Formal Modeling and Analysis of Wireless Sensor Network
Algorithms in Real-Time Maude

Peter Csaba Olveczky and Stian Thorvaldsen
Department of Informatics, University of Oslo, Norway
{peterol, stianth}Qifi.uio.no

Abstract

Advanced wireless sensor network algorithms pose
challenges to their formal modeling and analysis, such
as modeling probabilistic and real-time behaviors and
novel forms of communication, and analyzing both
correctness and performance. In this paper, we propose
using Real-Time Maude to formally model, simulate,
and further analyze such algorithms. The Real-Time
Maude formalism is expressive yet intuitive, and the
tool provides a spectrum of analysis methods, includ-
ing simulation, reachability analysis, and temporal logic
model checking. We have used Real-Time Maude to
formally model and analyze the sophisticated OGDC al-
gorithm. We could perform all the analyses performed
by the OGDC developers using the simulation tool ns-2,
as well as further analyses which are beyond the capa-
bilities of simulation tools. To the best of our knowl-
edge, this is the first time a formal tool has been applied
to such a complexr wireless sensor network algorithm.

1 Introduction

Formal methods and tools have proved useful to give
high-level yet precise descriptions of computer systems,
and to analyze and experiment with system designs at
early (and at different) stages of the system develop-
ment process. Such analysis often discovers subtle but
critical design errors that are not discovered during tra-
ditional testing. Given the increasing sophistication of
wireless sensor network (WSN) algorithms—and the
difficulty of modifying an algorithm once the network
is deployed—there is a clear need to use formal meth-
ods to validate system performance and functionality
prior to implementing such algorithms.

However, advanced WSN algorithms present a set of
challenges to formal analysis tools, including:

1. Modeling and reasoning about time-dependent be-

1-4244-0054-6/06/$20.00 ©2006 IEEE

havior; e.g.: longevity is often a crucial goal, WSN
algorithms may use timers, and message transmis-
sion may be subject to message delays.

2. Many algorithms depend on geometric entities
such as locations, distances, etc.

3. Modeling different forms of communication. For
sensor nodes transmitting by radio, the appropri-
ate model of communication may be broadcast
where only nodes within a certain distance from
the sender receive the signal with sufficient signal
strength. In addition, the broadcast may be sub-
ject to transmission delays.

4. WSN algorithms often incorporate probabilistic
behaviors.

5. Simulating and analyzing systems with a large
number of sensor nodes scattered randomly.

6. Both correctness and, in particular, performance
are critical aspects that must be analyzed.

Furthermore, the formalism should be intuitive and
should support specifying the algorithm at an appro-
priate level of abstraction, so that a formal specifica-
tion can be well understood and can provide a useful
starting point for an implementation of the algorithm.

In this paper, we advocate the use of the language
and tool Real-Time Maude [15, 16], which extends
the rewriting logic-based Maude [4] tool to real-time
systems, for the formal specification, simulation, and
further analysis of WSN algorithms. The Real-Time
Maude specification language emphasizes expressive-
ness. The data types of a system are defined by
equational specifications. Instantaneous transitions are
defined by rewrite rules, and time elapse is defined
by “tick” rewrite rules. Real-Time Maude supports
the specification of distributed object-oriented systems,
which is ideal for modeling a network system. The
high-performance Real-Time Maude tool provides a
range of analysis techniques, including: timed rewrit-
ing for simulation purposes; timed search for reachabil-
ity analysis; and linear temporal logic model checking.

In Real-Time Maude, geometric entities (challenge
(2)) can be defined by the user as data types. Re-
garding (3), Real-Time Maude’s flexible specification
formalism allows us to easily define different forms of
communication. We show how to model both unicast
and geographically bounded broadcast with transmis-
sion delays. Real-Time Maude does not provide ex-
plicit support for modeling and reasoning about prob-
abilistic behaviors (challenges (4) and, partially, (6)),
which are supported by another extension of Maude
called PMaude [1]. Nevertheless, for the purpose of
simulating a system directly in Real-Time Maude, we
show how probabilistic behaviors can be “sampled” us-
ing a pseudo-random number generator. For correct-
ness analysis, we can model probabilistic behavior by
nondeterminism as explained in Section 4. Regarding
(5), we show how we can easily define states with any
given number of nodes scattered pseudo-randomly. Fi-
nally, system correctness and performance can be ana-
lyzed by Real-Time Maude as illustrated in this paper.

