
Parallelization and Performance Characterization of Protein 3D Structure

Prediction of Rosetta

Wenlong Li , Tao Wang , Eric Li , David Baker , Li Jin , Steven Ge , Yurong Chen , and Yimin Zhang

Intel China Research Center Department of Biochemistry

 Intel Corporation University of Washington

 {wenlong.li, tao.wang,eric.q.li}@intel.com dabaker@u.washington.edu

Abstract

The prediction of protein 3D structure has become a

hot research area in the post-genome era, through which

people can understand a protein’s function in health and

disease, explore ways to control its actions and assist

drug design. Many protein structure prediction

approaches have been proposed in past decades. Among
them, Rosetta is one of the best systems. However, the

huge time complexity of Rosetta, e.g. a few days to predict

a protein, limits its wide use in practice.

To accelerate the prediction of protein 3D structure in

Rosetta, this paper presents three different approaches,

i.e., non-interactive, periodic interactive and

asynchronous dynamic interactive scheme, to parallelize

Rosetta. The asynchronous interactive scheme, with the

adaptation of dynamic solution interaction, outperforms

the other two, delivering much faster convergence speed

and better solution quality. Detailed measurements and

performance analysis also indicate that parallel Rosetta

with asynchronous dynamic interactive scheme scales

well.

1. Introduction

Prediction of protein 3D structures is one of the most
important problems in Molecular Biology, which can be
simply stated as: given the sequence of amino acids of a
protein, what is the three dimensional structure?
Biochemists have established that a protein’s spatial
structure dominates its function. In attempting to
understand a protein’s function in health and diseases and
explore ways to control its actions, scientists often first
determine its spatial structure.

In biology, the lineal amino acid sequences first fold to
nonlinear secondary structures (alpha helix, beta sheet and
loops) and then form tertiary and quaternary structures.
The protein 3D structure is typically obtained by x-ray
crystallography or nuclear magnetic resonance
spectroscopy (NMR), which is costly and very time

consuming for high-throughput production. Therefore a
computational solution of this problem, i.e. “protein
structure prediction”, has been an active research field
over the last forty years [1,2,3,4,5].

Prediction of protein 3D structures directly from their
amino acid sequences is referred to as “ab initio” method.
Among existing “ab initio” systems, Rosetta is one of the
best in the international competition of “Critical
Assessment of Techniques for Protein Structure
Prediction” (CASP). Rosetta is developed by the Baker
laboratory of University of Washington, which uses
simulated annealing optimization algorithm (SA) to find
optimum protein tertiary structures[5,6,7]. One of the key
ingredients of Rosetta is score function that assigns an
evaluation score to the 3D structure and guides the protein
structure search toward a protein-like fold by simulated
annealing. Figure 1 shows one prediction example of
Rosetta [7].

Figure 1. Prediction result of Rosetta for T087

Although Rosetta can predict protein 3D structures
more accurately, the complex elevation scores and very
large protein structure search space, or in other words, the
huge computational requirement inhibits its wide use in
practice, e.g., it will take a few days to perform a structure
prediction per protein. In literature, there are little efforts
to optimize and parallelize Rosetta so as to finish a given
task in a reasonable time scale. Baker lab of Washington
Univ. employs a simple parallel scheme, running Rosetta

Native Prediction

1-4244-0054-6/06/$20.00 ©2006 IEEE

programs independently on 80 machines simultaneously,
to shorten the computation time. Each machine predicts a
list of possible protein structures. Then the server node
clusters all the resulting candidates (roughly 2000~10000
structures), and selects the largest cluster as the highest
confidence prediction. This scheme, though simple
enough in implementation, is not very effective in terms
of parallel efficiency. One reason is the time to get the
candidate structures varies a lot for each machine, and all
the other machines have to wait the one with the longest
running time before clustering. It incurs a lot of load
imbalance among the computing machines, and as a
result, under-utilizes the computation powers. The other
reason is that some machines may perform useless
computations when they trap in a local optimal solution of
the protein structure search of simulated annealing, which
slows down the whole execution time.

