
A Proactive Fault-detection Mechanism in Large-scale Cluster Systems 

Wu Linping1,2, Meng Dan1, Gao Wen1, and Zhan Jianfeng1

1Institute of Computing Technology, 
Chinese Academy of Sciences, Beijing, China 

{wlp, md, gw, jfzhan}@ncic.ac.cn         

2Graduate School of the Chinese Academy of 
Sciences Beijing, China

wlp@ncic.ac.cn 

Abstract 

To improve the whole dependability of large-scale 
cluster systems, an online fault detection mechanism is 
proposed in this paper. This mechanism can detect the 
fault in time before node fails and enables the proactive 
fault management. The proposed mechanism is 
summarized as follows: First, the dynamic characteristics 
of cluster system running in normal activity are built using 
Time Series Analysis methods. Second, the fault detection 
process is implemented by comparing the current running 
state of cluster system with normal running model. The 
fault alarm decision is made immediately when the current 
running state deviates the normal running model. The 
experiment results show that this mechanism can detect 
the fault in cluster system in good time. 

1. Introduction 

The dependability and availability are the major 
challenges for the large-scale cluster systems. The 
researches related to cluster system dependability are 
divided into two categories approximately. One is High 
Availability (HA) technique based on redundant 
components and aims at providing continuous service. 
When one of the nodes fails, the fail-over procedures will 
begin immediately and the applications running on failed 
node are migrated to another redundant node[1]. The other 
is based on the prediction mechanism. The faults are 
detected in time and the correctly proactive maintenance 
program is implemented before node fails. This method 
avoids the costs of unplanned downtime of nodes. This 
method is named as Proactive Fault Management in 
several related researches[2]. The key question for 

proactive fault management is how to detect the fault in 
system quickly, that's efficient fault detection mechanism. 

In fact, the fault detection mechanism has been applied 
to some mission-critical and safety-critical fields, such as 
the aircraft fault detection[4] and nuclear power plant fault 
detection[5]. Now two related works in computer systems 
are discussed. One is detection of software aging 
phenomena and the other is SMART technology for hard 
disk failure prediction. Software aging[6] is one kind of 
software fault, which is a phenomenon that the state of the 
software system degrades or crashes with time. The 
measurement-based rejuvenation approach deals with 
detection of the existence of software aging and predicting 
aging-related failures. In[7], the operating system resource 
usage and system activity data are collected at regular 
intervals from networked UNIX workstations. A statistical 
trend detection technique is applied to the collected data to 
detect the existence of aging and the estimated time to 
exhaustion is calculated using a non-parametric slope 
estimation technique. In[8], the dynamic characteristic of 
web server is built using time-series ARMA model and the 
ARMA model is used to detect aging and estimate resource 
exhaustion time. To improve the reliability of hard disk, the 
SMART[9] (Self-Monitoring, Analysis and Reporting 
Technology) failure prediction system is currently 
implemented in disk drives. The SMART can detect the 
fault in hard drives before disk fails. The researches related 
to SMART focus on the fault detection and failure 
prediction techniques. For example, in[9][10], the general 
framework is to detect anomalies, or variations from 
“normal” behavior, using a rank-sum null hypothesis test; 
in[11], the fault detection process is implemented using 
different statistical tests based on naive Bayesian classifiers.  

Both software aging detection and SMART methods 
focus on part of system or part of fault models. In this 
paper, we give a proactive fault detection mechanism for 
large-scale cluster systems from system view. System 
monitoring is a necessary component for large-scale 
cluster systems. For example, the system monitoring in 
BlueGene/L is accomplished through a combination of I/O 
node and service node functionality[12]; for 

______________________
This work is supported by the National ‘863’ High-Tech Program of
China (No. 2004AA616010) and the 15th key project of China (No.

2004BA811B09-1)).

