
Analysis of a Reconfigurable Network Processor

Christoforos Kachris, Stamatis Vassiliadis

Computer Engineering Lab

Department of Electrical Engineering,

Mathematics and Computer Science

Delft University of Technology

The Netherlands

{kachris, stamatis}@ce.et.tudelft.nl

Abstract

In this paper an analysis of a dynamically

reconfigurable processor is presented. The network
processor incorporates a processor and a number of co-

processors that can be connected to the processor either

directly or using a shared bus. The analysis investigates
the configuration (in terms of co-processor distributions

and interface), formulates the throughput that meets the

network demands and the constraints of the platform
(area, bus bandwidth, etc.) and takes into account the

reconfiguration overhead. To find the configuration that

meets the constraints, the platform is formulated into
integer linear programming equations. Furthermore, the

results of two case studies are presented, for a soft- and a
hard- IP core processor, that uses three flows with

different processing requirements (IP forward, encryption

and media processing). In each case the number and the
type of co-processors is shown in terms of the network

distribution and the average packet size. Finally, the

mapping of the framework in the Xilinx FPGA platform is
discussed.

1. Introduction

The increase of the Internet bandwidth has created the

need for more powerful processors, specifically designed

for packet processing; the network processors. Network

processors combine the flexibility of the general-purpose

processors with the increased performance of the

application specific integrated circuits (ASICs). Network

processors have been evolved from simple TCP/IP

accelerators to complete platforms able to process million

of packets in core and access networks. The first network

processors were used only for the processing of the lower

OSI layers such as layer 2 or layer 3, while now some

network processors are used even for layer 7 processing

such as XML processors [7] and the web balancing

processors. The architectures of the network processors

(NP) vary from dataflow architectures such as the

network processor from Xelerated [1] to multi-processors

multi-threaded platforms such as the IXP2400 from Intel

[2]. Many functions of a network processor, that are

extremely demanding, have been implemented in district

chips and are used as the co-processors. Some examples

of these processors are Queue Managers, Traffic,

Managers, Network Encryption processors, Intrusion

detection processors etc. FPGAs with embedded

processors are ideal platform candidates for the

development of network processors that can be both

flexible and high performance.

The main challenge in network processors is to find the

right micro-architecture for the targeting network

workload. The network processors that are targeting core

routers must be able to process million of packets per

second but the processing requirements for each packet

are not so demanding; usually the processing is a just an

IP forwarding. On the other hand, the network processors

that are targeting access networks or residential gateways

have to process less packets but each packet has

demanding processing requirements such as

fragmentation and reassembly, encryption, transcoding etc.

Furthermore, the traffic in the Internet varies from

simple small packets used by Instant Message Services

(IMS) to large packets used for media applications such as

video and audio streams. Each application with different

processing demands can be categorized into different

flows. The distribution of the flows in time can vary

significantly. For example, in a main server the majority

of the packets in the working hours can be packets that

need encryption processing based on the fact that many

on-line transaction are processed in working hours. On the

other-hand, media processing or transfer of media packets

that need transcoding are usually take place in non-

working hours. In [13] and [15] there is a detailed analysis

of how the network traffic changes during the day or the

week. The changes are in terms of the application, the

1-4244-0054-6/06/$20.00 ©2006 IEEE

protocol and the size of the packets. Hence, it is very

difficult to design a network processor that will be able to

efficiently process the changing networks flows. Usually,

there is a range of processors, each one for different

topology (core networks, access networks) that can meet

the constraints of each topology, but none of them is

optimal designed for each network workload.

