
On Consistency Maintenance In Service Discovery

V. Sundramoorthy, P.H. Hartel, J. Scholten

University of Twente
Enschede, The Netherlands

vasughi.sundramoorthy@utwente.nl

Abstract

Communication and node failures degrade the abil-
ity of a service discovery protocol to ensure Users re-
ceive the correct service information when the service
changes. We propose that service discovery protocols
employ a set of recovery techniques to recover from fail-
ures and regain consistency. We use simulations to
show that the type of recovery technique a protocol uses
significantly impacts the performance. We benchmark
the performance of our own service discovery proto-
col, FRODO against the performance of first genera-
tion service discovery protocols, Jini and UPnP during
increasing communication and node failures. The re-
sults show that FRODO has the best overall consistency
maintenance performance.

1. Introduction

A service discovery protocol has two types of en-
tities: User and Manager. A Manager is a service
provider, which has a set of services. Each service is
represented as a Service Description (SD), which de-
scribes the service in terms of: (1) device type (e.g.
printer), (2) service type (e.g. color printing) and (3)
attribute list (e.g. location, paper size). A User is an
entity that has a set of requirements for the services it
needs. There are two main types of service discovery
architectures: registry-based (e.g. Jini [6]) and peer-
to-peer (e.g. UPnP [5]). A registry-based architec-
ture has a third entity, called the Registry. A Manager
registers its services at a Registry, and Users discover
the services through unicast queries to the Registry.
The peer-to-peer architecture has no Registries, and
Users discover Managers through broadcast or multi-
cast queries. The registry-based architecture reduces
network traffic and makes a network more manage-
able by allowing Registries to keep track of arriving
and departing services. The peer-to-peer architecture

avoids single point of failure problems, as may exist in
the registry-based architecture, but increases network
traffic. A hybrid of these two architectures can be im-
plemented to allow the protocol to be more resilient
against failure on the Registry, while reducing network
traffic (e.g., SLP [1] and FRODO [8]).

Users typically cache the discovered service descrip-
tion to reduce the access time to the service, and re-
duce bandwidth usage (by avoiding repeated queries
to rediscover the service). The tradeoff to caching is
the need to maintain a consistent view of the service.
Polling for updates (pull model), and notification by
the Manager when the service changes (push model)
are two consistency maintenance mechanisms in service
discovery. However, communication and node failures
may cause the consistency maintenance mechanism to
fail to update the Users. We find that as communi-
cation and node failures increase, a number of failure
scenarios are created. How well a service discovery pro-
tocol performs depends on the type of recovery tech-
nique that the protocol adopts when dealing with each
failure scenario. We classify consistency maintenance
recovery techniques according to the failure scenarios,
and propose techniques that improve performance.

Contribution. This paper contributes to the re-
search and development of service discovery systems by
(1) providing a novel classification and detailed analy-
sis of consistency maintenance recovery techniques, ac-
cording to failure scenarios, (2) comparing recovery
techniques in state of the art service discovery proto-
cols (FRODO, UPnP and Jini), and (3) showing that
by employing a combination of selected recovery tech-
niques, FRODO has the best overall consistency main-
tenance performance.

Section 2 provides a brief overview of FRODO. Sec-
tion 3 describes the consistency maintenance funda-
mentals including the principles, mechanisms, recov-
ery techniques and the performance metrics. Section 4
presents how we have modeled FRODO based on ex-

1-4244-0054-6/06/$20.00 ©2006 IEEE

isting UPnP and Jini models, and explains the experi-
mental design. Section 5 compares the performance of
FRODO against UPnP and Jini, and discusses the im-
pact of the recovery techniques we present in Section 3
on the consistency maintenance performance. Section 6
concludes.

2. FRODO

A home environment differs in two aspects from the
professional connected environment. These are:

• Resource-awareness - Cost of devices is a prime
factor for the home user. New sophisticated tech-
nologies should not demand too much additional
resources on existing services, and raise cost.

• Robustness - Unlike the professional environment,
the home environment does not have the luxury
of a network administrator to monitor and resolve
network disturbances. Home owners should not
be restricted in how they manage their appliances
(unplugging, moving).

Thus resource-awareness and robustness are two
main objectives for service discovery in the home envi-
ronment.

To satisfy resource-awareness, FRODO introduces
device classification: (1) 3C (Cent) device class - simple
devices with restricted resources (e.g. simple sensors).
Nodes in this class are only Managers. (2) 3D (Dollar)
device class- medium complex devices (e.g. tempera-
ture controller). A node in this class can be a Man-
ager and a User with limited behaviors and (3) 300D
(Dollar) device class - powerful devices, controlled by
a complex embedded computer. A node in this class
can be a Manager, a User and a Registry (e.g. set-top
boxes).