Real-Time Maude has been used to model and an-
alyze a set of advanced real-time systems, such as
large communication protocols [17] and scheduling al-
gorithms [13], that are beyond the capabilities of
automaton-based tools. Such analysis has found subtle
design errors not uncovered during traditional simula-
tion and testing. Furthermore, some of the designers of
the AER/NCA protocol suite told us that they found
that rewrite rules were much more intuitive and help-
ful to network engineers than their informal use-case
descriptions of the protocols [17].

We therefore believe that Real-Time Maude is a
promising candidate for formally modeling, simulat-
ing, and analyzing WSN algorithms. On the one
hand, Real-Time Maude offers an alternative to infor-
mal specifications and testing on simulation tools by:

e providing a precise formal specification of the sys-
tem which can be simulated and tested directly;

e allowing the specification to be analyzed in many
different ways, not just by simulating a few behav-
iors of the system, but by exhaustively exploring
a wide range of different scenarios; and

e allowing the user to define the appropriate forms
of communication at a high level of abstraction,
instead of having to use a fixed set of communica-
tion primitives.

On the other hand, the most popular formal tools
for real-time systems are the timed/hybrid automaton-
based tools UpPAAL [2] and HyTech [7]. To ensure
that crucial properties are decidable, the specifica-
tion formalisms of these tools are quite restrictive.
Real-Time Maude differs from such tools by having

a much more expressive specification language which
supports well the specification of “infinite-control” sys-
tems with user-definable data types, different com-
munication models, and advanced object-oriented fea-
tures. The tool IF [3] extends timed automaton tech-
niques with UML-inspired constructions for modeling
objects and communication and with some notion of
data type. Real-Time Maude differs from IF not only
with its flexible communication model, but also with
its simplicity: A simple and intuitive formalism is used
to specify both data types (by equations) and dynamic
and real-time aspects (by rewrite rules).

Jennifer Hou recently suggested to us the optimal
geographical density control algorithm (OGDC) [19] for
WSNs as a challenging modeling and analysis task.
The OGDC algorithm is a sophisticated state-of-the-
art algorithm that tries to maintain complete sensing
coverage and connectivity of an area for as long as pos-
sible by switching nodes on and off. It has been simu-
lated in the simulation tool ns-2 [12, 5], where its per-
formance was compared to similar algorithms. OGDC
presents all the challenges (1) to (6) above, as explained
in [18, 19]. The model of communication is geographi-
cally bounded broadcast with transmission delay.

We have modeled, simulated, and analyzed OGDC
in Real-Time Maude [18]. We were able to do in Real-
Time Maude all the analyses that the developers of
OGDC performed using the wireless extension of ns-
2. In addition, we have subjected the algorithm to
time-bounded reachability analysis and temporal logic
model checking. Such analyses normally explore all
possible behaviors from a certain state, but in our case
they were also relative to the sampling techniques used
for simulating probabilistic behaviors. Based on com-
munication with Jennifer Hou, it seems that our mod-
eling and analysis effort took significantly shorter time
than the simulation effort reported in [19].

This paper gives an introduction into how WSN al-
gorithms can be modeled and analyzed in Real-Time
Maude. We focus on how to specify the communication
model described above and locations and distances; on
how to define large initial states; and on simulating
probabilistic behaviors (Section 4). Section 5 summa-
rizes our specification and analysis effort of OGDC.

2 Related Work

Although the need for formal analysis of WSN al-
gorithms has been been pointed out in many papers,
our work on OGDC represents—to the best of our
knowledge—the first formal modeling and analysis of
such a sophisticated WSN algorithm as OGDC.

Some attempts at using formal methods on WSNs

have focused on modeling TinyOS using automaton-
based formalisms. In [6], TinyOS is modeled in detail
as a hybrid automaton, and a network of sensor nodes
is modeled as a network of hybrid automata. We focus
on modeling the algorithm at the appropriate level of
abstraction, and we therefore model sensor nodes as
abstractly as possible. In the OGDC case, there is no
need to model TinyOS. In addition, it is not clear that
the restrictive hybrid automaton formalism can model
more sophisticated WSN algorithms than the one in [6].