The main goal of this paper is to formulate a

dynamically reconfigurable network processor that can be

adapted to the network demands by using the co-

processor in the most efficient way. Hence the main

contribution of this paper is:

a formulation for the throughput of a dynamically

reconfigurable network processor

a method to find a configuration that meets the

network demands and a limited number of platform

constraints (area, bus bandwidth, etc.) and takes

into account the reconfiguration overhead

two case studies for a soft- and a hard-IP core

processor with different workload demands on

several average packet sizes

a mapping of the dynamically reconfigurable

network processor into a Xilinx FPGA platform

In Section 2 we present the related work in design space

exploration of network processors. Section 3 presents the

architecture framework of the system. Section 4 presents

the analysis of the system and the formulation, while

section 5 presents the experimental results for a case study

with three different workloads for two processors and the

mapping into an FPGA. Finally, section 6 presents the

conclusions and the future work.

2. Related work

The use of design space exploration (DSE) tools can be

very useful when designing the micro-architecture of the

network processor. EXPO [3] is a DSE tool that uses the

theory of the arrival and service curves to model the

operation of a network processor. The computation

complexity in this case is too expensive, thus they use a

piecewise linear approximation of all arrival and service

curves. The network processors can be modeled in a task

graph and given the mapping of tasks to available

resources it can estimate the Pareto-optimal solution for

access and backbone networks. The tool is restricted to

model a system with a common bus that every resource is

attached to this bus. In [4, 12] an automated exploration

framework is developed that is used in a soft multi-

processors platform. The application is modeled as a task

graph and each task is allocated in one of the processors.

The tool is used to find the optimum partitioning of the

IPv4 packet forward application into an array of

processors, but this tool does not incorporate co-

processors which are essential parts in network processors.

In [5] a design space exploration is performed using

several parameters of a general-purpose processor such as

the processor clock rate, the instruction and data cache

size, the area and the memory access time. The

CommBench benchmark [23] is used to illustrate the

difference of the optimum configuration using packets

that only need header processing versus packet that need

also payload processing. The model is applied both to a

single processor and multiple processors. In [24] a design

space exploration is performed for network programs on

different architectures. The compared architectures are a

speculative super-scalar processor, a fine-grained

multithreaded processor, a single chip multiprocessor and

a simultaneous multithreaded processor (SMT). The

benchmark that it was used includes IP forward and MD5

and DES encryption processing. In [18] a design space

exploration of the System-On-a-Chip (SoC)

communication of the components is performed. The

number of busses and bridges are investigated in order to

find the optimum configuration for a given graph of

connected modules. In [8, 9] a platform has been

developed that use hardware plug-ins to accelerate the

performance of a programmable router. The hardware

modules are connected with external SRAM and DRAMs

memories. The hardware plug-ins are allocated in a

separate chip from the one that incorporates the

processing elements. Furthermore, there is not a design

space exploration thus it is quite difficult to find the

configuration that meets the network and application

demands. Finally, STMicroelectronics has presented a

system-level exploration platform for Network processors

called StepNP in [25, 26]. In that case the platform

contains multi-threaded processors connected with a

custom network-on-a-chip. The system is modeled at the

functional and transaction levels and not at a cycle-

accurate level.

In our case the design space exploration targets a

single chip dynamically reconfigurable architecture that

can be adapted to meet the workload of the network. The

framework incorporates a processor with a library of co-

processors that can be connected to the processor either

directly or using a shared bus in order to find a high-

throughput configuration that meets the constraints and in

addition taking into account the configuration overhead.

3. Reconfigurable Network Processor Frame-

work

The reconfigurable network processor architecture is

targeting the Xilinx Platform. In this work, two

frameworks have been designed and analyzed. In the first

case we used a soft-core processor and in the second case

a hard-core processor. An analysis of the performance and

the constraints is presented for both cases. In the first case

the MicroBlaze soft-core processor has been used

augmented with co-processors connected with a direct

connection and a bus with the processor. The direct

connection is called Fast Simplex Link (FSL) [19] and

can be used for the direct communication of the register’s

value with the co-processors. The maximum number of

FSL interfaces that are supported by the MicroBlaze is

eight. The shared bus that it was used was the On-chip-

Peripheral-Bus (OPB) [21] which is able to sustain

500Mbytes/sec throughput. The MicroBlaze is also

connected with one block of RAM for Instruction and

Data Memory using the Local Memory Bus (LMB), while

it is also connected, through the bus, to one block of

larger RAMs that is used as the source RAM of the

packets. The network interfaces are not shown since the

main motivation for this system is the exploration of the

network processing. An additional block RAM is also

attached to the OPB bus and it is used as a small IPv4

Forwarding Table. The block diagram of the architecture

that it was used as an experimental platform is shown in

Fig. 1.