To address robustness, the system is made resilient
to single point of failure problems through a leader elec-
tion protocol. The 300D nodes elect the most powerful
node as the Registry. We call the Registry the Central,
because besides being the repository for service descrip-
tions, the Central also actively monitors the system for
new and defunct nodes, and responds according to their
device classes. A Backup is appointed by the Central
to store configuration information. The Backup takes
over automatically in case of Central failure.

Unlike first generation service discovery systems,
FRODO does not depend on the recovery abilities of
lower layer protocols (such as TCP) to perform its
tasks. This allows the protocol to be deployed together
with leaner lower layer protocol stacks, with little or no
error recovery mechanisms.

3. Fundamentals of Consistency Mainte-
nance

Users become consistent with the Manager when
they successfully receive the correct update informa-
tion from the Manager. To explain update informa-
tion, we use an example of a Manager which offers a
printing service. The service description is a list of
attribute-value pairs.

SD = {DeviceType=Printer,

ServiceType=ColorPrinter,

AttributeList{PaperSize=A4,

Location=Study}}

If the structure, or information in the attribute-
value pair changes, the service description changes.
For example, the “ServiceType” changes from “Col-
orPrinter” to “Black&WhitePrinter”. In the registry-
based architecture, the printer updates the Users via
the Registry, while in the peer-to-peer architecture, the
printer updates the interested Users directly.

3.1 Consistency maintenance principles

Service discovery complies with eventual consis-
tency, because it is client-centric, which tolerates tran-
sient inconsistencies, just like Bayou [7], the distributed
database system for mobile users. For discovered ser-
vices to be useful, it is important that the consistency
guarantees are specified clearly. We specify the require-
ments for consistency maintenance in service discov-
ery protocols in the Service Discovery Principles [9],
where the Configuration Update Principles require the
User and/or Registry to always eventually regain con-
sistency with the Manager after the service changes.
The User detects the change in the Manager, and re-
gains consistency by obtaining the correct view of the
service, either from the Manager directly (2-party Con-
figuration Update Principle), or via the Registry (3-
party Configuration Update Principle). The princi-
ples hold true only when there is connectivity among
the communicating entities (e.g., valid communication
paths). The term always eventually states that a suc-
cessful update invariably takes place at some time in
the future, without giving a concrete time constraint.

3.2. Consistency maintenance mechanisms

Before we delve deeper into the issues facing consis-
tency maintenance in an environment with communi-
cation and node failures, we first introduce the basic
mechanisms that existing service discovery protocols
implement. The User has to subscribe either directly

to the Manager (2-party subscription) or to a Registry
(3-party subscription) to receive updates. A subscrip-
tion between the User and the Manager or between
the User and the Registry remains valid as long as the
subscription lease does not expire. To maintain a valid
subscription lease, Users are required to send messages
periodically to the lessee to indicate their continued
interest with the service.

There are two basic consistency maintenance mech-
anisms:

(CM1) Notification (push-based update) - The User re-
ceives an update when the service description
changes. In 3-party subscription, the Manager
notifies the Registry which then propagates the
update to subscribed Users. In 2-party subscrip-
tion, the Manager notifies subscribed Users di-
rectly. Update notification is a built-in mechanism
in a service discovery protocol. Examples of state
of the art protocols that have this capability are
FRODO, UPnP and Jini.

(CM2) Polling (pull-based update) - The User regains con-
sistency by polling the Manager or the Registry
to retrieve the updated service description. In 3-
party subscription, the Manager updates the Reg-
istry by re-registering its services. In both sub-
scription schemes, periodic queries from the User
eventually retrieve the updated service descrip-
tion. Typically, polling is implemented in the ap-
plication layer, with hooks from the service discov-
ery protocol. In FRODO, UPnP, Jini and SLP,
polling is implemented by requiring the User to
query the service periodically.

Dabrowski and Mills [3] show that periodic polling
is the more effective method if the application allows
persistent polling (even when the lower protocol lay-
ers signal a connection failure), therefore increasing
the chances for the User to retrieve the updated ser-
vice description eventually. However, Dabrowski and
Mills show that polling is a slower mechanism than
update notification because of the dependency on the
period of polling. We find that polling is also a less
efficient mechanism than update notification in sce-
narios where services rarely change, causing multiple
redundant polls. Furthermore, unlike update notifi-
cation, polling is an application-dependent approach
(e.g., frequency of poll) and does not reflect the actual
built-in consistency maintenance capability of service
discovery protocols. Thus, in this paper, we focus only
on issues and performance of consistency maintenance
through notification to assess the ability of the proto-
cols (FRODO, UPnP and Jini) to recover from failures
and regain consistency.