In [11], the authors use Lamport’s temporal logic of
actions [8] to model and simulate diffusion protocols
for discovering routing trees for gathering and dissem-
inating data. Their analysis focuses on the number of
edges in the resulting routing trees. Therefore, their
protocols and analyses are not very “wireless sensor
network-specific,” and they do not need to model sen-
sor nodes in any detail. For example, time and time-
dependent behavior are not modeled.

In recent work, Luo and Tsai develop a new for-
mal model, called space time Petri nets (STPNs), to
model WSNs [9]. STPNs extend timed Petri nets with
locations associated to places, and with new kinds of
language constructions, such as broadcast transitions.
In our view, the formalism, despite being a graphical
formalism, is not very intuitive. Furthermore, the lack
of data types will make it almost impossible to model
advanced algorithms. For example, it does not seem
possible to model coverage areas, angles, etc., that are
all needed in the OGDC algorithm. Finally, the model
is inflexible since specific forms of communication are
built in as language primitives. For other models of
communication, such as relating the delay of a each
message in a broadcast with the distance to the desti-
nation, this formalism probably cannot be used.

3 Real-Time Maude

A Real-Time Maude timed module specifies a real-
time rewrite theory (X, E, IR, TR), where:

e (X, F) is a membership equational logic [10] the-
ory with ¥ a signature! and E a set of conditional
equations. The theory (X, E) specifies the sys-
tem’s state space as an algebraic data type. (X, F)
must contain a specification of a sort Time model-
ing the (discrete or dense) time domain.

e IR is a set of labeled conditional instantaneous
rewrite rules specifying the system’s instantaneous
(i-e., zero-time) local transitions, each of which is
written crl [I] : t => t/ if cond, where [is a

LThat is, ¥ is a set of declarations of sorts, subsorts, and
function symbols (or operators).

label. Such a rule specifies a one-step transition
from an instance of ¢ to the corresponding instance
of ¢/, provided the condition holds. The rewrite
rules are applied modulo the equations F.

e TR is a set of tick (rewrite) rules, written
crl [: {t} => {t'} in time 7 if cond .

that model the elapse of time in a system. {_} is
a built-in constructor of sort GlobalSystem, and
7 is a term of sort Time that denotes the duration
of the rewrite.

The initial states must be ground terms of sort
GlobalSystem and must be reducible to terms of the
form {t} using the equations in the specifications. The
form of the tick rules then ensures uniform time elapse
in all parts of the system.

A class declaration

class C | att; : s, , att, : Sp

declares a class C' with attributes att; to att,, of sorts
s1 10 $p. An object of class C' in a given state is rep-
resented as a term < O : C' | atty : valy, ..., att, : valy, >
where O (of sort 0id) is the object’s identifier, and
where wval; to val, are the current values of the at-
tributes atty to att,. A message m is a term of sort
Msg. We can easily define delayed messages (see [16])
as terms of the form d1y (m,7), which denotes a mes-
sage m that will be “ripe” in time 7 (that is, it will
become m in time 7). In a concurrent object-oriented
system, the state has the form {t}, where ¢ is a term of
the built-in sort Configuration. It has typically the
structure of a multiset made up of objects, ripe mes-
sages, and delayed messages, where multiset union is
denoted by juxtaposition. The zero-time dynamic be-
havior of concurrent object systems is axiomatized by
specifying each of its concurrent transition patterns by

an instantaneous rewrite rule. For example, the rule
rl [1] : m(0,w)

<0:C | al : x, a2 :
=>

<0:C | al:
dly(m’(0°),x) .

0’, a3 : z >

x+w, a2 : 0’, a3 : z >

defines a family of transitions in which a message m,
with parameters 0 and w, is read and consumed by an
object 0 of class C. The transitions have the effect of
altering the attribute al of the object 0 and of send-
ing a new message m’ (0’) with delay x. “Irrelevant”
attributes (such as a3, and the right-hand side occur-
rence of a2) need not be mentioned in a rule. There is
typically only one tick rule, which usually has the form

var C : Configuration . var T : Time .
crl [tick]l : {C} => {6(C, T)} in time T if T <= mte(C) .