The contributions of this paper are as follows.
1) In order to overcome the limitations in the

existing parallel scheme, we present three
different data level parallelization schemes to
improve Rosetta performance based on parallel
simulated annealing, where the asynchronous
dynamic interactive scheme exhibits the best
performance in terms of speed and protein 3D
structure prediction quality;

2) The three parallel schemes are implemented with
the OpenMP parallel programming model and
measured on a 16-way shared memory
multiprocessor machine. The experiments show
that asynchronous interactive scheme is the best
among all the three schemes. We also conduct
detailed performance analysis on this scheme.
The analysis results indicate that the
asynchronous dynamic interactive scheme has
very low parallel overhead, delivering a very
good scaling performance on shared memory
multiple processor systems.

The rest of the paper is organized as follows. Section 2
gives an overview of Rosetta’s structure prediction
algorithm. Section 3 proposes our parallel Rosetta
schemes. The experimental results and workload
characteristics are reported in section 4. Finally, section 5
summarizes the paper.

2. Overview of Rosetta

According to homogeneous theory in biology, similar
amino acid sequences generally are likely to have the
similar protein structure. The Rosetta method of ab inito

structure prediction is based on the assumption that the
local structure of a protein is similar to the structures of a
segment of amino acid sequences in known protein
structure database (PDB). As shown in figure 2, each
amino acid segment may have many possible 3D

structures called fragments. Rosetta uses “fragment
insertion technique” to assemble these local structure
segments into a whole protein structure. Simulated
annealing optimization algorithm searches the assembled
optimum structure by an evaluation score that favors a
protein-like fold, e.g., compact structures and buried
hydrophobic residues etc. Since the searched protein
structure space is very large and complex, Rosetta carries
out a large number of independent simulations. Then
these resulting structures about 2000~10000 candidates
are clustered and the centers of the largest clusters are
selected as the highest confidence predictions.

(a)Structure fragment library (b) fragment insertion by SA

Figure 2. Protein structure prediction by Simulated
Annealing of Rosetta

2.1 Evaluation scores

In biology, a lower energy normally means better
stability in structure. Given a possible protein structure,
score functions are used to evaluate whether the structure
is better than another structure. The score function of
Rosetta is based on the probability of the structure being
the native structure given the sequence of amino acids. It
captures sequence dependent features of protein
structures, such as the burial of hydrophobic amino acid
in the core, as well as universal sequence independent
features, such as the assembly of beta-strands into
beta-sheets. The main components of score functions are
defined as following:

)(

)()|()|(

structurePPpP

structurePstructuresequencePsequencestructureP

airenv

)|(i

i

ienv EaaPPwith

ji ijjjijii

ijjiji

pair
rEaaPrEaaP

rEEaaaaP
P

),|(),|(

),,|,(

where aai is the ith amino acid of a protein, rij is the
distance between the centroids of amino acid i and j, and
Ei is the structural environment at position i which is
usually defined in terms of solvent accessibility and
secondary structure.

In practice, Rosetta has five main evaluation scores,
i.e., score0, score1, score2, score3 and score5. Each score

Initial protein

Fragment insertion …

Refined structure by SA

consists of weighted sub scores, e.g. score0 =
vdw_weigth*vdw_score+ env_weight*env_socre+….
The scores and their weights are shown in table 1. For
more information, it can be referred in [5, 6].

Table 1. Weights of Score0,1,2,3,5 in Rosetta

2.2. Simulated Annealing

The searched protein structure space is very large and
complex with many local minimums. Rosetta adopts
simulated annealing algorithm to discover the global
optimum protein structure. Simulated annealing (SA) is a
heuristic optimization algorithm for difficult
combinatorial optimization problems, especially ones
where a desired global extremum is hidden among many
poor local extrema[8,9].

Figure 3. Simulated Annealing

The basic idea of SA is to track a Markov chain in the
feasible solution space of the given optimization problem
as shown in figure 3. Starting with an initial solution, SA
repeatedly generates succeeding solutions using a local
search procedure. The succeeding solution will be accept
or rejected according to the Boltzmann acceptance

probability
TCe /

. After some iterations of the local
search procedure, the temperature is decreased and the

optimization continues on a new temperature level. When
the system is frozen to zero temperature, the best solution
found during the optimization is outputted. An outline of
the SA algorithm is described as following:

For Rosetta, S defines the searched protein structure
space, Cost(.) uses score functions of section 2.1 to
evaluate how good a protein-like structure is. Perturb(.)
gets a succeeding structure s* from s by randomly
replacing the fragment at sequence position i with a new
local structure fragment. The search path of SA can be
observed as a Markov chain transition path, i.e., current
solution only depends on the last previous solution. After
enough annealing iterations, the discovered best solution
is outputted as a candidate structure. Since the searched
protein structure space is very large with many local
minimums, Rosetta generates enough candidate
structures, e.g. 2000~10000 structures and selects the
centers of the largest clusters as the predicted protein
structures.