1-4244-0054-6/06/$20.00  ©2006 IEEE



Dawning4000A[13], the system monitoring function is 
accomplished by the detector and data bulletin service[14] 
in the cluster operating system Phoenix[15]. The 
performance parameters related to system activity which 
is collected by system monitor at regular intervals are 
various, such as the usage of CPU and Memory or Swap, 
the voltage of nodes, the rotate speed of fan and the 
temperature of nodes. When faults occur in cluster system, 
the actual observation of those parameters by system 
monitor will deviate from their normal running model. So, 
online analysis the state information derived from cluster 
monitoring system can attain the symptom of fault. 
Currently, the analysis of state information is simple 
“threshold detection” method: if one of the performance 
parameters violates the acceptable threshold, the fault 
management system will consider that the fault occurred 
in cluster system and send out an alarm. For example, an 
alarm will be sent to administrator when the load of CPU 
exceeds 90%. The merit of threshold detection is simple to 
implement and appropriate when the signals are static or 
slowly varying. In cluster system, the performance 
parameters are varying with time, so threshold detection 
method is inappropriate. 

This paper proposed a proactive online fault detection 
mechanism based on the activity data collected by cluster 
system monitor. The activity data describes the system 
running state. First, the normal running models are built 
using time series analysis on collected data when cluster 
runs normally. Second, the difference between a 
parameter’s predicted value by normal running model and 
its directly observed value is termed a residual series. All 
parameters’ residual series should be white noise series 
when the cluster system is behaving normally. So, the 
residual series gives the symptom of faults. In the end, the 
Likelihood Ratio Test (In the remainder, LRT for short) 
on the residual series is used to detect faults. The paper is 
organized as follows. Section 2 gives the fault detection 
procedure overview. The main algorithms including 
modeling the cluster normal activities and the LRT 
method are given in section 3. In section 4, we present the 
experiment results and section 5 concludes with future 
work. 

2. Fault detection procedure 

The fault detection procedure is illustrated in figure 1. 
Supposed that one application exclusive use of the nodes 
that it runs on, when one job marked AppM is running on 
one node marked N without faults (marked <N, AppM>), 
the performance parameter S is sampled at regular 
intervals and the time series S(N, t) is formed. The 
normal running model of <N, AppM, S> is built using the 
time series model of S(N, t). The procedure of building 
the time series model is discussed in section 3.1 in detail. 

The time series model can predict the future value of 
parameter S.

After building the normal running models of every       
<N, AppM, S>, we propose an online fault detection 
method based on Slide Window. Define the window W(<o, 
p, r>t-l+1, <o, p, r>t, l) for every <N, AppM, S> where the 
triple <o, p, r>t-l+1 denotes the actual observed value o,
the predicted value p by the normal running model and the 
residual r=o-p at t-l+1 time and <o, p, r>t  denotes the 
actual observed value o, the predicted value p by the 
normal running model and the residual r=o-p at t time; l is 
the length of W. Now, the fault detection procedure is 
described as follows: 

First step: normal running model selection. Select the 
normal running model marked M based on triple <N, 
AppM, S> where N is node name, AppM is job name and S
is one of the performance parameters. 

Second step: window W moves forward one pace. At t
time, the window is W(<o, p, r>t-l+1, <o, p, r>t, l). At t+
t time, the window moves forward one pace and is W(<o, 

p, r>t+ t-l+1, <o, p, r>t+ t, l) where pt+ t is the predicted 

value by model M, ot+ t is the observed value collected 

from system monitor, the residual at t+ t time is rt+ t=

ot+ t pt+ t.

Third step: fault detection. R(l, t) is one l-length  

residual series in W(<o, p, r>t+ t-l+1, <o, p, r>t+ t, l).

Using R(l, t) as the input of fault detection function f and 
calculate the result of f. If f=1, one fault alarm decision is 
made. Otherwise, continue the fault detection process and 
return to the second step. The definition of fault detection 
function is given in 3.3. 

f=1

f=0

Node N Cluster system monitor 
Activity 

data

Normal running models 

Residual series

The fault detection 

function f

Result 

of f ?

Fault alarm

Figure 1. The online fault detection procedure



Fourth step: if AppM is over and another new job is 
load, return to the first step. 

3. The main algorithms 

From above analysis, the key question is building the 
normal running models of every job on every node and 
using the residual series between observed value and 
predicted value of performance parameters as the 
symptom of fault detection. Based on the time series 
analysis technique, the residual series should be a white 
noise series and the distribution of the residual series 

follows the normal distribution N(0,
2
). If fault occurs in 

cluster system, the residual series will deviate from the 
white noise series and the distribution of the residual 

series doesn’t follow the normal distribution N(0,
2
). The 

LRT method is used to construct the fault detection 
function f.