The function ¢ defines the effect of time elapse on the
objects and messages in a configuration, and the func-
tion mte defines the maximum amount of time that can
elapse before some action must take place. These func-
tions distribute over the elements in a configuration
and must be defined for single objects. The tick rule
advances time nondeterministically by any amount T
less than or equal to mte (C). Before executing the sys-
tem, a time sampling strategy guiding the application
of such tick rules must be defined (see Section 5).

Timed modules are ezecutable under reasonable as-
sumptions. Real-Time Maude provides a spectrum of
analysis commands, including:

e timed “fair” rewriting, which simulates one behav-
ior of the system from a given initial state up to a
given duration;

e timed search, which uses a breadth-first strategy
to search for states that are reachable from the
initial state within a given time, match a search
pattern, and satisfy a search condition;

e (time-bounded) linear temporal logic model check-
ing, which checks whether each behavior “up to a
certain time” satisfies a temporal logic formula;

e the find latest command, which finds how long
it takes, in the worst case, to reach a desired state.

4 Modeling Wireless Sensor Networks
in Real-Time Maude

This section presents some techniques for model-
ing typical WSN features such as locations, broadcast
communication, probabilistic behavior, timers, etc., in
Real-Time Maude. We also show how large initial
states can be defined. These techniques are used in
the OGDC case study.

Locations. If the sensor nodes are located on a two-
dimensional surface, we can represent a location as a
pair x.y of rational numbers x and y. Using the built-
in sort Rat of rational numbers, such pairs can be rep-
resented as terms of the following sort Location:?

sort Location . op _._ : Rat Rat -> Location .

The following function defines the square of the dis-
tance between two locations:?

op distanceSq : Location Location -> Rat .
vars X X’ Y Y’ : Rat .
eq distanceSq(X . Y, X’ . Y) =
(X -X) % (X-X)) + (Y -Y) * (¥-Y)) .

2Underbars in the declarations of operators such as . _denote
the places of arguments for “mix-fix” function symbols.

3Real-Time Maude also provides a built-in data type of
floating-point numbers, with functions such as square root, but
we prefer to stay within the rational numbers whenever possible.

Given a constant transRange denoting the trans-
mission range of a sensor node, we can check whether a
node is within the transmission range of another node:

vars L L’ : Location .
op _withinTransRangeOf_ : Location Location -> Bool .
eq L withinTransRangeOf L’ =

distanceSq(L, L’) <= transRange * transRange .

Modeling Sensor Nodes. A sensor node can be
represented as an object of a class WSNode. A sensor
node usually does not have an explicit identifier, but
can be identified by its location. We let object iden-
tifiers be locations by giving the subsort declaration
subsort Location < 0id .

The attributes of a sensor node depend on the al-
gorithm to be modeled. For illustration purposes, we
assume that we have an attribute remainingPower de-
noting the remaining power in the node, an attribute
status of a sort On0ff with values on and off which
denotes whether the node is switched off or on, and two
timers timerl and timer2. A timer is modeled as an
attribute of the built-in sort TimeInf which adds the
infinity value INF to the time domain. The value of
a timer attribute denotes the time remaining until the
timer expires (a timer with value INF is turned off). In
this case, the class WSNode could be declared as follows:

class WSNode | remainingPower :
timerl : TimelInf, timer2 :

Rat, status : OnOff,
TimeInf .

sort OnOff . ops on off : -> OnOff .

We need to define the behavior in time for WSNodes;
that is, we need to define the functions § and mte on
such objects. The function § decreases the remaining
power and the timer values with the elapse of time:

var L : 0id . var S : OnOff . var T : Time .
vars TI TI’ : TimeInf . var R : Rat .
eq 0(< L : WSNode | remainingPower : R, status : S,

timerl : TI, timer2 : TI’ >, T) =

< L : WSNode | remainingPower :
if S == on then
R monus (idlePower * T)
else R monus (sleepPower * T) fi,
timerl : TI monus T,
timer2 : TI’ monus T > .

The constants idlePower and sleepPower denote the
amount of power the node consumes per time unit when
the node is, respectively, active and inactive. The func-
tion monus is defined by = monus y = max(x — y,0).
The function mte should be defined so that it does not
allow time to advance past the moment when some ac-
tion must be taken. Typically, we define mte to allow
time to elapse until the next timer expires (or until the
power supply is exhausted):

eq mte(< L : WSNode | remainingPower : R, status : S,

timerl : TI, timer2 : TI’ >) =
if S == on then min(TI, TI’, R / idlePower)
else min(TI, TI’) fi .

