paper, we refer to such a
partitioning approach as the zone-based approach.

Due to the fact that clients in DVEs are geograph-
ically distributed and the heterogeneous nature of the
Internet, a client in a zone may have large network de-
lays to the server hosting that zone, thus the interactiv-
ity of the DVE for that client may be greatly damaged.
Hence, there is a strong need for mechanisms to assign
the participating clients to servers in an efficient way to
enhance the interactivity of the DVE. This is referred
to as the client assignment problem (CAP). In this
paper, we propose a two-phase approach to the CAP.
In the initial assignment phase, the zones of the vir-
tual world are assigned to servers. Then, in the refined
assignment phase, a client is assigned to an appropri-
ate (usually nearby) server to communicate with the
server that is hosting the client’s zone. Based on this
two-phase approach, several assignment algorithms are
devised and evaluated. We show that algorithms that
take into account network delays in the initial assign-
ment significantly outperform those without doing so.

The rest of the paper is organized as follows. Sec-
tion 2 describes the geographically distributed server
architecture, the client assignment problem and some
related work. The proposed algorithms are presented
in Section 3. Simulation study is described in Section
4, and Section 5 concludes the paper.

2. Formulation of the client assignment
problem

2.1. Architecture and definitions

In this paper, we focus on DVEs that adopt the
geographically distributed server architecture (GDSA)
[18, 8] and the zone-based partitioning approach. The
GDSA consists of multiple servers geographically dis-
tributed over the Internet, as shown in Fig. 1. All ge-
ographically distributed servers are fully meshed with
well-provisioned network connections. We note that
many existing Content Distribution Networks (CDNs)
like Akamai [1], Exodus [4], etc. have adopted such ar-
chitecture to support the huge access demands to pop-
ular Web sites. DVE developers may deploy the server
architecture on their own, or they may rent servers

LFor simplicity, we say that a client is in a zone if its avatar
is currently residing in that zone.

(a) (b)

Figure 1. Geographically distributed server
architecture

and network resources from third-party server-network
providers to avoid excessive deployment and manage-
ment costs [9].

Before formulating the client assignment problem,
we introduce the following notations and concepts:

e ¢; - A client in the DVE.

e C = {e1,...,ck} - The set that consists of all
clients in the DVE.

e z; - A zone in the DVE.

o 7 = {z1,...,2,} - The set that consists of all
zones in the DVE.

e s; - A server in the DVE.

e S = {s1,...,8m} - The set that consists of all
servers in the DVE.

e (ontact server - The contact server of a client is
the server that this client directly connects to. Clients
only send inputs to their contact servers. The contact
server may execute the inputs and send updates to the
client if it is hosting the client’s zone , or it may forward
the client’s inputs to another server which is hosting
the client’s zone. For example, in Fig. 1(a), s; is the
contact server of ¢; and cs.

e Target server: A target server of a client is the
server that is hosting the client’s zone. Inputs from a
client will be forwarded to its target server. The target
server may send updates to the client directly if it is
also the contact server of the client, or it may send
indirectly via the client’s contact server. All clients in
a zone have the same target server (therefore, we may
say “target server of a zone”), while they may have
different contact servers.

For example, in Fig. 1(a), s1 is both the contact and
target server of ¢; and ¢o. In Fig. 1(b), we switch ¢y to
server so (but the avatar of ¢y is still in zone z1), the
target server of ¢; and ¢y is still s1, the contact server of
¢ is s1, while the contact server of ¢y is now so. Inputs
from ¢y are forwarded to s; by so. Since the network
connection between s; and ss is well-provisioned with
little congestion, the communication between c¢o and s

may now have shorter delay. However, this incurs ex-
tra resource utilization for inter-server communication
between s; and ss.

e R, - The resource consumption on a server s;.
This can be measured by CPU usage, network band-
width usage, etc. Since the network bandwidth often
represents the major operating cost in current server-
based MMOGs [15], in this paper, we assume that the
server CPU is not a bottleneck, and measure the re-
source consumption by the network bandwidth usage.

° Rg - The amount of server resource, i.e., network
bandwidth, utilized by a client ¢; on its target server.
Note that Rg > 0, Ve.