3.1 Modeling the normal activities 

When job AppM is running on node N without faults, 
one of the performance parameters marked S (such as 
usage of CPU and Memory, network bandwidth, etc) is 
sampled at regular intervals by the cluster monitoring 
system. The sample cycle is t and one time series 
marked S(N, t) is formed where N is the length of series. 
The dynamic model is built using time series analysis on 
S(N, t) and this model describes the normal running 
model of <N, AppM, S>. The following gives the detailed 
procedure of building the normal running model of <N, 

AppM, S> using time series analysis on S(N, t). 
First step: Data Preprocess.

For some unpredictable reasons, S(N, t) is not a 
stationary time series. To improve the accuracy of fault 
detection, two data preprocess procedures are necessary 
for S(N, t). One is moving average smoothing method 

and the other is computing the zero average of S(N, t). 
Moving average smoothing: the n-point moving 

average of S(N, t) is Sn(N-n+1, t) and nss
ni

ij
j

n
i )(

1

∑
−+

=
= .

Zero average: suppose µ is the average of time series

Sn(N-n+1, t), that’s )1( +−= ∑ nNn
i

sµ . The zero 

average of Sn(N-n+1, t) is Z(N-n+1, t) where every 

sample is µ−= n
ii sz .

Second step: building the ARIMA model.
Z(N-n+1, t) isn’t a stationary time series generally. 

There is trend in it. Hence, we will first remove the trend 
by several differencing procedures. Define the one pace 
differencing operators is zt=zt-zt-1=(1-B)zt where B is 

the backshift operator, so the d-pace differencing is dzt

=(1-B)d zt.
The d-pace differencing of Z(N-n+1, t) is X(N-n+1-d,

t) where the sample of new series is 

dt
d

j
jtz

j
d

Cd
tzd

tx >∑
= −−=∇= ,

0
)1(         (1) 

For each d=1,2,3…, calculate the Auto Correlation 
Function (ACF) and Partial Auto Correlation Function 
(PACF) of X(N-n+1-d, t) respectively till the X(N-n+1-d,

t) can be regarded as a stationary time series (When the 
ACF of the time series is quickly decreasing, this is an 
indication that the time series is stationary). 

Building the ARMA(p, q) model for X(N-n+1-d, t): 

∑
=

∑
= −−=−−

p

i

q

j
jtajtaitxitx

1 1
θϕ  where p is 

autoregressive order of the model, q is the moving average 
order of the model, at is a white noise series with mean 
zero and variance 2, and ’s and ’s are constants. If q=0, 
the model reduces to AR(p). And if p=0, the model 

reduces to MA(q). Suppose ∑
=

−=
p

i

iBiB
1

1)( ϕϕ  and 

∑
=

−=
q

i

iBiB
1

1)( θθ . So, the above model can be described 

as: (B)xt= (B)at                         (2) 
The key step is determining the order of the model, 

that’s the value of (p, q). The ACF and PACF provide 
important information of (p, q). Table 1 gives the behavior 
of the ACF and PACF for AR(p), MA(q) and ARMA(p, q)
models. 

Table 1. ACF and PACF for AR, MA, ARMA  
AR(p) MA(q) ARMA(p,q)

ACF Trails off Cuts off after lag q Trails off 

PACF Cuts off after lag p Trails off Trails off 

For AR(p) and MA(q), the value of p or q can be 
determined by the cuts off of PACF or ACF. For ARMA(p, 
q), two key points to determine (p, q) are:  

The ACF of ARMA(p, q) begins decay at lag q.
The PACF of ARMA(p, q) decays starting at lag p.

After determine the order of ARMA(p, q), the values of 
’s and ’s are estimated by Least Squares method. 

From (1) and (2), the ARIMA model of Z(N-n+1, t) is 

(B) dzt = (B)at ,t N-n+1                 (3) 
Third step: the normal running model. 