MicroBlaze

DMA

Engine
Co-Pn

Data

BRAM

Instruc.

BRAM
LMB

OPB

. . .

Co-P0

Co-P1

Co-P7

FSL

Chksum

DES

...

IDCT

IP

LookUp

Chksum

DES

...

IDCTBRAM0

Figure 1. The MicroBlaze framework

In the second case, the hard-core processor PowerPC is

used augmented again with co-processors communicating

in a direct interface and in a bus with the processor. The

direct interface is the Auxiliary-Processor-Unit (APU) [20]

connected with the Fabric Coprocessor Module (FCM)

which is similar to [14] and can be used to transfer the

register’s value directly to the co-processors. The shared

bus that has been used in this case is the Processor-Local-

Bus (PLB) [21] which is able to sustain 1600Mbytes/sec.

The PowerPC is also connected to a block of RAM for

Instructions and Data Memory using the On-Chip-

Memory (OCP) interface. An additional block RAM is

also attached to the PLB bus and it is used as a small IPv4

Forwarding Table. The block diagram of the architecture

that it was used as the second experimental framework is

shown in Fig. 2.

 PowerPC

BRAM0 Co-Pn

Data

BRAM

Instruc.

BRAM
OCM

PLB

. . .

Co-P0

Co-P1

Co-P7

FCM

Chksum

DES

...

IDCT

IP

LookUp

Chksum

DES

...

IDCT

F
C

B

A
P

U

DMA

Engine

Figure 2. The PowerPC Framework

In the current design three modules have been used as

co-processors. A checksum hardware block is used for the

calculation of the header’s checksum, a Data Encryption

Standard (DES) unit for the processing of encrypted data

and an Inverted Discrete Cosine Transformation (IDCT)

unit for the transcoding of the payload. Although the

transcoding needs more units for the processing such as

variable length encoders, the use of IDCT is a major

module to accelerate the transcoding.

4. Analysis of the Reconfigurable Network

Processor

The main goal of a network processor designer is to

find the optimum micro-architecture for a specific

workload given specific constraints. The constraints can

be in aspects of power, energy, performance or area (or

usually a combination of these). In this paper a

formulation of a reconfigurable network processor is

presented in order to find a configuration that meets the

network workloads distribution and other constraints. The

ability of the network processors to adapt itself to the

different workload could increase the performance of the

processors by using co-processors that are useful for the

majority of the time. In this work, three different flows

have been used with different processing requirements as

it is shown in Table I.

In the first case the IP packets are just forwarded.

Hence, in this case the processor checks the several fields

of the header such as the IP version, the Time to Live

(TTL), the Checksum and the Destination IP and then

modifies the checksum and forward the packet. In this

case the Checksum module is used to check the checksum

of the header, while the modification of the checksum is

performed in the processor using the incremental

checksum processing [28]. In the second case, the

packet’s header is again processed by the processor and

the payload is send to the DES module for encryption or

decryption. In the third case, the processor elaborates the

header and the payload is sent to the IDCT module. The

payload is stored to the data RAM of the processor for

further processing (i.e. transcoding).

Table I. NETWORK FLOWS

Flow Checksum DES IDCT

IP Forward

Packet Encryption

Packet Transcoding

The goal is to find the configuration of the platform

with a performance that meets the demands of a specific

distribution of a network workload in a given area and to

make this adaptation taking into account the dynamic

partial reconfiguration overhead. In order to find this

configuration we analyze the architecture in the form of

linear programming equations. The variable that should

be optimized is the aggregate throughput of the

architecture. The constraints are:

the number of co-processors directly connected

to the processor,

the number of co-processors attached to the bus,

the network flow requirements,

the bandwidth of the bus,

the available headroom of the processor, and

the available area for the co-processors.