° RCC - The amount of server resource utilized by
a client ¢; on its contact server. Note that if the con-
tact server and target server of ¢; are the same then
Rcci = 0, otherwise RCC; = QREZ_7 since all communica-
tions between ¢; and its target server are forwarded by
its contact server (assuming the resource utilization is

measured by bandwidth requirement).

e R, - The amount of server resource utilized by a

zone z; on its target server. We have R, = > CT]
J ?

e (s, - The resource capacity of a server s;.

e dcs,; - The round-trip network delay between a
client ¢; and a server s;.

e D - The delay bound of a DVE. The delay bound
indicates the required upper bound of the round-trip
communication delay between a client and its target
server to guarantee the interactivity of the DVE. For
different types of DVEs, there are different delay bound
requirements. For example, Multi-player Real-Time
Strategy (RTS) games typically require a delay bound
of 500ms [24], while First-Person Shooter (FPS) games
require a delay bound of 250ms [14]. It should be noted
that the communication delay between a client and its
target server is different from the network delay be-
tween the client and its target server. The communi-
cation delay is the sum of the network delay and the
processing delay at the target server. However, in this
paper we assume that the server CPU is not a bot-
tleneck, thus the client-server communication delay is
determined by the client-server network delay. In the
following, the term “network delay” and “communica-
tion delay” are used interchangeably.

For interactive applications like DVEs, communica-
tion delay is the most important Quality of Service
(QoS) parameter that the system provides to clients
[14]. In this paper, we say that a client is with QoS or
without QoS if the communication delay between the
client and its target server is smaller or larger than the
delay bound, respectively.

2.2. Client assignment problem

With the geographically distributed server architec-
ture and the zone-based approach, the client assign-
ment problem (CAP) concerns how to assign the par-
ticipating clients in a DVE to servers so that the total
number of clients with QoS is maximized. We formu-
late the client assignment problem as follows.

Definition 2.1. Client
(CAP)
For each client c; in the DVE, find the target server

sk and contact server s; for ¢; to mazimize

assignment problem

|{Cj €z des;c = (dcjsl +d5l5k) < D,VZZ c Z}| (1)

subject to

R, < Cs,,Vs; €8 (2)
where | - | denotes the cardinality of a set.

Note that in the Definition 2.1, if s; and s refer to
the same server, then d,,,, = 0.

2.3. A two-phase approach for the CAP

To address the client assignment problem, in this pa-
per we propose a two-phase approach as follows. First,
in the initial assignment phase, we need to assign the
zones to servers, i.e., find a target server for each client.
Then, in the refined assignment phase, each client is as-
signed to an appropriate server to communicate with
its target server, i.e., find a contact server for each
client.

In fact, both the initial assignment and refined as-
signment are themselves complex optimization prob-
lems. In order to obtain good solutions to the CAP, we
must optimize some “assignment costs” in both phases.
In the initial assignment, we propose the following met-
ric to measure the cost of assigning a zone z; to a server
Si

Cl ={ck € 2 : de,s, > D} (3)

C’Z—Ij measures the number of clients in a zone z; that
do not satisfy the delay bound D, i.e., without QoS.
Therefore, by minimizing the total cost when all zones
are assigned, the total number of clients with QoS in
the DVE would be maximized. The initial assignment
problem is formulated as follows.

Definition 2.2. Initial
(IAP)

assignment problem

Let I ={1,....,m} and J = {1,...,n} be the set of in-
dexes of servers and zones in the system, respectively.
For each i € I and j € J, given the cost Cilj of as-
signing zone zj to server s; as defined in (3), find an
assignment matriz x = (x;5), with x;; = 1 if zone z;
is assigned to server s; or x;; = 0 otherwise, which
minimaizes the total cost

i=1 j=1
subject to
> R <Cy,Viel, (5)
j=1
Zﬂﬁzj =1VjeJ, (6)
i=1
zi; € {0,1},Vie I,Vj e J. (7)

Theorem 2.1. The IAP described above is NP-hard.?

After the initial assignment phase, some clients may
still be without QoS. The refined assignment phase will
attempt to further increase the number of clients with
QoS in the DVE. One possible approach is to exploit
the well-provisioned inter-server connections. We pro-
pose the following metric for the refined assignment to
measure the cost of selecting server si as the contact
server for a client ¢;, where s; is ¢;’s target server

CR — { (dcjsk + dSkSi) - D? (dcjslc + dS)cSl) >D

I Oa (dcj-sk + dsk,si) S D
(®)
Cg measures the “distance” from the delay bound
D of the communication delay of a client ¢; if ¢; is as-
signed to server sy as its contact server. Therefore, by
minimizing the total cost when all clients are assigned,
the total number of clients with QoS in the DVE would
be maximized. The refined assignment problem is then

formulated as follows.

Definition 2.3. Refined assignment problem
(RAP)

Let I ={1,....,m} and J = {1,...,n} be the set of in-
dexes of servers and clients in the system, respectively.
For each v € I and j € J, given the cost Cg of select-
ing server s; as the contact server of client c;, find an
assignment matriz x = (z;5), with x;; = 1 if client ¢;
takes server s; as its contact server and 0 otherwise,
which minimizes the total cost

2Due to space limitation, we do not include the proof here.