From the analysis of first and second steps, the normal 
running model of <N, AppM, S> is described as 

follows: taBn
tsdB )()()( θµϕ =−∇ , t N-n+1 (4) where 

st is the sample of performance parameter S at time t.

For n
ts

dn
ts

d ∇=−∇ )( µ , formula (4) can be 

described as: taBn
tsdB )()( θϕ =∇ , t N-n+1  (5) 



The model (5) gives the normal activities for <N, 
AppM, S>. If AppM is running on node N without faults, 
the performance parameter S should follow model (5) and 
the residual series {at} between actual observed series and 
predicted series should be white normal noise. Otherwise, 
S will deviate model (5) and the residual series {at} will 
not be white normal noise anymore. So, the fault detection 
question in cluster system is transformed as testing 
whether the residual series is white normal noise or not. 
We use LRT method to verify whether the residual series 
is white normal noise or not. 

3.2 Likelihood Ratio Test 

For an n-length residual series R(n, t), the null 
hypothesis and alternative hypothesis are defined as: 

H0: R(n, t) is white normal noise with mean zero 
(cluster system is running normally); 

H1: The mean of R(n, t) is not zero (there are faults in 
cluster system). 

The level of significance =P{reject H0|H0} is the 
probability of type I error (the probability of rejecting null 
hypothesis that is true) and is the false-alarm ratio. 

Assume one time series whose samples come from 
normal distribution N( 1, 2), where 1 is mean and 1 is 

variance, parameter space is ={( 1, 2); < 1< ,

0< 2< }. So, the above hypothesis test can be described 
as follows: 

H0: R(n, t)~ N( 1, 2) and 1=0, 2>0 

H1: R(n, t)~ N( 1, 2) and 1 0, 2>0 

The subset ={( 1, 2); 1=0, 0< 2< } of  is the 
parameter space for H0. It is a composite versus composite 
test and we use LRT method to do this. The likelihood 
functions of R(n, t) on and  are: 

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
==

∑
=

2

1

2
2

2
212

2
exp

2

1
).,,;,0(

θπθ
θω

n

i
i

n

n

r

rrrLL

( )
( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −
−⎟⎟⎠

⎞
⎜⎜⎝

⎛
==Ω

∑
=

2

1

2
12

2
2121

2
exp

2

1
).,,;,(

θ

θ

πθ
θθ

n

i
i

n

n

x

rrrLL

Let L(ω̂ )=maxL( ) and L( Ω̂ )=maxL( ), that is 

( )

2

1

2

1

1

2

1

2
2

1

2 22

exp

2

1
ˆ

n

n

i
i

n

i
i

n

i
i

n

n

i
i r

ne

nr

r

nr

L

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑∑

∑

∑
=

−

=

=

=
ππ

ω

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=Ω

∑

∑

∑
=

=

=

n

i
i

n

i
i

n

n

i
i nrr

rr

nrr

L

1

2

1

2
2

1

2 )(2

)(

exp

)(2

1ˆ

π

2

1

2

1

)(2

n

n

i
i rr

ne

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=

∑
=

−

π

where nrr
n

i
i∑

=
=

1

.

So the likelihood ratio is  

( ) ( )
( ) 2

1

22

21

)()(1

1

ˆ

ˆ
,,,

n
n

i
i

n

rrrn
L

L
rrr

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+

=
Ω

==

∑
=

ωλλ  and 

the test will reject H0 if  is small. The critical region of 

for H0 is 0 0. In another words, we will reject H0 and 

accept that there are faults in cluster system when 0.
The value of 0 is calculated as: 

02

1

22 )()(1

1 λλ ≤

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+

=

∑
=

n
n

i
i rrrn

, that’s 

( )
cn

nrr

rn n

n

i
i

=−−≥
−−

−

=
∑

)1)(1(

1)(

2
0

1

2

λ    (6) 

The left of formula (6) is a random variable marked t(r1,
r2,…, rn), and t(r1, r2,…, rn) is a t-distribution with n-1 
degrees of freedom. For the given n and the significance 
level , the value of c can be found in the t-table based on 

=P[|t(r1, r2,…, rn)| c; H0].  

So 
22

0 1
1

n

n

c
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
=λ .