These requirements are described in the following

equations:

n

i

ijij ntP
1

 (1)

IBIBDBDBCBCBIDIDDDDDCDCD ntntntntntnt

Constraints:

tModulesberofDirecMaximumNumnnn IDDDCD (2)

odulesberOfIBusMMaximumNumnnn IBDBCB (3)

IBIBIDIDDBDBDDDDCBCBCDCD nananananana

ilableAreaMaximumAva (4)

cworkTraffiForwardNetntnt CBCBCDCD (5)

fficNetworkTraEncryptionntnt DBDBDDDD (6)

afficgNetworkTrTranscodinntnt IBIBIDID (7)

BandwidthBusMaximumnbnbnb IBIBDBDBCBCB (8)

sHeadroomocessorncncnc IDIDDDDDCDCD 'Pr (9)

where,

P : Aggregated throughput

tij : throughput of the i module connected to j

nij : number of the i modules connected using j

aij : area of the hardware i acceleration unit

bij : co-processor’s bandwidth allocated in the bus

cij : number of cycles allocated in the processor

i : {C: Checksum, D: DES, I: IDCT}

j : {D: Direct, B: Bus}

The throughput of each module can be calculated using

the time to send the data for processing, the time of

processing and the time to receive the data. For example,

in the case of the DES module connected in the OPB the

time to transfer the data using DMA and the time to

transfer the data to the FSL module is given by equation

(10) and (11) respectively.

cyclensferPerWordTraInitDMADB tncwordsnct)((10)

cyclensferPerWordTraDD tncwordst (11)

where,

nc : number of cycles

tcycle : the period of the clock

In this case, using 10ns clock cycle, the time to transfer

5 words (20 bytes) is faster using the direct connection

(680ns using the shared bus and 550ns using the direct

connection), while the time to transfer 16 words (64 bytes)

is faster using the bus (1240ns using the shared bus and

1760ns using the direct bus). Consequently, depending on

the data transfers is more efficient to use either the direct

interface or the shared bus.

Besides the performance, the linear programming

equation could also include power considerations. For

example, the system could be solved by minimizing the

power consumption of the configuration given the

constraints (2)-(9) as it is shown in Equation 12 or the

power consumption limits could be also added to the

constraints.

n

i

ijij powernPower
1

(12)

The percentage of the workload can be measured

during the operation of the network processor. In order to

make the partial reconfiguration efficient the

reconfiguration overhead must be taken into account. The

new configuration must be performed only if the

throughput of the new configuration accumulated with the

configuration overhead is greater than the current

throughput as it is shown in the following equation (13).

)(ationreconfiguroldnew ttThrtThr

oldnew

ationreconfigurold

ThrThr

tThr
t (13)

where,

t : time the new configuration is active

Throld : the throughput of the previous configuration

Thrnew : the throughput of the new configuration

5. Implementation and Experimental Results

The design is targeting a Xilinx Virtex 2 for the

MicroBlaze Framework and the Virtex 4 FX device for

the PowerPC framework using the Xilinx Platform Studio

v7.1.2. The DES module is provided by OpenCores [27]

and the IDCT module was from Xilinx IDCT [10]. A

testbench framework for IP Packet Forwarding has been

developed to measure the performance of each

configuration. In this testbench a packet is received and

stored in the first block RAM. The processor scheduler

sends the required data (header or payload) in one of the

co-processors and stores the results to the Data Block

RAM for further processing. The processor checks the

packet’s header and based on the classification it perform

one of the following action:

process the header

process the header and encrypt/decrypt the

payload

process the header and transcode the payload.

In addition, it updates a counter that is used to measure

the distribution of each network flow. When the

aggregated number of packets is over a threshold (e.g.