CPa) =YY" Cllay (9)

i=1 j=1
subject to
> RSwi; < (Cs, — Ry,), Vi€, (10)
Jj=1

m
> wmiy=1Vj€ (11)

i=1
xy; € {0,1},Vi € [LVj € J. (12)

Theorem 2.2. The RAP described above is NP-hard.

Proof. The proof for RAP is similar to that for the
TIAP. O

2.4. Related work

To the best of our knowledge, there is no exist-
ing work that directly addresses the client assignment
problem described in Section 2. Research on how to as-
sign clients to servers in DVEs is usually formulated as
a load balancing problem in a locally distributed server
architecture, i.e., all the servers are placed in the same
machine room [25, 17]. Such approaches may damage
the interactivity of the DVE, since clients may be far
away (in terms of network delays) from the servers.

In a more recent work [16], the authors proposed
a distributed algorithm for clients to selects the best
server in a mirrored architecture for online games, tak-
ing into account the network delay between clients and
servers. The mirrored architecture replicates the DVE
zones at multiple servers. This approach shares some
similarities with the web server replica placement prob-
lem in CDNs [21]. However, unlike the replication of
web documents, DVE replication faces serious consis-
tency issues [26] which may damage the users’ experi-
ence in interacting with the virtual world. In our ap-
proach, only one server has the control over the state
of a zone, thus consistency can be guaranteed.

3. Assignment algorithms

To address the client assignment problem (CAP),
we propose some algorithms for the initial assignment
(IAP) and then for the refined assignment (RAP).
Since both TAP and RAP are NP-hard, we seek for
heuristic solutions instead of optimal ones. We start
with algorithms for the IAP, with which we want to
assign zones to servers, i.e., determine target servers

for clients. We propose two algorithms for the TAP:
the first one randomly assigns the zones, while the sec-
ond one is a greedy heuristics to minimize the number
of clients without QoS in the system. After the target
servers for clients are determined, in the refined as-
signment phase, we find an appropriate contact server
for each client. We again propose two algorithms. The
first algorithm assigns clients to contact servers accord-
ing to the virtual location of clients, and the second
algorithm is a greedy heuristics similar to the one for
solving the TAP. Finally, by combining the algorithms
for the AP and the RAP, we have the algorithms for
the CAP. Thus we have in total four two-phase algo-
rithms for the CAP.

3.1. Algorithms for the TAP

Random assignment of zones (RanZ). In RanZ,
zones are assigned to randomly selected servers with
the only concern of not overloading the servers. In this
algorithm, the following procedure is repeated until all
zones have been assigned: first the zone z; with the
largest number of clients is selected, and then a random
server s; with sufficient capacity is selected to take z;,
i.e., the target server of all clients in z; is now s;.

begin
foreach z; € Z do
find Hij = _07137 VSi € S,
sort the list L;-VI of values p;; descendingly;
find p; = MAXso£i; fhsj — Hijj where
1; = arg max; fl;;;
end
sort the list L of values p; in descending
order;
while Z # () do
pick zone z; with highest pj;
while L} # (0 do
pick the highest desirability p;; € L;” ;
pick server s;;
if Ry, + R, <, then
assign z; to s;;

Rsl = Rsi + R2j§
remove z; from Z;
break;

end

remove p;; from LM,

1J j
end
end

end

Figure 2: TAP - Greedy assignment of zones

Greedy assignment of zones (GreZ). Since
RanZ is oblivious to client-server network delays when
assigning zones to servers, the obtained performance in
terms of number of clients with QoS may not be good,
i.e., the cost of the assignment as defined in Equation
(4) may be high. Hence, in the GreZ algorithm, we
use a greedy heuristics to minimize the total number
of clients without QoS in the system.

The pseudo-code is shown in Fig. 2. Let p;; =
—Cilj (recall that CZ-I]- measures the number of clients
without QoS in zone z; if z; is assigned to s;) be a
heuristic measure of the desirability of assigning zone z;
to server s;. The smaller the cost Cj; is, the higher the
desirability p;; is. The algorithm iteratively considers
all the unassigned zones and pick a zone z; with the
maximum difference p; between the largest desirability
pi;; and the second largest desirability p;. Then, z;
is assigned to a server s; with the highest value of 1;;
and with sufficient resource capacity. This procedure
is similar to the approach used to solve the well-known
Generalized Assignment Problem [22].