During update notification, the Manager updates
the Users by: (1) propagating an invalidation message
that indicates that the service has been updated. In
UPnP, the Manager notifies the interested User that
a change has occurred, whenever the service changes.
Consecutive polling by the User retrieves the updated
data. This method is efficient for a service that has fre-
quent updates, but causes unwanted redundancy and
delay for services that rarely change. (2) Propagating
the updated data, as used in Jini and FRODO. This
method is fast and efficient for a service that changes
infrequently. An adaptive method that dynamically
switches between sending an invalidation message or
sending the update can be implemented, as done in
the Alex protocol [2], a filesystem that adapts the type
of update propagation based on the age of the file (it
assumes older files are less likely to be modified than
younger files). However, to our knowledge, no existing
service discovery protocols adopt the adaptive mecha-
nism, due to the complexity in implementation.

FRODO is unique because it implements both 2-
party (for 300D Managers) and 3-party (for 3D/3C
Managers) subscriptions. The User is able to detect
which subscription process to use, based on the device
class of the Manager.

3.3. Recovery techniques for consistency
maintenance

Due to temporary communication failures or node
failures, notification of updates may fail. Neverthe-
less, when connectivity among entities is restored, the
service discovery system is expected to recover and re-
gain consistency, as stated by the Configuration Up-
date Principles. Our in-depth analysis of the behavior
of service discovery during communication and node
failures results in a novel method of identifying, classi-
fying and proposing new recovery techniques based on
the type of update and failure scenario. Table 1 is a
summary of our classification of recovery techniques.

During communication and node failures, the sub-
scription between the entities may remain valid, even
though update notification fails. This is because the
participating entities may face short-term failures, and
restore connectivity before the subscription lease ex-
pires. Hence, it is up to the continuing subscription
process to ensure Users regain consistency. We call
this type of recovery subscription-recovery. When the
subscription lease expires, consistency maintenance de-
pends on the inherent capability of the service discov-
ery protocol to detect, and rediscover purged nodes and
services. Hence, this type of recovery is called purge-
rediscovery.

Table 1. Classification of recovery techniques for consistency maintenance. Subscription-recovery techniques
for each type of update take effect when subscription still remains valid. Purge-rediscovery techniques occur
when subscription expires, and may coincide based on the failure scenario.

Subscription-recovery Purge-rediscovery
Update scenario Recovery technique Purge and rediscover scenario Recovery technique
Critical update SRC1 Manager rediscovers the Registry

(and vice-versa)
PR1

SRC2 User rediscovers the Registry PR2
Non-critical update SRN1 Registry rediscovers the User PR3

SRN2 Manager rediscovers the User PR4
User rediscovers the Manager PR5

1. Subscription-recovery. The success of consis-
tency maintenance using this type of recovery depends
on how persistently the subscription process tries to
update the User. The degree of persistence in notify-
ing updates depends on the type of update scenario:
critical update and non-critical update. This is because
not all applications require the same level of persis-
tence in sending and receiving updates. By specifying
the update scenario, we isolate necessary techniques for
successful consistency recovery.

Critical update. This update scenario applies to ser-
vices that are critical, and need correct information
urgently. An example is a fire alarm Manager that
changes the value of an attribute, “status” from “ON”
to “OFF”, and is required to update the PDA of the
homeowner. For critical updates, we propose two types
of recovery techniques.

(SRC1) Acknowledgements and retransmissions of notifi-
cation - Update notifications sent by the Manager
or the Registry must be acknowledged to indicate
success or failure. We propose no retransmission
limit for the notification messages. Retransmis-
sion is only stopped when (a) the subscription ex-
pires, (b) acknowledgement for the notification is
received, or (c) the application layer indicates loss
of connectivity. Update retransmissions can be
spaced in a periodic manner, until acknowledged
by the Registry or the User.

(SRC2) Active User and Registry monitoring of updates -
This technique takes effect if the User requires a
history of missed updates from the Manager. The
User and the Registry monitor either the sequence
number on the update notifications, or the time
period for the next notification (the latter applies
only to Managers that provide fixed, periodic up-
dates). When an expected update is missed, the
User or the Registry requests the update. The

Manager caches the history of service changes and
only purges the cached updates after all interested
Users successfully obtained the complete view of
the service.

Non-critical update. Unlike the critical update sce-
nario, the non-critical update scenario applies to ser-
vices that are not sensitive to, or not overly affected
by missed updates. An example is a printer Manager
that updates a User when its paper tray empties. We
propose the following recovery techniques to improve
consistency maintenance performance.

(SRN1) Acknowledgements and retransmissions of notifi-
cation - Update notifications sent by the Manager
or the Registry are acknowledged to indicate suc-
cess or failure. Retransmissions of unsuccessful
notification is done until either (a) retransmission
limit is reached, (b) acknowledgement is received,
(c) the subscription expires, (d) the application
layer indicates lack of connectivity, or (e) the ser-
vice changes again, requiring the Manager to reset
the notification process.