2.3. Flowchart of Rosetta

There are five main score functions, i.e., score0,
score1, score2, score 3 and score 5 illustrated in section
2.1. The kernel module Fold_abinitio of Rosetta uses
these evaluation scores respectively in four simulated
annealing processes to refine a 3D protein structure in
serial. For convenient description, we name the four SAs
as SA0, SA1, SA2, and SA3. As a whole, Figure 4 shows
the Rosetta flowchart. Firstly, the Initialize_decoy module
initializes the parameters and buffers. Then the module
SA0 generates an initial 3D structure with score0 by
assembling local fragment structures of known amino
acid segments. SA1, SA2 and SA3 perform similar
calculations with different score functions. Each of them
refines the structure generated in the previous module by
repeatedly executing the fragment assembly and score
evaluation until the termination condition is satisfied. The
Reasonable_structures module filters out impossible

Weights
Scor
e0

Scor
e1

Scor
e2

Scor
e3

Score5 Functions

vdw_weig
ht

1 1 1 1 1
Penalties for over compact and
overlaps between atom pairs

env_weigh
t

 1 1 1 1

pair_weigh
t

 1 1 1 1

cb_weight 0.5 1 0.5

Evaluate the energy of a
structure based on atoms, e.g.

Ca, Cb atoms

sheet_weig
ht

 1 1 1 1

ss_weight 0.3 1 1 1

hs_weight 1 1 1 1

Evaluate the energy of a
structure based on the

secondary structure, e.g., alpha
helix, beta sheets and strands.

rsigma_we
ight

 1
Distance between secondary

structure pairs

rg_weight 3
The average distance between

all pairs of Ca atoms

starting
point

descend
direction

local minima

global minima

barrier to local search with

kT)EEp /)(exp(

yprobabilitacceptable

12

PROCEDURE Sequential SA
BEGIN
 s Initial Solution in S
 T Initial Temperature T0

 DO
 DO
 s* Perturb(s)
 C Cost(s*) - Cost(s)

 IF C< 0 OR (.)/ randome TC
 THEN

s s*

 END IF
 UNTIL Equilibrium
 T Decrement(T)
 UNTIL Frozen
END PROCEDURE

structures by rules. After Fold_abinitio module generates
enough candidate structures, Clustering module classifies
these large numbers of candidate structures into a few
clusters. And the centers of the largest clusters are
selected as the predicted protein structures.

(a) Flowchart of Rosetta (b) Flowchart of fold_abinitio()

Figure 4. Flowchart of Rosetta

3. Parallelization of Rosetta

With the booming of multi-core processor and the
prevalence of shared memory processing, it is important
to exploit thread level parallelism within application to
fully take advantage of multi-core or multi-processor
processing capability. As experimental data indicates,
Rosetta spends 99.9% of time in the four simulated
annealing(SA) processes of Fold_abinitio module.
Therefore, parallelizing the four SA processes is a
straightforward way to enhance the whole application’s
performance.

Task and data level decomposition are two primary
schemes to parallelize an application. Specifically, in
Rosetta, we don’t exploit task level parallelism within
each SA process due to the strong loop carried data
dependency between consecutive iterations. Also, we
don’t exploit task level parallel scheme between adjacent
SA processes due to dependency. Furthermore, the
solution quality achieved by task level parallelization is
not as good as data parallelization scheme, where single
Markov search path of task level parallelization in global
search space is more likely to trap in a local optimum than
multiple Markov search paths in the data level
parallelization[11]. In addition, task level parallelization
scheme is more prone to have high communication cost
due to frequent solution exchanges.

In order to improve both the execution speed and
solution quality, we propose a novel data-level

parallelization scheme, tracing multiple Markov-chain
search paths within one global search space at the same
time and allow solution communicate with each other to
avoid local minimum. First, each processor initializes a
random selected structure individually, assembles and
evaluates its temporal solution in one Markov-chain
search path of the global space. Then, during the process
of each path searching, each processor communicates
with each other by exchanging their solutions periodically
or dynamically. Finally, the best solution among these
processors is chosen and outputted. According to the
interaction mode, they can be categorized into
non-interactive, periodic interactive and asynchronous
dynamic interactive parallel schemes as shown in figure
5.