3.2. Algorithms for the RAP

Virtual Location based assignment of clients
(VirC). The VirC algorithm adopts the most “nat-
ural” way to assign clients to servers in DVEs. It
only considers the virtual location of each client c;
when determining a contact server for c;, thus c¢;
will connect to the same server that is also hosting
¢j’s zone, i.e., the contact server of c; is the same
as its target server. This approach will not incur
any inter-server communication cost. However, since
network delay from each client to its target server is
not considered, the number of clients with QoS may
not be improved compared to the initial assignment.

Greedy assignment of clients (GreC). The
GreC algorithm is a greedy heuristics which takes into
account network delay from each client to its target
server when selecting contact server for each client.
The pseudo-code is shown in Fig. 3. This algorithm is
similar to the GreZ algorithm for the TAP. The major
difference between the two algorithms lies in the cost
metric used. GreC uses the cost metric mentioned in
Equation (8).

GreC starts by considering the round-trip delay to
target server of each client in the system. If the network
delay from a client c¢; to its target server s; is less than
the delay bound, the algorithm selects the same server
s; as the contact server of ¢;. Otherwise, c; is added to
a list L”, which contains only clients having network
delay larger than the delay bound. The next part of

begin
foreach c; € C do
get target server s; of c;;
if d;;s, < D then
select s; as the contact server of c;;
else
add c; to the list e,
end
end
foreach ¢; € L¥ do
find Hij = —Og’, Vs; € 5
sort the list L;-V[of values p;; descendingly;
find p; = maxgz;; pisj — pi,j, where
1; = argmax; fl;j;
end
sort the list L? of values p; in descending
order;
while LT # () do
pick client ¢; with highest p;;
while Lé—w # 0 do
pick the highest desirability u;; € L;V[;
pick server s;;
if R,, + R® < C, then
select s; as the contact server of c;;

R, = R, + RC;
remove ¢; from LP:
break;

end

M.
remove fi;; from Lj";
end
end

end

Figure 3: RAP - Greedy assignment of clients

the algorithm attempts to assign each client in L to
a contact server to increase the number of clients with
QoS in the system. This part is similar to the GreZ
algorithm, except for the cost function used.

3.3. Two-phase algorithms for the CAP

A two-phase algorithm for the CAP is obtained by
combining the algorithms for the IAP and the RAP.
Thus, in total we have four different two-phase al-
gorithms, namely RanZ-VirC, RanZ-GreC, GreZ-VirC
and GreZ-GreC.

For comparison purposes, based on the Integer Pro-
gramming formulation of IAP and RAP, we use the so-
called “branch-and-bound” algorithm implemented in
the Mixed Integer Linear Programming (MILP) solver
Ip_solve [5] to obtain the optimal solutions for both IAP

and RAP. Note that this approach is only applicable
when the system size is small, otherwise the running
time of Ip_solve will become very long (on the order of
several hours), which is clearly impractical for highly
interactive applications like DVEs.

3.4. Implementation considerations

In this section we address some practical consider-
ations when one tries to implement the proposed as-
signment algorithms. The first consideration is the dy-
namic property of DVEs. During the course of interac-
tions in the virtual world, clients may move from one
zone to another, new clients may join, existing clients
may also leave the virtual world. An obtained client
assignment may not be good after some time. Thus,
the proposed two-phase algorithm needs to be executed
again to ensure good client assignments.

Another issue is how to obtain input data for the
proposed assignment algorithms. The input data in-
cludes the client-server and inter-server round-trip net-
work delays, and the server resource requirement of
cach client. The network delays can be obtained us-
ing scalable network measurement tools such as King
[12] or IDMaps [11]. King uses existing recursive
DNS queries to accurately estimate round-trip net-
work delays between arbitrary Internet end hosts, while
IDMaps relies on end hosts called tracers deployed at
strategic locations in the Internet. Both approaches
are scalable and incur little estimation overhead.

In this paper, the server resource requirement of
each client is measured as the bandwidth requirement.
It is well-known that the bandwidth requirement in
client-server architectures increases quadratically with
the total number of clients that are interacting with
each other [20]. Thus, we can estimate in advance the
bandwidth requirement of each client in a zone based
on the number of clients in that zone, as in [20].