(SRN2) Future retry of unsuccessful notification - This
technique occurs after SRN1 fails to update the
User. The Manager caches information on incon-
sistent Users and retries notification once a mes-
sage from the inconsistent User is received (such
as the subscription lease renewal message). The
status of the inconsistent User is cached until (a)
the subscription expires, (b) the service changes
again, requiring the Manager to reset the notifica-
tion process, or (c) the update is acknowledged.

The Configuration Update Principles only require the
User to regain consistency eventually, but not necessar-
ily recover particular values of previously missed up-
dates. Therefore recovering updates caused by multi-
ple changes are not treated in the non-critical update
scenario.

2. Purge-rediscovery. The success of consistency
maintenance using this type of recovery depends on the
proficiency of the service discovery protocol to detect,
register and rediscover nodes and services after the sub-
scription expires. We propose the following recovery
techniques for the User to regain consistency, based
on the “purge” scenario. A combination of purge-
rediscovery techniques take effect if several failure sce-
narios occur simultaneously.

(PR1) The Manager purges the Registry, or vice-versa:
the Manager and the Registry rediscover each
other through (a) the Registry’s periodic broad-
cast/multicast announcement, or (b) the Man-
ager’s periodic broadcast/multicast announce-
ment (here, the Registry contacts the Manager).
When the Manager re-registers, the Registry noti-
fies interested Users of the new registration. The
User regains consistency from the Registry noti-
fication. Users receive notifications of new ser-
vice registrations by explicitly requesting for ser-
vice notification, when they first establish contact
with the Registry.

(PR2) The User purges the Registry: the User rediscov-
ers the Registry through (a) the periodic Registry
announcement, or (b) the User’s periodic broad-
cast/multicast announcement (here, the Registry
contacts the User). The User then queries the Reg-
istry for the required service to regain consistency
with the Manager (provided that the Manager reg-
isters the updated service description).

(PR3) The Registry purges the User: subsequent lease re-
newal from the User to the Registry results in a re-
subscription process, where the User then receives
the updated service description from the Registry.

(PR4) The Manager purges the User: subsequent mes-
sages received from the purged User allows a re-
subscription process, where the User then receives
the updated service description.

(PR5) The User purges the Manager: the User can purge
the Manager when the service lease expires, or
when the Registry notifies the User when it purges
the Manager. The User purges the Manager only
if the application layer is not communicating with
the Manager. The User rediscovers the Manager
through (a) broadcast/multicast query with its re-
quirements, where the matching Manager replies
with the updated service description, or (b) broad-
cast/multicast periodic announcement of the Man-
ager, where the User then queries the Manager for
the service description, or (c) unicast query to the
Registry for the service

During communication failure through message
loss [10], retransmissions and acknowledgements
through SRC1 and SRN1 are useful, as long as sub-
scription remains valid. SRC2 and SRN2 are necessary
for satisfying the eventual consistency guarantee in the
Configuration Update Principles [9]. In Section 5, we
show that during short-term interface and node failures
(where nodes recover from failures before the subscrip-
tion expires), SRN2 is the most effective technique.
When the subscription expires, PR5 in 2-party sub-
scription is found to be most effective, where Users
can listen to the broadcast/multicast announcement of
the Manager, and retrieve the updated service. PR1 is
beneficial in 3-party subscription, where the Registry
notifies the Users when the Manager registers.

3.4. Consistency maintenance through no-
tification in Jini, UPnP and FRODO

We now compare the consistency maintenance of
Jini, UPnP and FRODO. Jini uses 3-party subscrip-
tion. The Manager sends an update to the Registry,
and receives an acknowledgement. The Registry propa-
gates the update to the subscribed Users. In UPnP, the
Manager sends update notifications to the subscribed
Users through 2-party subscription. The notification
(invalidation message) indicates only that the service
has changed. A User receives the actual update after
it requests the change. In both Jini and UPnP, a mes-
sage is sent only if the reliable transmission using TCP
successfully sets up a connection between the sender
and the receiver. Messages for setting up the connec-
tion and notifying the update are acknowledged and
retransmitted, as part of the TCP behavior.

FRODO with 3-party subscription supports re-
source lean 3D and 3C Managers, while 2-party sub-
scription is used for 300D Managers. The task of main-
taining subscriptions for resource-lean Managers is del-
egated to the Central, so that the Manager needs only
to notify the Central if its service changes. The Central
notifies the subscribers when the Manager sends an up-
date. In both subscriptions, every update message sent
by the Central and Manager is acknowledged. This is
still a smaller overhead compared to that incurred by
reliable transmission used by Jini and UPnP.

The recovery techniques used during purge-
rediscovery depends mainly on the type of architecture,
whether peer-to-peer or Registry-based. The compe-
tence of the protocols in performing consistency main-
tenance rely upon how they actually implement the
recovery techniques. For example, both UPnP and
FRODO with 3-party subscription implement PR5,
but Users use different approaches in how they redis-

cover the Manager. UPnP uses multicast User queries
and Manager announcements, while FRODO uses uni-
cast queries to the Registry, before trying multicast
queries. We show the differences in implementation in
Table 2.