Probabilistic Behaviors. The OGDC algorithm
exhibits probabilistic behaviors in that (i) some actions
are performed with probability p, and (ii) some values
are supposed to be set to “random values, drawn from
a uniform distribution ...” As mentioned, Real-Time
Maude does not provide explicit support for specify-
ing probabilistic behavior. Instead, for simulation pur-
poses, we define a function random, which generates
a sequence of numbers pseudo-randomly, and add to
the state an object of a class RandomNGen with an at-
tribute seed which stores the ever-changing “seed” to
random. Probabilistic behaviors can then be modeled
by “sampling” a value from the given interval using
the random function. The disadvantage with this ap-
proach is that the Real-Time Maude specification no
longer correctly specifies the informal algorithm and
that all possible behaviors of the system can no longer
be explored. For the purpose of specifying all possi-
ble behaviors, we can model probabilistic behavior by
nondeterministic behavior by (i) allowing a probabilis-
tic action to be performed as long as the probability of
it being performed is greater than 0, and (ii) by letting
the “random” value be a new variable, only occurring
in the right-hand side of the rewrite rule, which can
be given any value in the desired interval (and which
makes the rule nonexecutable).

Modeling Communication. Should communica-
tion in WSNs be modeled as broadcast or unicast (or
both)? Should transmission delays be modeled? If so,
should the delay be a function of the distance between
sender and receiver? Should power consumed by trans-
mitting a packet be modeled? Should packet collisions
be taken into account?

The answer to these questions differs from algorithm
to algorithm, depending on their focus and level of ab-
straction. On the one hand, for ease of specification
and analysis, it is important to abstract from as much
detail as possible. On the other hand, essential func-
tionality and assumptions of the algorithm must be
captured in the model. It is the problem at hand that
should guide the formalization—mnot the specification
formalism or the simulation tool. Real-Time Maude
provides a flexible formalism in which many different
forms of communication can easily be defined.

In the OGDC algorithm, the informal description
of the algorithm given in [19] says that nodes broad-
cast messages within the radio range. (Furthermore,

a node does not know its neighbors.) Most time re-
lated parameters in OGDC are set according to the
transmission time of a message, which is a clear indi-
cation that transmission delays must be captured in
the model. In OGDC, the transmission delay does not
depend on the distance between sender and receiver.
We have not modeled packet collisions.

In what follows, we model broadcast where a packet
must reach all nodes within the radio range of the
sender and where the transmission is subject to a trans-
mission delay A. The idea is that the sender [sends
a “broadcast message” broadcast m from [, where m
is the message content, into the configuration. This
broadcast message is defined to be equivalent to a set
of single messages dly (msg m from [to I’, A) with
delay A, one for each sensor node !’ within the radio
range of [. The messages are declared as follows:
sort MsgCont . --- Message content

msg broadcast_from_ : MsgCont Location -> Msg .
msg msg_from_to_ : MsgCont Location Location -> Msg .

The following equation defines the desired equivalence:

var C : Configuration . var MC : MsgCont .
eq {< L : WSNode | > (broadcast MC from L) C} =
{< L : WSNode | > distributeMsg(L, MC, C)} .

It is the task of distributeMsg to create an addressed
message for each sensor object in C that is within the
transmission range of L. The use of the operator {_}
enables the equation to grab the entire state to en-
sure that all appropriate nodes in the system will get
the message. The function distributeMsg is defined
recursively over the elements in a configuration:

op distributeMsg : Location MsgCont Configuration

-> Configuration [frozen (3)] .

var MSG : Msg . var 0 : 0id .

eq distributeMsg(L, MC, none) = none .

eq distributeMsg(L, MC, MSG C) =
MSG distributeMsg(L, MC, C) .

eq distributeMsg(L, MC, < 0 : RandomNGen | > C) =
< 0 : RandomNGen | > distributeMsg(L, MC, C) .

eq distributeMsg(L, MC, < L’ : WSNode | > C) =
< L’ : WSNode | > distributeMsg(L, MC, C)
if L withinTransRangeOf L’
then dly(msg MC from L to L’, A) else none fi .