4. Simulation study
4.1. Simulation models and parameters

In our simulations, we use both synthetic topologies
generated by the popular topology generator BRITE
[2] and real topologies (e.g., the US AT&T continen-
tal IP backbone [13]), and obtain similar results. Due
to space limitations, we only present here the simu-
lation results with an Internet-like hierarchical topol-
ogy generated by BRITE. The topology consists of 500
nodes with 20 AS (Autonomous System) domains using
Barabasi-Albert model and 25 nodes using Waxman
model for each AS. The clients’ and servers’ locations

Table 1. pQoS(R) with different configurations

DVE conf. RanZ-VirC | RanZ-GreC | GreZ-VirC | GreZ-GreC Ip_solve
5s-152-200c-100cp 0.57 (0.6) 0.66 (0.77) | 0.79 (0.6) | 0.82 (0.66) | 0.83 (0.73)
105-302-400c-200cp || 0.57 (0.61) | 0.69 (0.84) | 0.83 (0.61) | 0.88 (0.69) | 0.89 (0.69)

20s-802z-1000c-500cp 0.61 (0.58) | 0.75 (0.88) | 0.89 (0.58) | 0.94 (0.66) -
30s-1602-2000c-1000cp || 0.58 (0.58) | 0.76 (0.93) | 0.91 (0.58) | 0.96 (0.65) -

are randomly selected among these 500 nodes. The
maximum round-trip delay between any two nodes is
set to 500ms. To simulate the well-provisioned inter-
server connections which have lower delays than client-
server connections, we set the network latency between
any two geographically distributed servers to 50% of
the actual latency values obtained from the topology
generator, as in [16].

Based on existing studies of real online game sys-
tems, e.g., [10], we simulate various client distributions
(clustered, uniform, etc.) both in the physical and the
virtual world. In addition, it is noted that clients gath-
ering in the same zone of a DVE may not necessarily
close to each other in terms of their physical locations.
On the other hand, studies have shown that clients that
are close to each other in their physical locations (e.g.,
from the same country or the same geographic region)
tend to gather in a specific zone of the virtual world
due to their common cultural preferences. These phe-
nomena may have great impact on the performance of
the proposed algorithms. To model the correlation be-
tween clients’ locations in the physical world and those
in the virtual world, we use a correlation parameter
0, where 0 < 6 < 1 [19]. The higher the value of §
is, the stronger the tendency for clients from the close
geographic locations to gather in specific zones of the
virtual world.

Unless otherwise stated, the following assumptions
and default values are used in the simulations. The
clients are uniformly distributed in the physical world
as well as in the virtual world. The number of servers,
number of zones, number of clients, and the value of
correlation parameter are 20, 80, 1000 and 0.5, respec-
tively. The minimum bandwidth capacity of server
is 10 Mbps, and the total capacity of the system is
500Mbps. For estimating bandwidth requirement as in
[20], the input sending frequency of each client (frame
rate) is set to 25 messages per second, and the size
of each input or update is 100 bytes, which are close
to some real settings [7]. The interactive requirement,
i.e., the DVE delay bound D is set to 250ms. Two
main performance measures, namely the percentage of
clients with QoS in the system (measuring the interac-
tivity of the system), denoted as pQoS, and the server

resource utilization (measuring the cost of the algo-
rithms), denoted as R, are of interest in the analysis.
Results presented here are obtained by averaging the
results of 50 simulation runs.

4.2. Results and analysis

The impact of different DVE configurations. In
this set of experiments, we evaluate the performance
of our algorithms with different DVE configurations.
A specific DVE configuration is determined by the
number of servers, the number of zones, the number
of clients and the total resource capacity of the sys-
tem. We use the notation number of servers-number of
zones- number of clients-capacity to denote a DVE con-
figuration. For example, the notation 20s-80z-1000c-
500cp means that the DVE has 20 servers, 80 zones,
1000 clients and 500Mpbs server bandwidth in total.
The values of pQoS and R for different DVE configu-
rations are shown in Table 1.

From Table 1, it is obvious that among the four pro-
posed two-phase algorithms, GreZ-GreC has the best
performance in terms of pQoS. The pQoS values of
GreZ-GreC are close to the optimal results given by the
branch-and-bound algorithm implemented in Ip_solve
software. Note that Ip_solve can only be applied to
small size DVEs, i.e., the first two configurations of
Table 1. The average execution time of Ip_solve for
these two DVE configurations are 0.2 and 41.5 seconds,
respectively. For larger DVEs (the last two configura-
tions), the results by Ip_solve are not shown since the
execution time was too long (not finished after more
than 10 hours), which is clearly impractical for DVEs
which need timely assignment decisions. In all configu-
rations in Table 1, all of our proposed algorithms took
less than 1 second of execution time.

In addition, it can be seen that the two algorithms
that take into account network delays in the initial as-
signment phase, i.e., GreZ-VirC and GreZ-GreC, offer
better interactivity than the other two which do not.
This clearly shows the effectiveness of the greedy zone
assignment GreZ.