FRODO is unique because it supports both 2-party
and 3-party subscriptions. FRODO is also the only
protocol to support SRN2, where the Manager retries
an unsuccessful update when it receives a subscription
renewal message from the User. In our work on Service
Discovery Principles, we show that FRODO satisfies
the Configuration Update Principles for the critical up-
date scenario with a combination of SRNC1 and SRC2
failure recovery techniques, where periodic updates are
monitored by the User, and when the expected update
does not arrive, the User requests for the update from
the Registry or the Manager.

3.5. Update Metrics

We can benchmark the consistency maintenance
performance of state of the art service discovery sys-
tems by using the Update Metrics, developed by
Dabrowski and Mills. The Update Metrics measure
the consistency maintenance performance of service
discovery systems against a particular failure rate, λ
(0 ≤ λ ≤ 1). An example of failure rate is the pro-
portion of time that a node is unable to communicate
during the lifetime of the system.

1. Update Responsiveness, R(λ). Measures the
ratio of the time left after the update is propagated to
a User, before a deadline, D to the total time available
for the Manager to propagate the update before D.

Let X be the number of runs repeated in the experi-
ment, N the number of Users in the system, C(i)(< D)
the time when the service changes, and U(i, j) the time
a User receives the update and reaches consistency,
where j = 1 to N , and i = 1 to X. The relative
change-propagation latency, L(i, j, λ) is:
L(i, j, λ) = [(U(i, j, λ) − C(i))/(D − C(i))]
Update Responsiveness, R(λ) is the median of 1 −
L(i, j, λ), taken over j ∈ 1..N and i ∈ 1..X. The me-
dian calculation eliminates biasing from extreme sce-
narios where only messages from the Manager or the
Registry are lost (outliers), unlike mean calculation.

2. Update Effectiveness, F (λ). Measures the
probability of success for a User to reach consistency.

Define F (λ) =

X∑

i=1

N∑

j=1

chg(i, j, λ)

X.N

where chg(i, j, λ) = 1 if U(i, j, λ) < D and
chg(i, j, λ) = 0 otherwise.

3. Efficiency Degradation, G(λ). This metric is
our slight modification of the Update Efficiency metric
by Dabrowski and Mills. This metric takes the ratio
of a protocol’s own minimum number of messages to
propagate an update, m (at 0% failure rate), against
the total number of messages y, propagated to get all
the Users in the system to regain consistency.

G(λ) =

X∑

i=1

(m′/y(i, λ))

X
In the less accurate Update Efficiency metric, the value
m was fixed to the number of messages propagated by
the most efficient protocol at 0% failure rate. This
gives an unfair advantage to the baseline protocols as
failure rate increases. It is possible that a baseline pro-
tocol that propagates the least messages at 0% fail-
ure rate degrades faster than the other protocols at
higher failure rates. Therefore the Efficiency Degra-
dation metric permits a more accurate evaluation of
protocol efficiency because it reflects the effort in the
protocols as failure rate increases, to get the Users to
regain consistency.

4. Modeling Methodology

We use Rapide [4], an Architectural Description
Language and tool suite to build an executable model
of FRODO. Rapide is designed to support component-
based development of systems by utilizing architecture
definitions as the development framework. It offers
event-based simulation for distributed, time-sensitive
systems.

We simulate a total of five models: (1) UPnP, (2)
Jini with 1 Registry, (3) Jini with 2 Registries, (4)
FRODO with 3-party subscription using 1 300D node
as the Registry and (5) FRODO with 2-party subscrip-
tion, using 8 300D nodes (but still a single Registry
system). Our model on FRODO with 2-party subscrip-
tion contains only 300D nodes, because the nodes have
resources similar to the nodes in Jini and UPnP. We re-
produce the published results for UPnP and Jini from
Dabrowski and Mills to benchmark against FRODO.
The following steps describe our approach.

Step 1: Modeling FRODO. The main challenge
in modeling FRODO is in developing a framework of
behaviors for User and Manager, according to the type
of device class. In UPnP and Jini, nodes are homoge-
nous, allowing more straightforward models. In this

Table 2. Recovery techniques, as implemented in the UPnP, Jini and FRODO models.
.

Consistency maintenance
recovery techniques

UPnP Jini FRODO

Topology 1 Manager, 5 Users 2 topologies. (a) 1 Registry, 1
Manager, 5 Users, (b) 2 Reg-
istries, 1 Manager, 5 Users

2 topologies. (a) 1 300D Registry, 1
3D Manager, 5 3D Users (b) 1 300D
Registry, 1 300D Manager, 5 300D
Users, 1 300D Backup

SRN1: Retransmissions
and acknowledgements

TCP enables SRN1 TCP enables SRN1 Retransmissions and acknowledge-
ments of selected messages

SRN2: Retry on unsuc-
cessful notification

- - Manager in 2-party subscription re-
tries update notification when it re-
ceives subscription renewals from in-
consistent Users

PR1: Manager re-
registers, and Registry
notifies User

- Users are notified when the
Manager registers in the future.