1000 packets) the processor checks the distribution and

decides to trigger a partial reconfiguration or not. After

the processing by the hardware acceleration units, the

packet is forwarded to the local RAM of the processor for

further processing. The processor uses one block of RAM

as a forward table and classifier. The IP LookUp Forward

table is performed in 4 to 6 OPB accesses using the

destination IP address for each access, as it is described in

[11]. In the case of the MicroBlaze framework, the

processor can be customized to include some additional

features such as hardware multiplier, divider and barrel

shifters. It is worthy to notice that the use of barrel shifter

has improved the performance of the testbench program

by over 30% while the area overhead is almost negligible

(4 hardwired multipliers). This is due to the fact that most

of the network applications include many shift

instructions and the use of a barrel shifter can relieve the

processor. Table II shows the throughput (in terms of

packets, each packet is 512 bytes) and the area for the co-

processor modules.

Table II. MODULE PROPERTIES

Module
Thoughput

(Kpack./sec)

Area

(slices)

Checksum-FSL 512 44

Checksum-OPB 581 87

DES-FSL 42 789

DES-OPB 54 832

IDCT-FSL 43 944

IDCT-OPB 56 987

The linear equations can be solved using any linear

programming solver such as the Excel or the MPL Solver.

Fig. 3 and Fig. 4 provide the optimized configuration for

several workloads distribution for an average packet size

of 512 bytes for the MicroBlaze and the PowerPC

framework respectively. Five different workloads have

been used. In the first one, 70% of the traffic is packets

that need only to be forwarded, 20% belong to Virtual

Private Networks (VPNs) that need either encryption or

decryption, while 10% of the packets are media streams

that need media processing, e.g. transcoding. The other

distributions are shown in Fig. 3. The MicroBlaze frame-

work uses 100 MHz clock frequency both for the

processor, the bus and the modules. In the case of the

PowerPC framework, the clock frequency of the PowerPC

is 300 MHz and the remaining modules are clocked to

100MHz.

We must note that in this testbench the source of the

packet is the block RAM attached to the bus and the

destination is the data block RAM of each processor that

further uses the processed data. Hence, in the case of the

MicroBlaze, when the FSL interface is used the data are

transfer from the OPB RAM to the FSL co-processors and

then from the FSL co-processors to the LMB RAM. In the

case that the OPB co-processor is used, the processor send

the data using DMA from the OPB RAM to the OPB co-

processor and after the processing the data are send to the

LMB RAM. These transfers are illustrated in Table III. In

the case that the packets wouldn’t have to be further

processed by the processor it is obvious that the DMA

mechanism is much more efficient than the direct

interface of the processor with the modules. Moreover, if

the network module could transfer the packets to the data

RAM of the processor using a dual port RAM it is

obvious that the throughput of the co-processors attached

directly to the processors would be more efficient; hence

they would be used more often.

Table III. DATA TRANSFERS

MicroBlaze Source Destination

 FSL modules

OPB BRAM FSL module

FSL module LMB BRAM

 OPB modules

OPB BRAM OPB module

OPB module LMB BRAM

PowerPC Source Destination

 APU modules

PLB BRAM APU module

APU module OCM BRAM

 PLB modules

PLB BRAM PLB module

PLB module OCM BRAM

Fig. 3 presents the optimum configuration for several

workload distributions in the case of the MicroBlaze

framework. When the majority of packets need only IP

forwarding, then the checksum modules are attached to

both the OPB and the FSL interface. When then majority

of the packets need payload processing, then the number

of DES and the IDCT modules attached to the OPB bus

increases and the checksum is only attached to the FSL

interface. As it is shown, the payload co-processors are

rarely attached to the FSL interface because of the

processor’s cycles that are wasted for the transfer of the

data. They are only attached to the FSL interface, when

there is available headroom and the maximum number of

OPB slaves has been reached.