Fig. 4 shows the cumulative distribution function
(CDF) of delays from all clients in the configuration

of 30s-1602z-2000¢-1000cp to their target server for all
algorithms. From this figure, it is clear that GreZ-
GreC not only has a high ratio of clients with QoS,
but also provides the best interactivity for clients that
are without QoS.

! [%
0.9

0.8

CDF

RanZ-VirC —+—
RanZ-GreC ---x--- {
GreZ-VirC ---*---

GreZ-GreC &

L L h {

250 300 350 400 450 500
delay (msec)

Figure 4. Cumulative distribution of delays

Table 1 also shows the resource utilization in terms
of network bandwidth of all algorithms (the values in
the brackets). RanZ-VirC and GreZ-VirC have the
lowest resource consumption, since in these algorithms,
each client ¢; has the same server as both target and
contact server, thus no extra bandwidth requirement
RCCZ, is incurred. GreZ-GreC has a slightly higher band-
width requirement than RanZ-VirC and GreZ-VirC,
but its bandwidth requirement is lower than that of of
RanZ-GreC. Given that the more critical concern for
DVEs is the interactivity rather than the bandwidth,
GreZ-GreC algorithm is the best choice over all algo-
rithms, although GreZ-VirC is also a good alternative if
the bandwidth requirement becomes more important.

Renz-Viie ——
09 |- RanZ-GreC -
GreZ VitG -

09
08 - GreZ-GreC & L

RanZ-VirC —+—|

08k RanzGreC -~

8 GreZ-VirC ---x-
o a GreZ-GreC -

pQoS

07

o
*
resource utilization

)

06 [

05

L L L L
0 02 04 06 08 1
correlation correlation

(a) pQoS (b) R

Figure 5. Impacts of correlations

The impact of correlation parameter. Fig.
5 shows the performance of our algorithms as the
physical world-virtual world correlation value changes,
and D = 200ms. It is observed that the pQoS values
of GreZ-VirC and GreZ-GreC which take into account
network delays in the initial assignment phase increase
significantly with the correlation value, while the
results of RanZ-VirC and RanZ-GreC do not change
much. This demonstrates the effectiveness of the
greedy initial assignment (GreZ) when the clients

in a zone are close to each other in the physical
world. On the other hand, it seems that the greedy
refined assignment (GreC) does not benefit from that
phenomenon. In all cases, GreZ-GreC is still the best
algorithm in terms of pQoS. In addition, the resource
utilization of GreZ-GreC is reduced considerably
when the correlation value increases, which further
demonstrates the effectiveness of GreZ-GreC. It is also
noted that GreZ-VirC is also an attractive alternative
when the correlation value is very high.

The impact of virtual world and physical world
distribution. In this experiment, we evaluate the im-
pact of different client distributions in both the virtual
world and the physical world on the performance of the
proposed algorithms. The number of clients may be
higher in some specific zones of the virtual world than
others, due to the clustering of clients in some “hot”
zones. For example, in online games, clients may be
clustered in the zones with high amounts of game re-
sources such as energy, gold, etc. In the physical world,
due to the differences in time zones of geographically
distributed clients, at a specific time, the number of
online clients in the DVE may be quite different for
different geographic regions [10].

We simulate the clustering behavior of clients in the
virtual world by randomly selecting some zones to have
more clients than other zones. To simulate the cluster-
ing of clients in the physical world, some nodes in the
network topology are randomly selected to have a large
number of clients than the rest nodes. We have simu-
lated a large number of different scenarios by changing
the number of clusters and number of clients in each
clusters, and obtained similar results. In this paper,
we present the simulation results for the 20s-802z-1000c-
500cp configuration. For the clustered distribution in
the virtual world, the number of clients in a clustered
zone is 10 times larger than that in a non-clustered
zone. The clustered distribution for the physical world
is generated in a similar manner. Table 2 shows the
combination of different virtual world (VW) and phys-
ical world (PW) distributions.

Table 2. Distribution types

Type 0 1 2 3
Clusters in PW || No | Yes | No | Yes
Cluters in VW || No | No | Yes | Yes

The simulation results for all algorithms with differ-
ent client distributions are shown in Fig. 6. Although
GreZ-GreC’s pQoS decreases slightly when clients are
clustered in the virtual world (distribution type 3 and

0.8 - RanZ-VirC —+— ™
Ranz:GreC ----
GreZVirC -

07 - GreZ:GreC 0

pQos

resource utilization

RanZ-VirC —+— |
RanZGreC ----
GreZ-VirC ---%-- |
GreZ-GreC o
05 L L 0.1 L L
1 2 3 4 1 2 3 4
distribution type distribution type

(a) pQoS (b) R

Figure 6. Impacts of client distributions

4), it’s still the best algorithm in terms of interactivity.
Besides, it is noted that the resource utilization for all
algorithms in the distribution type 3 and 4 are much
larger than those in distribution type 1 and 2. This
shows that the clustered distribution of clients in the
virtual world has a great impact on the bandwidth re-
quirement of the system. Meanwhile, it seems that the
clustered distribution of clients in the physical world
do not have significant impacts on both performance
measures of all algorithms.