Users are notified if the Manager is
available or registers in the future

PR2: User queries the
rediscovered Registry for
service

- Users query for the service
when the Registry is rediscov-
ered

-

PR3: Registry rediscov-
ers the User, and re-
quests resubscription

- Registry responds to an un-
known User with an error mes-
sage that requires the User to
rediscover the Registry

Registry requests the User to resub-
scribe

PR4: Manager rediscov-
ers User, and requests re-
subscription

Manager requests
purged Users to resub-
scribe

- 300D Manager in 2-party subscrip-
tion requests purged Users to resub-
scribe

PR5: Users purges and
rediscovers Manager

Users rediscover the
Manager through mu-
ticast queries, or by
listening for multicast
announcements from
the Manager

- 3-party subscription: Users purge
the subscription when the Registry
purges the Manager. Managers are
rediscovered by querying the Registry
or by sending multicast queries when
the Registry is not responding

experiment, we do not include 3C Managers because
they behave exactly the same as 3D Managers during
consistency maintenance.

Step 2: Interface failure We use interface failure
to model communication and node failures. During the
experiment, failures on the receiver or the transmit-
ter simulate communication failure, where a node may
send messages, but is not be able to receive messages,
or vice-versa. Simultaneous receiver and transmitter
failure on a node simulates node failure. For each node,
the transmitter and/or receiver are failed randomly, at
a failure rate λ, varying from 0.00 to 0.90, in increments
of 0.05. Interface failure occurs at a random time, from
100s to 5400s. Once the interface failure is activated,
it remains in effect for a portion of the simulation du-
ration (λ× 5400s), where 5400s is the entire simulation
duration (the reason for 5400s is given in Step 5).

Step 3: Constructing the failure response of
transmission protocols. All three protocols use

unreliable multicast transmission (UDP). For unicast
transmission, FRODO also uses inexpensive UDP,
while Jini and UPnP use reliable unicast transmis-
sion (TCP). In UDP, when a message is discarded, the
source does not learn of the loss. In TCP, a Remote
Exception (REX) is sent to the service discovery layer
of UPnP and Jini when an acknowledgement is not re-
ceived, after four retries.

Step 4: Constructing the service discovery be-
havior and recovery techniques. In UPnP, the
Manager sends 6 multicast announcement messages
every 1800s. In Jini, the Registry sends 6 multicast
announcements messages every 120s, while in FRODO,
the Registry sends 2 multicast announcements every
1200s. In Jini and FRODO, when the Registry is
purged, the Manager rediscovers the Registry by listen-
ing for the Registry announcements. FRODO also re-
quires 3D Managers to announce their presence period-
ically until the Registry is discovered. 300D Managers
multicast announcements to start the leader election

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Interface failure (%)

U
p

d
a

te
 E

ff
e

c
ti
v
e

n
e

s
s

Jini with 1 Registry Jini with 2 Registries UPnP

FRODO with 3-party subscription FRODO with 2-party subscription

(i) SRN2 for FRODO

with 2-party subscription

(ii) PR1, PR3

(iii) PR1, PR4

(iv) PR5

Figure 1. (i) SRN2 is most effective because the
Manager resends the update notification when the
lease is renewed. (ii) Efficient PR1 in FRODO al-
lows the Registry to update the Users when the
Manager or the Registry recovers from failures.
PR3 and PR4 in (ii) and (iii) allows Users to re-
subscribe to the Registry and the Manager re-
spectively. (iv) PR5 is most effective at high fail-
ure rates where Users rediscover the Manager
through the Manager’s periodic announcements.

process to discover the Registry. We deliberately model
FRODO parameters to reflect resource-awareness by
not requiring all messages to be retransmitted and ac-
knowledged (only a selected few). We set the period of
the Registry announcements so that it is short enough
for the discovery process, but long enough so that se-
vere interface failures at high failure rates do not imbal-
ance the system by continuously restarting the leader
election process.

The registration lease period for a discovered ser-
vice to remain valid in the cache of the Registry or
User is set to 1800s for all three protocols. In UPnP
and FRODO with 2-party subscription, the User sub-
scribes to a discovered Manager. The subscription lease
is 1800s for both systems.

Table 2 compares the recovery techniques in the
models, and show the differences in implementation.