For the residual series R(n, t), we reject H0 if 0.
Otherwise, we accept H0.

3.3 The fault detection function 

For the residual series R(l, t) in window     W(<o, 

p, r>t+ t-l+1, <o, p, r>t+ t, l), we use LRT method to test 

whether R(l, t) is white normal noise with mean zero or 

not. For R(l, t) in window    W(<o, p, r>t+ t-l+1, <o, p, 

r>t+ t, l), define the function 
⎩
⎨
⎧

>
≤

=∆+
)(,0

)(,1
)(

0

0

λλ
λλ

if

if
ttm

where and 0 are defined in section 3.2.  
To get rid of the action of noise, we introduce the 

persistence checking parameter w into the Fault Detection 

Function (FDF). The FDF is defined as ( )
s

wsi

imsf
1

)(
+−=

= .

If f=1, one fault alarm decision is made. It is obviously 
that one fault alarm is triggered iff the number of 
continuous m(i)=1 is w.

4. Experiment 



In this section, we will prove the utility of our 
proactive fault detection mechanism by experimental 
method. In the experiments, the fault injection is used to 
simulate the fault environment. 

4.1 Building the normal running models 

The experimental setup in this paper consists of four 
nodes (node1, node2, node3, node4) whose configurations 
are dual P3 1GHz CPU, 1G Memory, 18GB hard disk and 
running Linux 2.4.20-8smp kernel. First, three MPI jobs 
(App1, App2, App3) are running on these nodes without 
faults in turn and the running time is 2400, 2700, 4600 
seconds respectively. At the same time, the cluster 
monitoring system collects the performance parameters of 
every node at regular intervals and the sample cycle is 5 
seconds. Based on the cross correlation analysis, we select 
19 primary performance parameters from about 80 
performance parameters of Linux operating system and 
these 19 performance parameters are shown in table 2. We 

build the normal running models of every one of 19 
performance parameters and use these models as the basis 
of fault detection. 

For each <N, AppM, S>, where N {node1, node2, 

node3, node4}, and AppM {App1, App2, App3}, and S is 
one of performance parameters in table 2, we build the 
normal running model using the collected data. The follow 
gives an example: when App1 is running on node1 without 
faults, the normal running model of activepg is built using 
the collected data. The process of building the normal 
running model of <node1, App1, activepg> is given in 
Figure 2: (a) is the original sample data, the number is 
480; (b) is the data after 31-point moving average and zero 
average, the average µ=1.9832 105, the front 30 sample 
data are ignored and the number of remainder data is 450; 

(c) is the ACF (k 50) for (b) data, the ACF of (b) is not 
quickly decreasing, so (b) is not one stationary time series; 
(d) is the data after one pace differencing of (b); (e) and (f) 

are the ACF (k 200) and PACF (k 200) of (d) 
respectively, according to table 1, the (d) can be modeled  

Table 2.  Performance parameters 
Num Name Description 

1 File_sz Number of used file handles. 

2 Inode_sz Number of used inode handlers. 

3 Super_sz Number of super block handlers allocated by the kernel. 

4 Dquot_sz Number of allocated disk quota entries. 

5 Rtsig_sz Number of queued RT signals. 

6 activepg Number of active (recently touched) pages in memory 

7 Txpck_ps Total number of packets transmitted per second 

8 kbmemused 
Amount of used memory in kilobytes. This does not take into account memory used 

by the kernel itself. 

9 kbswpused Amount of used swap space in kilobytes. 

10 Cswch_ps Total number of context switches per second. 

11 Runq_sz Run queue length (number of processes waiting for run time) 

12 Ldavg_one System load average for the last minute 

13 Percentage_user Percentage of CPU utilization that occurred while excuting at the user level. 

14 Percentage_system Percentage of CPU utilization that occurred while excuting at the system level. 

15 Frmpg_ps 

Number of memory pages freed by the system per second. A negative value represents 

a number of pages allocated by the system (a page has a size of 4 kB or 8 kB 

according to the machine architecture). 

16 Interrupt_ps Total number of interrupts received per second. 

17 Tps 

Total number of transfers per second that were issued to the physical disk. A transfer 

is an I/O request  to  the physical  disk. Multiple logical requests can be combined 

into a single I/O request to the disk. 