Table 3. pQoS with DVE dynamics

Time Before | After | Executed
RanZ-VirC 0.59 0.59 0.59
RanZ-GreC 0.73 0.68 0.71
GreZ-VirC 0.83 0.79 0.82
GreZ-GreC 0.9 0.83 0.9

The impact of DVE dynamics. In this experiment,
we evaluate all algorithms in dynamic settings. First,
we obtain a client assignment with the configuration
20s-802-1000¢-500cp, and correlation 6 = 0. Then,
to simulate the dynamic properties of DVEs, we let
200 new clients randomly join, 200 existing clients
randomly leave the virtual world and 200 clients ran-
domly move to another zone. The simulation results
are shown in Table 3. The column “Before” shows the
pQoS of all algorithms before we let the clients join,
leave and move. The column “After” shows the pQoS
after we let the clients join, leave and move. The
data in this column clearly indicates that right after
the join-leave-move happened, the interactivity of all
algorithms except RanZ-VirC® are decreased. Hence,
there’s a strong need to re-execute these algorithms? to

3Since RanZ-VirC makes assignment decision randomly, its
performances is not much affected.

4pQoS of RanZ-VirC may not be affected, but we may need
to re-execute it since the resource constraint may be violated.

achieve better performance. The column “Executed”
shows the performance of all algorithms after they are
all re-executed. The results show that our algorithms
can cope well with the dynamic properties of DVEs.

The impact of imperfect input data. The simula-
tion results obtained above are based on the assump-
tion that we have perfect information about the net-
work delays between clients and servers. In practice,
we usually have rough estimations of network delays
rather than perfectly accurate information. To simu-
late the estimation error, similar to [21], we apply an
error factor e to the perfect input data, i.e., assuming
the perfect value of delay is d, then the delay value
used in the simulation is uniformly distributed in the
range [g, de]. We use two values of e equal to 1.2 and
2, representing the inaccuracies of the popular network
delay estimation tools King [12] and IDMaps [11], re-
spectively.

Table 4. Impacts of imperfect input data

e 1.2 2
RanZ-VirC || 0.58 (0.58) | 0.59 (0.58)
RanZ-GreC || 0.7 (0.91) 0.57 (1)
GreZ-VirC || 0.86 (0.58) | 0.8 (0.58)
GreZ-GreC || 0.9 (0.67) | 0.78 (0.82)

Table 4 shows the simulation results obtained with
the inaccurate estimations of network delays. For
e = 1.2, GreZ-GreC is still the best algorithm in terms
of interactivity, and its pQoS only decreases about 0.04
compared to the case that uses perfect information in
Table 1. When the estimation error becomes very large,
ie., e = 2, we see that GreZ-VirC is the best: it per-
forms slightly better than GreZ-GreC in terms of in-
teractivity and has the lowest resource utilization (the
value in the brackets). This is because GreZ-GreC uses
delay information in both the initial assignment and
refined assignment, thus, its performance is affected
by the large estimation error in both phases, while
GreZ-VirC only utilizes network delays in the initial
assignment. In overall, despite the imperfect knowl-
edge in network delay, these two algorithms are still
much better than the other two algorithms which do
not consider network delays in the initial assignment
phase. This shows that GreZ-GreC and GreZ-VirC are
very useful in enhancing DVE interactivity in Inter-
net environments, where perfectly accurate input data
for assignment algorithms is usually impossible or very
costly to obtain.

5. Conclusions

Supporting large-scale DVEs with thousands of si-
multaneous clients interacting in real-time is a chal-
lenging task. In this paper, we have described
the geographically distributed server architecture for
DVEs. In this architecture, multiple geographically
distributed servers are connected with each other via
well-provisioned networks to provide low-latency inter-
server communications, and the large virtual world is
partitioned into distinct zones to distribute load among
the servers. The client assignment problem arises when
assigning participating clients to servers to enhance the
interactivity of the DVE. In this paper, a two-phase ap-
proach, which consists of an initial assignment and a
refined assignment is proposed to simplify the client as-
signment problem. Based on this approach, several as-
signment algorithms are devised. Extensive simulation
results on realistic settings shows that algorithms that
make use of network delay information in the initial
assignment phase perform better in terms of interac-
tivity than those which do not, even if the input data
to these algorithms is inaccurate. We believe that our
two-phase approach with these algorithms (i.e., GreZ-
GreC and GreZ-VirC) could be very helpful to the de-
signers and researchers of large-scale DVEs.