Step 5: Experiment design We use the applica-
tion scenarios and parameters used by the UPnP and
Jini models [3] for fair comparison. A simulation run
lasts for 5400s. The run time is based on the UPnP
recommended service lease period of 1800s. All three
systems use this period for maintaining a lease for regis-

PR1 Impact on FRODO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Interface failure (%)

U
p

d
a

te
 E

ff
e

c
ti
v
e

n
e

s
s

FRODO with 3-party subscription, without PR1 FRODO with 2-party subscription, without PR1

FRODO with 3-party subscription, with PR1 FRODO with 2-party subscription, with PR1

Figure 2. Impact of PR1 recovery technique on the
Update Effectiveness of FRODO with 2-party and
3-party subscriptions

tration and subscription. Thus, using three announce-
ments provides a reasonable opportunity for a system
to regain consistency. Five Users discover the Manager
and obtain the service description. This process occurs
within the first 100s without interface failure. At a ran-
dom time between 100s to 2700s, the Manager’s service
changes, causing the Users to become inconsistent with
the Manager. Users are notified of this change through
3-party or 2-party subscription.

5. Results and Discussion

The results we present in this section is a product
of a detailed analysis on a random selection of 5 to 10
event logs (out of 30 logs) for each simulated system, at
every failure rate. We use 30 runs for each failure rate,
to obtain median and average values for the Update
Metrics.

Our analysis show that Update Effectiveness is the
predominant metric that reflects the impact of recov-
ery techniques. We find that at lower failure rates (be-
low 30%), the prominent recovery technique is SRN2,
as implemented in FRODO with 2-party subscription
(Figure 1(i)). The impact of SRN2 is apparent espe-
cially at low failure rates because Users recover from
failures quickly, before subscription is purged. An ex-
ample of a scenario with a lack of SRN2 is given below.

Failure Rate: 15%

Manager Tx down at 381, up at 1191

User Tx and Rx down 2023, up at 2833

UPnP 15% User 2507 5400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Interface failure (%)

U
p
d
a
te

 R
e
s
p
o
n
s
iv

e
n
e
s
s

Jini with 1 Registry Jini with 2 Registries UPnP

FRODO with 3-party subscription FRODO with 2-party subscription

(i) PR2 for Jini

(ii) UDP, PR1, PR3

(iii) UDP, SRN2, PR1, PR4

Figure 3. (i) PR2 allows Users in Jini to regain con-
sistency by querying the Registry. FRODO uses
SRN2, which depends on the subscription lease
period to regain consistency. (ii) UDP transmits
messages faster than TCP. PR1 enables the Reg-
istry to update the Users when the Registry or
the Manager recovers from failures. PR3 enables
purged Users to resubscribe with the Registry. (iii)
2-party subscription, UDP, SRN2, PR1 and PR4 al-
low Users in FRODO to be the most responsive.

The example shows the simulation result of UPnP
at 15% failure rate. Tx and Rx mean transmitter and
receiver, and the numbers represent time, in seconds.
The service changes at 2507s, but the Manager fails to
update the User which has both interfaces down from
2023s until 2833s. The update notification fails, and
the User never regains consistency! This is a failure to
satisfy the Configuration Update Principles. FRODO
with 2-party subscription implements SRN2, where the
Manager retries the update at a later point of time,
when the User renews its subscription with the Man-
ager. Therefore, the effectiveness of FRODO with 2-
party subscription is the highest at low failure rates
(Figure 1(i)).

At higher failure rates, PR5 as implemented in
UPnP (Figure 1(iv)) is the most effective. In FRODO
with 2-party subscription, Users rediscover the Man-
ager via the Registry, as opposed to direct, peer-to-peer
communication in UPnP, causing the PR5 implemen-
tation in UPnP to be more effective than in FRODO.
PR1 as implemented in FRODO (Figure 1(ii)) yields
the next highest effectiveness. A control experiment
with and without PR1, shown in Figure 2 demonstrates
the impact of PR1 on the Update Effectiveness of both

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Interface failure (%)

E
ff

ic
ie

n
c
y
 D

e
g

ra
d

a
ti
o

n

Jini with 1 Registry Jini with 2 Registries UPnP

FRODO with 3-party subscription FRODO with 2-party subscription

Figure 4. FRODO uses lesser messages during
consistency messages than Jini and UPnP. In av-
erage, UPnP propagates lesser messages than
Jini, even though UPnP sends more messages
when there are no failures.

FRODO systems.
Update Responsiveness metric as shown in Figure 3

reveals that FRODO with 2-party subscription incurs
the overall shortest delay for Users to regain consis-
tency, due to a combination of direct, peer-to-peer com-
munication between the User and the Manager, fast
UDP transmission, low number of messages during con-
sistency maintenance and the use of SRN2 and PR1
recovery techniques.