Fig. 4 presents the optimum configuration for several

workload distributions for the PowerPC framework. In

this framework the modules that are attached to the APU

interface are less. This is mainly because the PLB bus can

support burst traffics providing more throughput and

using the Direct Memory Access (DMA) the processor

can be off-loaded. These modules will be only attached to

the direct interface only when the number of bus slaves is

in the limit and there are available cycles in the processor

or when the maximum number of slaves in the bus is

reached. Fig. 5 and 6 shows the distribution of the

modules, for the MicroBlaze and the PowerPC framework

respectively, in the case of the 25/50/25 distribution for

several packet sizes. As it is shown in the case of the

MicroBlaze, when the average packet size is small, only a

small number of payload engines is used and the

checksum modules are attached to the bus. When the

average size increases then the processing requirements

increase. Hence more payload modules are attached to the

bus, the maximum number of bus slaves is reached and

the checksum modules have to use the FSL interface. In

the case of the PowerPC, when the average packet size

increase then the checksum modules move from the PLB

bus to the APU interface. In the same figure we can see

that none of the DES and IDCT modules are attached to

the APU interface because of the high throughput that the

PLB burst mode provides.

The main difference between the two frameworks is

that in the case of the MicroBlaze the throughput is

mainly constrained by the OPB Bandwidth and the

headroom of the processor. On the other hand, the

PowerPC framework use more efficient bus that supports

burst mode and has the processing power of the processor

is higher. Hence, the throughput is usually constrained by

the performance of the co-processors. These figures show

that the use of a reconfigurable framework that adapts its

co-processors to the network distribution and the average

packet size can improve the overall performance of the

system.

MicroBlaze Co-Ppocessors Distribution

0

1

2

3

4

5

70/20/10 70/10/20 50/25/25 25/50/25 25/25/50

Workload Distribution

N
u

m
b

e
r

o
f

C
o

-p
ro

c
e

s
s

o
rs

CHK-FSL

CHK-OPB

DES-FSL

DES-OPB

IDCT-FSL

IDCT-OPB

Figure 3. MicroBlaze Co-processors distribution

PowerPC Co-Processors Distribution

0

1

2

3

4

5

6

70/20/10 70/10/20 50/25/25 25/50/25 25/25/50

Workload Distribution

N
u

m
b

e
r

o
f

C
o

-P
ro

c
e
s
s
o

rs

CHK-APU

CHK-PLB

DES-APU

DES-PLB

IDCT-APU

IDCT-PLB

Figure 4. PowerPC Co-Processors Distribution

Distribution of Co-processors (25/50/25)

0

1

2

3

4

5

CHK-

FSL

CHK-

OPB

DES-

FSL

DES-

OPB

IDCT-

FSL

IDCT-

OPB

Module

N
u

m
b

e
r

128B

256B

512B

1024B

1512B

Figure 5. Distribution of modules for different
packet’s sizes for the MicroBlaze

Distribution of Co-processors (25/50/25)

0

1

2

3

4

5

CHK-

APU

CHK-PLB DES-

APU

DES-PLB IDCT-

APU

IDCT-

PLB

Co-processor

N
u

m
b

e
r

128B

256B

512B

1024B

1512B

Figure 6. Distribution of modules for different
packet’s sizes for the PowerPC

For the implementation of the dynamic reconfigurable

network processor the design has to be partitioned in

reconfigurable and fixed logic modules according to the

Xilinx flow for modular partial reconfiguration [16].

According to this flow, each reconfigurable area must

have the height of the device; hence two reconfigurable

modules were used on the left and on the right part of the

FPGA. Between the fixed and the reconfigurable area

special modules should be used to connect these areas,

called bus macros. These modules can be the only

common signals between the reconfigurable and the static

area. In our case the bus macros should be used to

separate the coprocessors used in the reconfigurable area

with the fixed logic that contains the processors and it’s

RAM. In the case of the MicroBlaze framework the Bus

Macros must be used in the FSL interface and the OPB

bus. Fig. 7 shows the way the architecture should be

mapped to the Virtex 2 FPGA platform in the case of the

MicroBlaze Framework.