Figure 5. Parallel Rosetta schemes

There are several advantages of data parallel scheme
over the task level decomposition and the naïve parallel
scheme mentioned before. First, unlike the frequent
communication pattern in the task level parallelization, all
the working processors in this scheme are not
close-coupled with each other. The communications only
occur in some regular period of iterations, thus
significantly reducing the high communication cost to
transfer the state and score among all the processors.
Second, tracing multiple search paths simultaneously is
less likely to cause system trapping in a local optimum,
which makes Rosetta more robust, achieving a much
quicker convergence speed and better solution quality
than task level parallelization. Following sections
describe these three data-level parallelization schemes in
detail, trying to exploit different communication patterns
among the working threads. Since asynchronous dynamic
interaction decreases much communication overhead

Fold_abinitio(.)

Initialize_decoy

Fold_abinitio

Enough structures?

Reasonable

structures?

Clustering

Refine structure by SA1

using score 1

Init 3Dstructure by SA0

using score 0

Refine by SA2 using
score 2,5 alternately

Refine structure by SA3

using score 3

Begin

End

through asynchronous interaction and has lower
probability of entering the local minimum, it achieves
faster convergence speed and better solution quality than
others.

3.1. Non-interactive scheme

In the non-interactive scheme, multiple simulated
annealing processes run independently on different
processors. During this period, each process will work
only on one protein structure, without any interactions
with other processes, until all the protein structures are
obtained. After that, the best structure is selected as the
predicted result.

The advantage of this parallel scheme is that there are
multiple Markov chains can be searched at the same time,
which significantly reduces the possibility of trapping in
local minimum and delivers a better solution than single
Markov chain search scheme. However, as mentioned
before, this scheme also has several disadvantages: first, it
suffers a lot from load imbalance especially when each
Markov chain has different time to reach a solution,
where some processors will be idle waiting for the
slowest Markov chain searching. Second, some SA
processes may still trap in local optimum although
multiple chains provide a much larger searching space in
practice. As shown in figure 5(a), the black blocks
represent the time in the waste idle state. Apparently, PE1
has the longest evaluation time, and the other three
processes have to wait until PE1 obtains the final result.

3.2 Periodic interactive scheme

To overcome the inefficiencies in the non-interactive
scheme, timely exchanging temporal solutions among
processors is essential to diminish the load imbalance.
One possible way is to exchange intermediate structure
solutions among processors at fixed time interval or fixed
step iterations, to choose current best structure as a new
starting point for the following searches. A master node
will decide the solutions collected from each processor
and dispatch the best one to them for the following
searches.

In this scheme, periodic interaction among processors
helps SA processes to achieve a quicker convergence time
with a much lower probability to entering a local
minimum. However, it still has some imbalance overhead,
though it has successfully distributed the whole process
into a number of periodic stages. During the interval of
two adjacent interactions, these processes will work
independently similar to the non-interactive scheme.
While reaching the interaction time, all the processors
will exchange information and the master node will
collect all the solutions from each processor and dispatch
the best one. There will be a mandatory synchronization

point in the interaction time. Therefore, all the processors
may still suffer from the load imbalance though not that
obvious than the non-interactive one. Figure 5 (b)
displays the periodic interactive parallel scheme. Grey
blocks represent the stages of collecting, decision and
dispatching solution in the master node and the black
blocks are the waiting time in the idle state. It can be
observed that there is a lot of idle time wasted at the
synchronization point.

3.3 Asynchronous dynamic interactive scheme

As previously described, we can find two critical
issues: load imbalance and trapping in local minima,
which are not solved well in above two parallel schemes.
With the in-depth understanding of the SA algorithm,
score calculation period, and possible communication
patterns existed in Rosetta, we propose a novel
asynchronous dynamic interactive parallel scheme. It uses
the running profiling information to trigger the interaction
dynamically. For example, we collect the profiling
information of the trial number and the acceptance ratio in
running stage of Rosetta. When a processor’s acceptance
ratio is below a specified threshold or runs enough trials,
i.e. the processor arrives at a local optimum or need
accelerating near a temporal solution for faster
convergence, it triggers a interaction between the
processor and the master node. Then the trial number and
the acceptance ratio of the interacted processor are reset.