Efficiency Degradation metric is shown in Figure 4.
FRODO gives the best performance for the Efficient
Degradation metric. At 0% failure rate, Jini with two
Registries and UPnP are the least efficient because
they propagate 14 and 15 messages each, while the
rest of the systems propagate an average of 7 messages
to regain consistency. As mentioned earlier in Section
3.2, update propagation through invalidation, used by
UPnP is not efficient for services that do not change
frequently, as is the scenario in the experiment. In
Jini with 2 Registries, update notification has twice the
number of messages than in Jini with a single Registry
because the Manager notifies both Registries, and the
Users also receive notifications from both Registries.
Although Jini with a single Registry is as efficient as
FRODO and more efficient than UPnP, it degrades
faster than the other two protocols when failure rate
increases. The Efficiency Degradation metric of the
UPnP and Jini models do not take into account the
messages used by the transmission layers. Therefore,

Table 3. Average metrics results across failure rates from 0% to 90%
.

Update Metrics UPnP Jini with 1
Registry

Jini with 2
Registries

FRODO with
3-party sub-
scription

FRODO with
2-party sub-
scription

Update Responsiveness, R 0.553 0.474 0.476 0.580 0.666
Update Effectiveness 0.922 0.802 0.825 0.878 0.861
Efficiency Degradation, G 0.385 0.311 0.361 0.428 0.429

the true performance for Jini and UPnP is even lower
than shown in Figure 4.

Table 3 shows the average metric results for all fail-
ure rates. Although FRODO is a single Registry ar-
chitecture, and uses unreliable transmission, it has the
highest overall performance where it is the most re-
sponsive and efficient protocol, while maintaining a
high degree of effectiveness. UPnP has the best av-
erage effectiveness because of its better performance at
high failure rates.

6. Conclusion

Consistency maintenance in service discovery en-
sures that Users eventually obtain the correct view
of the discovered services. We present a novel clas-
sification of recovery techniques for consistency main-
tenance, and propose new techniques to improve per-
formance. We use simulations to show that the type
of recovery technique a protocol uses, and how it im-
plements them significantly impacts the proficiency of
consistence maintenance. We benchmark the perfor-
mance of our own service discovery protocol, FRODO
against the performance of first generation service dis-
covery protocols, Jini and UPnP during increasing
communication and node failures. The results show
that FRODO has the best overall consistency mainte-
nance performance.

7. Acknowledgement

This research is part of the At Home Anywhere
project sponsored by the Netherlands Organization
for Scientific Research (NWO) under grant number
612.060.111, and by the IBM Equinox program. We
thank Christopher Dabrowski and Kevin Mills from the
US National Institute of Standards and Technology for
their support and contribution to this paper.

References

[1] C. Bettstetter and C. Renner. A comparison of service
discovery protocols and implementation of the service

location protocol. In Proceedings of 6th EUNICE Open
European Summer School: Innovative Internet Appli-
cations, pages 101–108. University of Twente, Septem-
ber 2000.

[2] V. Cate. Alex - a global file system. In Proceedings of
the USENIX File System Workshop, pages 1–11, Ann
Arbor, Michigan, 1992.

[3] C.Dabrowski, K.Mills, and J.Elder. Understanding
consistency maintenance in service discovery architec-
tures during communication failure. In Proceedings
of the Third International Workshop on Software and
Performance, pages 168–178. ACM Press, July 2002.

[4] D. Luckham. Rapide: A language and toolset for sim-
ulation of distributed systems by partial ordering of
events. In Proceedings of Worldwide Computing and
Its Applications, International Conference, WWCA
’98, Second International Conference, volume 1368 of
Lecture Notes in Computer Science, pages 88 – 96.
Springer-Verlag, March 1998.

[5] Microsoft. Universal Plug and Play Architecture,
V1.0, Jun 2000.

[6] Sun Microsystems. The Jini Architecture Specifica-
tion, version 2.0, June 2003.

[7] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer.
Bayou: replicated database services for world-wide ap-
plications. In EW 7: Proceedings of the 7th workshop
on ACM SIGOPS European workshop, pages 275–280,
1996.

[8] V. Sundramoorthy, J. Scholten, P. G. Jansen, and
P. H. Hartel. Service discovery at home. In 4th
Int. Conf. on Information, Communications & Signal
Processing and 4th IEEE Pacific-Rim Conf. On Mul-
timedia (ICICS/PCM), page 1929. IEEE Computer
Society Press, December 2003.

[9] V. Sundramoorthy, C. Tan, P. H. Hartel, J. I. den Har-
tog, and J. Scholten. Functional principles of registry-
based service discovery. In 30th Annual IEEE Conf.
on Local Computer Networks (LCN), page to appear,
Sydney, Australia, Nov 2005. IEEE Computer Society
Press.

[10] V. Sundramoorthy, G. J. van de Glind, P. H. Hartel,
and J. Scholten. The performance of a second gen-
eration service discovery protocol in response to mes-
sage loss. In 1st Int. Conf. on Communication System
Software and Middleware, page to appear, New Delhi,
India, Jan 2006. IEEE Computer Society Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