18 Txerr_ps Total number of errors that happened  per  second  while transmitting packets. 

19 Txdrop_ps 
Number of transmitted packets dropped per second because of a lack of space in linux 

buffers. 



as ARMA(6,4) and (B)=1 0.2491B-1 0.004738B-2 
+

0.01776B-3 
+ 0.8369B-4 0.3423B-5

+0.03303B-6;

(B)=1+0.07579B-1
+0.1311 B-2

+0.05879B-3
+0.9948 

B-4; (g) is the residual series whose mean is zero and 

variance is 580; The QQ plot in (h) shows that the 

residuals in (g) is white normal noise. In the end, the 

normal running model of <node1, App1, activepg>

can be built as (B) 1(activepgt)= (B)at: where 

activepgt is the sample of activepg at time t.

The normal running models of each <N, AppM, 

S> are built by the same means. These models are 

used in fault detection and the results of fault 

detection are shown in section 4.2. 

Figure 2. Building the normal running model of <node1, App1, activepg> 

0 50 100 150 200 250 300 350 400 450 500
1.96

1.97

1.98

1.99

2

2.01

2.02

2.03
x 10

5

Sample Lags

The Orignal sample data

activepg

(a) The original sample data 

0 50 100 150 200 250 300 350 400 450 500
-1000

-500

0

500

1000

1500

Sample Lags

The Sample data processed

activepg

(b) The data after preprocess 

(b) The ACF of (b) 

0 50 100 150 200 250 300 350 400 450
-100

-80

-60

-40

-20

0

20

40

60

80
The Sample data (one degree differencing) 

Sample Lags

activepg

(d) Data after 1-pace differencing of (b) 

(e) The ACF (k 200) of (d) (f) The PACF (k 200) of (d) 

S
a
m

p
le

 A
u

to
c
o

rr
e

la
ti

o
n

 

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

0.4

0.6

0.8

Lags

Sample Autocorrelation Function (ACF)

S
a
m

p
le

 A
u

to
c
o

rr
e

la
ti

o
n

 

0 20 40 60 80 100 120 140 160 180 200
-0.5

0

0.5

1

Lags

Sample Autocorrelation Function (ACF)

S
a
m

p
le

 P
a

rt
ia

l 
A

u
to

c
o

rr
e
la

ti
o

n
s 

0 20 40 60 80 100 120 140 160 180 200
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lags

Sample Partial Autocorrelation Function (PACF)



(g) The residuals (h) The QQ plot for (g)

4.2 Results of fault detection 

Once the normal running models are built, the 

fault detection process can be implemented by 

comparing the current running state with the normal 

running models. During the experiment, we will record 

the time when the FDF is 1 and the time when the fault 

is injected into system. The difference between these 

two times is the fault detection latency. The latency 

represents the sensitivity of fault detection mechanism 

for faults. 

The fault injection technique is used to simulate 

the real-world faults in cluster system. First, run App1

and inject memory faults on node1. The injection time 

is the 300-th lag (1500 seconds) after App1 begins. 

Figure 3 gives the fault detection results based on the  

Figure 3. Fault detection results by normal 
running model of <node1, App1, kbmemused> 

0 50 100 150 200 250 300 350 400 450 500
1.005

1.01

1.015

1.02

1.025

1.03
x 10

6 The kbmenused observed data and predicted value

Sample Lags

Observed value
Predicted value

(a) kbmemused series 

0 50 100 150 200 250 300 350 400 450 500
-1000

-800

-600

-400

-200

0

200

400

600

800

1000
The Residual series between observed value and Predicted value

Sample Lags

Residuals

(b)The residual series 

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Lags

Fault Detection Results

Fault Alarm Index

(c) The fault detection function 

normal running model of <node1, App1, 

kbmemused>: in (a), the blue is the actual observed 

value and green is the predicted value by the normal 

running model; (b) is the residual series between 

observed value and predicted value; (c) is the results 

of fault detection function and the persistence 

Q
u

a
ri

ti
le

s
 

o
f 

R
e
si

d
u

a
l 

se
ri

e
s

-4 -3 -2 -1 0 1 2 3 4
-80

-60

-40

-20

0

20

40

60

80

Standard Normal Distribution

Standard Normal Q-Q Plot of Sample Data

0 50 100 150 200 250 300 350 400 450
-1000

-800

-600

-400

-200

0

200

400

600

800

1000
The Residual series between Observed data and Predicted value

lags

residuals



checking parameter w=50, the size of slide window 

n=120. From (c), the fault detection function is 1 from 

413-th lag on. So, the fault detection latency is 113 

lags (565 seconds). 