To further reduce the communication cost, the idea of
latency hiding technique in compiling optimization is
used to overlap the communication with computations,
which is called asynchronous communication. In this
scheme, the global solution in master node saving the
current best solution among processors is protected by a
lock. During the interaction, if processor’s protein
structure is better than the global solution in the master
node, it updates the global solution with its structure.
Otherwise it replaces its own solution with the global one.
Since the interaction seldom occurs at the same time, each
processor may have a different solution after interaction,
which reduces the possibility of trapping in the local
minimum and avoids the frequent communication
contentions. Figure 5(c) illustrates the asynchronous
dynamic interactive scheme. Represented by grey blocks,
different processor adaptively interacts with the master
node at different time. It is obvious that the black blocks,
waste idle time, are decreased greatly than figure 5(a) and
figure 5(b).

In contrast, the periodic interactive scheme is
synchronous communication, in which all processors are
stalled to wait for the solution selection among all
processors until the interaction completes. Therefore, the
communication overhead is much larger than the
asynchronous dynamic interactive scheme. Another

potential benefit of asynchronous scheme is that each
processor starts from a different solution, rather than the
same solution in the synchronous scheme, resulting in a
much lower probability of entering the local minimum.

4. Experimental results

We use OpenMP[13] programming model to
implement different parallel schemes as illustrated in
section 3. OpenMP provides a rich set of features to
simplify the programming efforts to thread the
application, where the natural “parallel” loops and the
independence among all the candidate search paths make
it an ideal case for OpenMP parallelization. Furthermore,
we use the Intel VTune[12] performance analyzer to
identify the hot spots in functional profiling, to guide the
optimization with various techniques, e.g., loop splitting,
and data structure reorganization. To characterize the
parallel performance, Intel VTune Thread Profiler[12] is
used to qualify the low level metrics, i.e.,
synchronization, locks, load imbalance, etc.

The performance measurement of parallel Rosetta is
conducted on a 16-way Intel Xeon shared-memory
multiprocessor system. It has 16 x86 processors running
at 3.0GHz, 4 levels of cache with each 4MB L4 cache
shared amongst 4 CPUs. The sizes of the L1, L2 and L3
caches are 8K, 512K and 4MB respectively. As for the
interconnect, the system uses two 4x4 crossbars. We use
Intel 8.0 Fortran OpenMP compiler tool chain to generate
the executable codes with options –O3 –ipo –openmp, to
enable the high levels of compiler optimizations.

For the test data set, we use 4 proteins with different
scale in protein sequence length. They are 2ptl, l557, l554
and l560 with 60, 174, 232, and 321 amino acids,
respectively[6,7]. Due to the random nature of this SA
application, we use 20 iterative running for a single round
measurement, and average the results to generate the final
performance. Two metrics, speedup and score, are both
used to evaluate the application’s performance, where the
speedup is defined as follows:

processorsNon timeProcessing

processoroneon timeProcessing
Speedup

Score is the evaluation score of the final solution. To
make an equal performance comparison, different runs
should find the equivalent protein 3D structure close to
the native one.

4.1. Solution quality comparison of different

parallel schemes

As illustrated in section 2.1, the evaluation score
represents the quality of the predicted structure. The
lower score, the better protein structure can be achieved.
In this work, we conducted extensive studies on a number

of proteins, and all of them exhibit very similar behavior
and performance. Therefore, we only choose a typical one
to present the data throughout the rest of the paper.

Figure 6 shows the solution quality comparison of
non-interactive, periodic interactive and asynchronous
dynamic interactive parallel scheme on 16p system, where
16P_N is the non-interactive scheme, 16P_P is the
periodic interactive scheme, and 16P_D represents the
asynchronous dynamic interactive scheme. With the
incorporation of interactions among different processors,
the score curve has some irregular behavior, not as
smooth as the non-interactive one. As indicated from
figure 6, the two interactive parallel implementations are
consistently better than the non-interactive scheme,
yielding better scores and much shorter convergence time
due to solution interactions among multi-processors.
Similarly, when comparing the asynchronous dynamic
interactive scheme with the periodic interactive scheme,
we also find that the asynchronous dynamic interactive
scheme is more effective than the periodic interactive one
due to asynchronous communication and different start
solutions after interaction. It confirms that asynchronous
communication of the asynchronous dynamic interaction
scheme can obtain much better protein structure than
synchronous communication of the periodic interaction.