It must be noted that although all the possible

combination of the reconfigurable area are usually too

large to store into an external RAM, it is still possible to

evaluate the most common network distribution and use a

small RAM for storing the most efficient bitstreams for

these workloads. In addition, Xilinx is towards a new

design flow [17] that will enable the use of dynamically

reconfigurable modules without the constraint of

occupying the whole height of the device. In this case it

will be possible to partially reconfigure the device by only

storing the new co-processor over the previous without

affecting the remaining co-processors that are attached on

the same bus.

BMBM

Static Area Reconfigurable AreaReconfigurable Area

FSL

OPB

MicroBlaze

RAM

RAM

CoP4

CoP5

CoP6

CoP7

CoP0

CoP1

CoP2

CoP3

Arbiter

Figure 7. Floorplan of the MicroBlaze framework

Fig. 8 shows when the partial reconfiguration should

be performed depending on the available area for the

coprocessors based on the Equation 13 and the

configuration information shown in [17]. Four different

devices have been used. For each device three scenarios

are calculated. In the first scenario only the FSL modules

are reconfigured. In the second scenario only the shared

bus modules are reconfigured and in the third scenario

both the FSL modules and the shared bus modules are

reconfigured for the MicroBlaze framework. As it is

shown the FSL units consume less area than the OPB

modules (since the FSL area is usually consists of

checksum modules) hence it takes much less time to

reconfigure the device.

Reconfiguration Rate

0

20

40

60

80

100

XC2V2000 XC2V4000 XC2V6000 XC2V8000

Device

T
im

e
 I

n
te

rv
a
l

(s
e
c
)

FSL

OPB

FSL + OPB

Figure 8. Reconfiguration Rate depending
on the device

6. Conclusions

In this paper the design and the analysis of

dynamically reconfigurable network processor is

presented. The processor is embedded in an FPGA that

can be dynamically partially reconfigured to change

hardware acceleration units based on the distribution of

network workload. The system is analyzed and

formulated in order to find an optimized distribution of

the co-processors that meets the network workload

demands and the constraints of the platform. The

experimental results show that the optimum distribution

of the co-processors depends both on the average packet

size and the distribution of the network. The system must

be carefully designed in order to find the configuration in

which both the processor and the co-processors will be

fully exploited in a balanced way.

A possible extension to this work would be the

development of an analytical model that can be used to

explore homogeneous or heterogeneous multi-processor

platforms. In this case the analysis must also include the

topology of the connected processors and the ability of the

co-processors and the memories to be shared by many

processors.

Acknowledgement

This work was supported by Sandbridge Technologies.