Second, run App2 and inject I/O faults on node2.

The faults are injected when App2 begins. Figure 4 

gives the fault detection results based on the normal 

running model of <node2, App2, Interrupt_ps>: in (a), 

the blue is the actual observed value and green is the 

predicted value by the normal running model; (b) is 

the residual series between observed value and 

predicted value; (c) is the results of fault detection 

function and the persistence checking parameter

w=50, the size of slide window n=120. From (c), the 

fault detection function is 1 from 172-th lag on and the 

fault detection latency is 172 lags (860 seconds). 

The results of first and second experiments show 

the validity of our fault detection mechanism. But the 

fault detection latency is high (about 10 minutes), 

that's to say after the fault exist about ten minutes the  

Figure 4. Fault detection results by normal 
running model of <node2, App2, Interrupt_ps> 

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Sample Lags

The Interrupt-ps observed data and predicted value

Observed value
Predicted value

(a) Interrupt_ps series 

0 100 200 300 400 500 600
-100

-80

-60

-40

-20

0

20

40

60

80

100
The Residual series between observed value and Predicted Value

Sample Lags

Residuals

(b) The residual series 

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Lags

Fault Detection Results

Fault Alarm Index

(c) The fault detection function 

fault alarm just been send out. The main cause for the 

high latency is the size of slide window and the next 

experiment results give the relation between latency 

and the size of slide window. 

In the last experiment, run App3 and inject I/O 

faults on node3. The faults are injected when App3

begins. Normal running model of <node3, App3, 

Cswch_ps> is (B) 1st=at where (B)=1 0.05439B-1

Figure 5. The residual series by normal running 
model of <node3, App3, Cswch_ps> 

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
The Cswch-ps Observed data and Predicted value

Sample lags

Observed value
Predicted value

(a) Cswch_ps series 

0 100 200 300 400 500 600 700 800 900
-100

-80

-60

-40

-20

0

20

40

60

80

100
The Residual series between observed value and Predicted value

Sample Lags

(b) The residual series 



and is used to fault detection. The fault detection 

results for different size of windows (n=40,120,160 

and w=50) show the impact of n on fault detection 

latency. In figure 5, (a) shows the observed value 

(blue) and the predicted value (green); (b) is the 

residual series. 

Table 3 gives the fault detection results for 

different size of windows (n=40,120,160 and w=50). 

The results show that the fault detection latency 

decreases while the size of window increases. The 

main reason is that the LRT method is more sensitive 

with a larger sample space. 

Table 3. The fault detection latency for 
different size of windows 

The size of window (n)
Fault detection latency 

 (lags, 1 lags = 5 seconds) 

40 347 

120 272 

160 236 

5. Conclusion 

In large-scale cluster system, the fault detection 

before node failure is important. This paper proposes 

an proactive online fault detection method using the 

information collected from cluster monitoring system. 

First, building the cluster normal running models of 

performance parameters using the activity data when 

cluster runs without faults; Second, the difference 

between actual observed value and predicted value by 

normal running model is residual and use the residual 

time series as the symptom of fault; When the cluster 

system is behaving normally, all the residual series are 

white noise series; In the end, using the LRT method 

to test whether the residual series are white noise 

series and the fault detection function f is constructed 

based on the results of LRT and the persistence 

checking parameter w. If f=1, one fault alarm decision 

is made. The experiment results show that the method 

in this paper can detect the fault in system in good 

time and provides the ability to proactive fault 

management.  