-160

-130

-100

-70

-40

-10

0 10 20 30 40 50 60

Time (s)

S
c
o
re

16P_N 16p_P 16P_D

Figure 6. Score vs. time curves of different parallel
schemes

-160

-130

-100

-70

-40

-10

0 1 2 3 4 5 6 7 8 9 10

Time (s)

S
c
o
re

1P 2P 4P 8P 16P

Figure 7. Score vs. time curves of asynchronous
dynamic interactive parallel scheme for different

processor number

In principle, each processor of parallel Rosetta
searches a Markov chain, and multiple chains in Rosetta
have a much larger search space than one single Markov
chain. As a result, it can achieve lower score, better
solution quality and much quicker convergence speed.
Figure 7 shows the score-time curves of asynchronous
dynamic interactive parallel scheme for different
processor number. It uses a log2 scale on X axis. We can
easily observe that to get the same score, Rosetta with one
single chain requires much longer time than the parallel
one. To summarize, parallel Rosetta achieves lower score
with much quicker convergence with the increase of
processor number.

4.2 Performance analysis

Figure 8 shows asynchronous dynamic interactive
scheme scales well with the increased number of
processors, and exhibits almost linear speedup
performance. However, non interactive scheme and
periodic interactive scheme scale poorly beyond 8
processors.

0

2

4

6

8

10

12

14

16

1p 2p 4p 8p 16p 1p 2p 4p 8p 16p 1p 2p 4p 8p 16p

Non Interactive Scheme Periodic Interactive

Scheme

Asynchronous Dynamic

Interactive Scheme

Figure 8. Speedup performance of different parallel
schemes

To deeply understand the scalability limiting factors,
we characterize the parallel performance from the high
level general parallel overheads, e.g., synchronizations
penalties, load imbalance, and sequential sections, to the
detailed memory hierarchy behavior, e.g., cache miss
rates and FSB (front side bus) bandwidth.

Figure 9 depicts the general parallel profiling metrics,
where “Parallel” means the running time inside the
parallel region, and “Imbalance” represents time spent
waiting for other threads to reach the end of a parallel
region. The higher parallel region, the potential better
speedup can be achieved on highly-threaded architectures.
The profiling information suggests that for the
asynchronous dynamic interactive scheme, there is almost
no synchronization overhead in parallel Rosetta, the
sequential area and load imbalance goes up steadily with
the increase of processor number, but maintains at a
relatively low percentage. While for the periodic
interactive scheme and non interactive scheme, as figure 9

indicates, the load imbalance is more prominent than the
asynchronous dynamic interactive one, limiting its scaling
performance especially on 8 and 16 processors. Overall
speaking, parallel Rosetta with asynchronous dynamic
interactive scheme is a highly parallel application, and the
general parallel limiting factors are insignificant and will
not hinder its scalability performance on 16-way system.

0%

20%

40%

60%

80%

100%

2p 4p 8p 16p 2p 4p 8p 16p 2p 4p 8p 16p

Non Interactive

Scheme

Periodic Interactive

Scheme

Asynchronous

Dynamic Interactive

Scheme

Parallel Sequential Imbalance Parallel Overhead

Figure 9. Breakdown of the general parallel limiting
factors

Since asynchronous dynamic interactive scheme
outperforms the other two in terms of speed, protein 3D
structure prediction quality, and scalability performance,
we will only study this scheme in the following sections.

Besides the general scalability performance factors,
memory subsystem also plays an important role in
identifying the scaling performance bottlenecks. We
profile the application with VTune, and performance
metrics are chosen to be different level cache misses and
system memory bandwidth. From figure 10, it is
interesting to see that the cache miss rates vary little with
the number of processors. Though Rosetta has several
large data structures (private to thread) not to fit in L2 and
L3 cache, it only works on a small portion of them. The
data can be reused in difference phases of score
calculation, and smaller enough to fit in the L3 cache. The
regular data access pattern and well-organized data
structure delivers very good cache performance though it
has a relatively large memory footprint.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0 4 8 12 16
Number of Processor

L1 Cache Miss Rate

L2 Cache Miss Rate

L3 Cache Miss Rate

Figure 10. Cache Miss Rates

Generally speaking, memory bandwidth is a key factor
which may potentially limit the speedup on more
processors, especially for the shared memory system with
snoopy based cache coherency model. However, due to
the intrinsic data independencies among all search paths
searching threads, the cache coherency traffics are
tremendously reduced; coupled with the high cache
locality performance on the L3 cache, it has a much lower
memory bandwidth requirement. Figure 11 shows how
the bus bandwidth utilization varies with the number of
processors. For all data inputs, the bus bandwidth
increases linearly with the number of processors, but far
from the saturation (3.2GB/s) even with 16 processors.