References

[1] J. Carlström, T. Bodén, “Synchronous Dataflow

Architecture for Network Processors”, IEEE Micro,

September-October 2004

[2] M. Venkatachalam, P. Chandra, R. Yavatkar, “A

highly flexible, distributed multiprocessor architecture

for network processing”, Computer Networks , Vol. 41,

pp. 563-585, 2003

[3] L. Thiele, S. Chakraborty, M. Gries, S. Künzli,

“Design Space Exploration of Network Processor

Architectures”, Workshop on Network Processors, 8th

International Symposium on High-Performance

Computer Architecture (HPCA8), February 2002

[4] Y. Jin, N. Satish, K. Ravindran, K. Keutzer, “An

Automated Exploration Framework for FPGA-based

Soft Multiprocessor Systems”, Proceedings of the

International Conference on Hardware/Software

Codesign and System Synthesis, September 2005

[5] T. Wolf, M. Franklin, E. Spitznagel, “Design

Tradeoffs for Embedded Network Processors”,

Proceedings of the International Conference on

Architectures of Computing Systems (ARCS),

vol.2299, pp-146-164, April 2002

[6] H. Rosinger, “Connecting Customized IP to the

MicroBlaze Soft Processor Using the Fast Simplex

Link (FSL) Channel”, Xilinx Application Note, May

12, 2004

[7] J. Zhang, “Process XML On a Chip”, CommsDesign

Magazine, May 10, 2005

[8] D. Taylor, J. Turner, J. Lockwood, “Dynamic

Hardware Plugins (DHP): Exploiting Reconfigurable

Hardware for High-Performance Programmable

Routers”, Computer Networks, vol. 38, no. 3, pp. 295-

310, February 2002

[9] J. Lockwood, N. Naufel, J. Turner, D. Taylor,

“Reprogrammable Network Packet Processing on the

Field Programmable Port Extender (FPX)”,

Proceeding of the International Symposium on Field

Programmable Gate Arrays (FPGA’01), February

2001

[10] L. Pillai, “Video Compression using DCT”, Xilinx

Application Note, March 3, 2005

[11] M. Degermark, A. Brodnik, S. Carlsson, S. Pink,

“Small Forwarding Tables for Fast Routing Lookups”,

ACM Special Interest Group on Data

Communications, SIGCOMM 1997, France

[12] K. Ravindran, N. Satish, Y. Jin, K. Keutzer, “An

FPGA-Based Soft Multiprocessor System for IPv4

Packet Forwarding”, Proceedings of the International

Conference on Field Programmable Logic and

Applications (FPL’05), August 2005

[13] K. Thompson, G. Miller, R. Wilder, “Wide-Area

Internet Traffic Patterns and Characteristics”, IEEE

Network, vol. 11, no.6, November-December 1997

[14] S. Vassiliadis et al, “The MOLEN Polymorphic

Processor”, IEEE Transactions on Computers, pp.

1363- 1375, Vol. 53, Issue 11, November 2004

[15] S. McCreary, K. Claffy, “Trends in Wide Area IP

Traffic Patterns”, Technical Report from Cooperative

Association for Internet Data Analysis.

[16] “Two Flows for Partial Reconfiguration: Module

Based or Difference Based”, Xilinx Application Note

290 v1.2, September 2004

[17] P. Sedcole, B. Blodget, J. Anderson, T. Becker,

“Modular Partial Reconfiguration in Virtex FPGAs”,

Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL’05),

August 2005

[18] K. Lahiri, A. Raghunathan, S. Dey, “System-Level

Performance Analysis for Designing On-Chip

Communication Architectures”, IEEE Transactions on

Computer Aided Design of Integrated Circuits and

Systems, Vol. 20(6), pages 768-783, June 2001

[19] “MicroBlaze Processor Reference Guide”, Xilinx

Documentation, May 2005

[20] “PowerPC Processor Reference Guide”, Xilinx

Documentation, September 2003

[21] “IBM On-Chip CoreConnect Bus Architecture”, IBM

Documentation 2000

[23] T. Wolf, M. Franklin, “CommBench A

Telecommunications Benchmark for Network

Processors”, Proc. of IEEE International Symposium

on Performance Analysis of Systems and Software,

April 2000

[24] P. Crowley, M. Fiuczynski, J. Baer, B. Bershad,

“Characterizing Processor Architectures for

Programmable Network Interfaces”, Proceedings of

the International Conference on Supercomputing,

Santa Fe, May 2000

[25] P. Paulin, C. Pilkington, E. Bensoudane, “StepNP: A

System-Level Explration Platform for Network

Processors”, IEEE Design & Test, v.19 n.6, p.17-26,

November 2002

[26] P. Paulin, C. Pilkington, “Application of a Multi-

Processor SoC Platform to High-Speed Packet

Forwarding”, Proceedings of the Design, Automation

and Test in Europe Conference, (DATE’04), March

2004.

[27] S. McQueen, “Basic DES Crypto Core”, OpenCores,

www.opencores.org

[28] “Computation of the Internet Checksum via

Incremental Update”, Request for Comments 1624,

May 1994

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