But, the method in this paper is just a fault 

detection and not fault diagnosis. If abnormal 

behavior is detected, the next step is locating the 

accurate cause of fault. In the future work, we will pay 

more attention on two questions: 

Extract the more sensitive symptom of fault in 

cluster system. In this paper, only using the residual 

series of performance parameters as the symptom of 

faults. In the future, we will select the more sensitive 

symptom for faults and reduce the fault detection 

latency, reduce the computation complexity at same 

time. 

Online fault diagnosis method. Finding the root 

cause of fault and give the correctly healing advice to 

system administrator. 

6. References 

[1]. Gao Wen. The design and analysis method of high 

availability in the server consolidation system: [Ph.D. 

dissertation]. Beijing: Institute of Computing Technology, 

Chinese Academy of Sciences. 2001. 

[2]. Vittorio Castelli, Richard E. Harper, Philip 

Heidelberger, Steven W. Hunter, Kishor S. Trivedi, 

Kalyanaraman Vaidyanathan, William P. Zeggert: Proactive 

management of software aging. IBM Journal of Research 

and Development 45(2): 311-332 (2001) 

[3]. R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. 

Ma, R. Vilalta, A. Sivasubramaniam. Critical Event 

Prediction for Proactive Management in Large-scale 

Computer Clusters. In Proceedings of the ACM SIGKDD 

International Conference on Knowledge Discovery and 

Data Mining , pages 426-435, August 2003. 

[4]. D. Dasgupta, K. KrishnaKumar, D. Wong, M. Berry: 

Negative Selection Algorithm for Aircraft Fault Detection. 

3rd International Conference on Artificial Immune Systems 

Catania, Sicily.(Italy) September 13-16 2004. 

[5]. J. Wesley Hines, D. W. Miller and B. K. Hajek. 

Merging Process Models With Neural Networks for Nuclear 

Power Plant Fault Detection and Isolation, The proceedings 

of the 9th Power Plant Dynamics, Control and Testing 

Symposium, Knoxville, TN, 1995. 

[6]. Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton. 

Software rejuvenation: analysis, module and applications. 



Proc. 25th International Symposium on Fault-Tolerant 

Computing, June 1995, pp. 381 – 390. 

[7]. S. Garg, A. van Moorsel, K. Vaidyanathan, and K. 

Trivedi, A Methodology for Detection and Estimation of 

Software Aging, Proceedings of the 9th International 

Symposium on Software Reliability Engineering, Paderborn, 

Germany, November 1998, pp. 282–292. 

[8]. Lei Li, Kalyanaraman Vaidyanathan, Kishor S. Trivedi: 

An Approach for Estimation of Software Aging in a Web 

Server. Proc. 2002 Int'l Symp. on Empirical Software Eng.,

pp.91–100, IEEE CS Press, 2002. 

[9]. Hughes, G.F., Murray, J.F., Kreutz-Delgado, K. and 

Elkan, C. Improved Disk Drive Failure Warnings. IEEE 

Transactions on Reliability, September 2002. 

[10].J. F. Murray, G F Hughes, “Hard Drive Failure 

Prediction Using Non-parametric Statistical Methods” 

(coauthor), International Conference on Artificial Neural 

Networks, Istanbul, June 26-29, 2003. 

[11].Greg Hamerly and Charles Elkan. Bayesian approaches 

to failure prediction for disk drives. In Proceedings of the 

eighteenth international conference on machine learning,

pages 202-209. Morgan Kaufmann, San Francisco, CA, 

2001. 

[12].J. Moreira, "System Management in The BlueGene/L 

Supercomputer", Proc. Int'l. Parallel and Distributed 

Processing Symposium. Los Alamitos, CA, IEEE Computer 

Society. 2003, p. 8., April 2003. 

[13].Top 500 Superconputer Sites. System Info: Dawning 

4000A, Opteron 2.2 GHz, Myrinet. 

http://www.top500.org/sublist/System.php?id=7036. 2004.6 

[14].Chen Yi, Meng Dan, Zhan Jian-Feng, Zen Ning, 

Design and implement of federation based trading service, 

Computer Engineering and Applications, 2004. 

[15].Meng Dan, Zhan Jianfeng, Wang Lei, Tu Bibo, Zhang 

Zhihong. Fully integrated cluster operating system: Phoenix. 

Journal of Computer Research and Development, 2004.6. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