0

50

100

150

200

250

300

1 2 4 8 16
Number of Processor

M
B

/s

Figure 11. FSB Bandwidth

To summarize, parallel Rosetta exhibits very good
scaling performance on symmetric multiple processor
systems. It is very promising to scale well on more than
one hundred processors.

5. Conclusion

In this paper, we presented a novel asynchronous
dynamic interactive parallel scheme to accelerate the 3D
protein structure prediction of Rosetta. Experiments show
that it has much better performance than several candidate
parallel schemes, i.e, non-interactive and periodic
interactive parallel schemes, in both the computation time
and predicted 3D structure quality. In addition, the
exploration of different parallel scheme study, in another
aspect, reveals the effectiveness of parallel simulated
annealing with interactions among multiple processors.

Besides its good performance, it also delivers nearly
linear speedup in the shared memory multi-processor
system. Detailed performance analysis indicates that
parallel Rosetta is a compute-bound application,
displaying very low LLC miss rate and memory
bandwidth requirement. The general scaling limiting
factors, e.g., barrier and parallel overhead are almost
negligible even with up to 16 processors. As a whole,
parallel Rosetta exhibits a very nice scalability
performance, which can be expected to scale well on even
more processors.

Our future work will include extending parallel
Rosetta to more than 64 processors to characterize its
performance on many-core machines, and improving
parallel scheme by other optimization approaches, e.g.
parallel simulated tempering and genetic algorithm.

6. References

[1] J Xu, M Li, D Kim, and Y Xu, RAPTOR: Optimal Protein
Threading by Linear Programming, Journal of Bioinformatics
and Computational Biology, Vol. 1(1):95-117, 2003.

[2] Y Xu, D Xu, Protein threading using PROSPECT: Design
and evaluation. Proteins: Structure, Function, and Genetics,
Vol.40(3):343-354, 2000.

[3] A Fiser, PK Do, and A Sali, Modeling of loops in protein
structures, Protein Science, Vol. 9:1753-1773, 2000.

[4] DT Jones, JJ Ward, Protein secondary structure prediction
based on position-specific scoring matrices. J Mol. Biol,
Vol.292:195-202, 1999.

[5] KT Simons, C Kooperberg, E Huang, and D Baker,
Assembly of protein tertiary structures from fragments with
similar local sequences using simulate annealing and Bayesian
scoring functions. J Mol Biol Vol.268:209-25, 1997.

[6] KT Simons, I Ruczinski, C Kooperberg, B Fox, C Bystroff,
and D Baker. Improved recognition of native-like protein
structures using a combination of sequence-dependent and
sequence-independent features of proteins. Proteins Vol.34(1)
82-95, 1999.

[7] R Bonneau, J Tsai, I Ruczinski, D Chivian, C Rohl, CE
Strauss, and D Baker, Rosetta in CASP4: progress in ab initio
protein structure prediction. Proteins Suppl Vol.5:119-26, 2001.

[8] S Kirkpatrick, CD Gelatt, and MP Vecchi, Optimization by
Simulated Annealing. Science, Vol.220, 1983.

[9] N Metropolis, AW Rosenbluth, MN Rosenbluth, and AH
Teller, Equation of state calculations by fast computing
machines, J. Chemical Physics, Vol 21(6):1087-1092, 1953.

[10] TM Nabhan, AY Zomaya, A Parallel Simulated Annealing
algorithm with low communication overhead, IEEE Trans on
Parallel and Distributed Systems, vol.6(12), 1995.

[11] SY Lee, KG Lee, Synchronous and asynchronous parallel
simulated annealing with multiple markov chains, IEEE Trans
on Parallel and Distributed Systems, vol.7(10):993-1008, 1996.

[12] The Intel Vtune Performance Analyzer.
http://developer.intel.com/software/products/vtune/.

[13] OpenMP Architecture Review Board: ”OpenMP C and
C++ Application Program Interface,” Version 2.0, March 2002,
http://www.openmp.org.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