Acknowledgement

The authors would like to thank Gunther Raidl for
helping with the NP-hardness of the GAP.

References

[1] Akamai. Awvailable at http://www.akamai.com.

[2] Brite internet topology generator. Available at
http://www.cs.bu.edu/brite.

(3] Evequest. Available at hitp://www.everquest.com.

[4] Exodus. Available at http://www.exodus.com.

[5] Mixed integer linear programming solver lp_solve.
Awailable at hitp://groups.yahoo.com/group/lp_solve.

[6] Ultima Online. Awailable at hitp://www.vo.com.

[7] A. Abdelkhalek, A. Bilas, and A. Moshovos. Be-
havior and Performance of Interactive Multi-player
Game Servers. Special Issue of Cluster Computing:
the Journal of Networks, Software Tools and Applica-
tions, 2002.

[8] D. Bauer, S. Rooney, and P. Scotton. Network infras-
tructure for massively distributed games. In Proc. of
NetGames, 2002.

[9] Z. Duan, Z. Zhang, and Y. T. Hou. Service overlay
networks: Slas, qos and bandwidth provisioning. In
Proc. of the 10th IEEE International Conference on
Network Protocols, 2002.

[10] W. Feng and W. Feng. On the geographic distribu-
tion of online game servers and players. In Proc. of
NetGames, 2003.

[11] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y.Shavitt,
and L. Zhang. IDMaps: A Global Internet Host Dis-
tance Estimation Service. IEEE/ACM Transactions
on Networking, 9(5), 2001.

[12] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating Latency between Arbitrary Internet End
Hosts. In Proc. of the ACM SIGCOMM IMW, 2002.

[13] O. Heckmann, M. Piringer, J. Schmitt, and R. Stein-
metz. Generating realistic isp-level network topologies.
IEEE Communication Letters, 2003.

(14] T. Henderson and S. Bhatti. Networked games: a QoS-
sensitive application for QoS-insensitive users? In
Proc. of the ACM SIGCOMM, 2003.

[15] B. P. J. Mulligan. Developing Online Games: An In-
sider’s Guide. New Riders Games, 2003.

[16] K. W. Lee, B. J. Ko, and S. Calo. Adaptive Server
Selection for Large Scale Interactive Online Games.
Computer Networks, 49:84-102, 2005.

[17] J. Lui and M. Chan. An Efficient Partitioning Algo-
rithm for Distributed Virtual Environment Systems.
IEEE Transaction on Parallel and Distributed Sys-
tems, 13(3), 2002.

[18] M. Mauve, S. Fischer, and J. Widmer. A generic proxy
system for networked computer games. In Proc. of
NetGames, 2002.

[19] C. D. Nguyen, F. Safaei, and P. Boustead. Compar-
ison of distributed server architectures in providing
immersive audio communication to massively multi-
player online games. In Proc. of ATNAC, 2004.

[20] J. D. Pellegrino and C. Dovrolis. Bandwidth require-
ment and state consistency in three multiplayer game
architectures. In Proc. of the ACM NetGames, 2003.

[21] L. Qiu, V. Padmanabhan, and G. Voelker. On the
placement of web server replicas. In Proc. of IEEE
INFOCOM, 2001.

[22] H. Romeijn and D. R. Morales. A class of greedy algo-
rithms for the generalized assignment problem. Dis-
creet Applied Mathematics, 103:209-235, 2000.

(23] S. Singhal and M. Zyda. Networked virtual environ-
ments: design and implementation. Addison-Wesley,
Reading, MA, 1999.

[24] J. Smed, T. Kaukoranta, and H.Hakonen. Aspects
of Networking in Multiplayer Computer Games. In
Proc. of the International Conference on Application
and Development of Computer Games in the 21st Cen-
tury, pages 74-81, 2001.

[25] D. N. B. Ta and S. Zhou. A Dynamic Load Sharing
Algorithm for Massively Multi-Player Online Games.
In Proc. of the 11th IEEE International Conference on
Networks, 2003.

[26] S. Zhou, W. Cai, B. S. Lee, and S. J. Turner. Time-
space consistency in large-scale distributed virtual
environments. ACM Transactions on Modeling and
Computer Simulation, 14(1):31-47, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