If the transmission delay between two nodes [and I’ is
a function of the distance between them, say f(1,1), we
can just replace A with f(L,L’) in the last equation.
Section 5.2 gives examples of rules for, respectively,
broadcasting and receiving a packet in this setting.

Defining Initial States. To simulate large sensor
networks with different initial seeds, we define a func-
tion genInitConf, where genInitConf (n,seed) de-
fines a configuration with n sensor nodes scattered at

pseudo-random locations within the sensing area, as
well as a RandomNGen object. (An initial state must
also add the operator {_}.) We can therefore eas-
ily generate initial states with any number of nodes,
and place them in different locations, by just chang-
ing the parameters n and seed. In the definition be-
low we assume that the initial values of the attributes
status, powerRemaining, timerl, and timer?2 are, re-
spectively, on, P, t1, and ¢2.

op genInitConf : Nat Nat -> Configuration .

ceq genInitConf (N, M) =
if N == 0 then --- generate RandomNGen object:

< Random : RandomNGen | seed : M >
else --— more nodes to generate:
< L : WSNode | status : on, powerRemaining : P,

timerl : tl1, timer2 : ¢2 >
-—-— and generate the remaining N-1 nodes:
genInitConf (N - 1, random(random(M)))
fi
if L := ((random(M) rem (Xsize + 1)) .
(random(random(M)) rem (Ysize + 1))) .

5 Modeling and Analyzing the OGDC
Algorithm in Real-Time Maude

This section gives a brief overview over how we have
modeled the OGDC algorithm using the specification
techniques described in Section 4, and how we could
simulate and further analyze the algorithm in Real-
Time Maude. Details are given in [18].

5.1 Overview of the OGDC Algorithm

The OGDC algorithm [19] is a state-of-the-art den-
sity control algorithm developed by Zhang and Hou. It
aims at maintaining sensing coverage and connectivity
of the sensing area for as long as possible by periodi-
cally selecting nodes to be active and inactive.

The network lifetime is divided into rounds, where
each round is divided into a node selection phase and
a steady state phase. The node selection phase begins
with each node having status “undecided” and proba-
bilistically choosing whether or not to volunteer to be a
starting node. Each node that volunteers sets its back-
off timer to a small value. The node then becomes
active when its backoff timer expires, and broadcasts
a power-on message which contains the location of the
node and a random direction. When an “undecided”
node receives a power-on message, it checks if its en-
tire coverage area is covered by the surrounding active
nodes, in which case the node becomes inactive. Oth-
erwise, it sets its backoff timer depending on how close
the node is to the optimal position w.r.t. the nodes
that are currently active. The timer value is set to

a gradually larger value as the distance increases and
the direction deviates. When the backoff timer of a
node expires, the node becomes active and broadcasts
a power-on message that may cause other nodes to re-
set their backoff timers or to become inactive. The
network enters the steady state phase when each node
is either active or inactive. When a round is over, the
density control process starts over again.

5.2 Modeling the OGDC Algorithm

The brief description of the OGDC algorithm should
make it clear that its modeling is a challenging task.
Features such as coverage areas, angles, probabilistic
behaviors, and power consumption have to be modeled.
Real-Time Maude provides the user the flexibility to
model any (computable) data type as an equational
specification, allowing us to define the above features in
a fairly intuitive way (see [18]). The dynamic behavior
of OGDC is specified by 11 rewrite rules.

The following rule models the case where node be-
comes active (its status attribute is set to on) when
its backoff timer expires (i.e., has value 0) and the
node has volunteered to be a starting node. The node
then broadcasts a power-on message that contains the
node’s location and a random direction:*

rl [startingNodePowerOn]
< L : WSNode | remainingPower : P, backoffTimer : O,
hasVolunteered : true >
< Random : RandomNGen | seed : M >
=>
< L : WSNode | remainingPower : P monus tP,
backoffTimer : INF, status : on >
< Random : RandomNGen | seed : random(M) >
broadcast (powerOnWithDirection randomDirection(M))
from L .

The following rule models the case when an
undecided sensor node receives a power-on message
and is within distance 2rg from the sender. The node
adds the sender to its neighbor list, and checks whether
all its neighbors’ coverage disks completely cover the
node’s own coverage disk (modeled by the bitmap at-
tribute). If so, the node sets its status to off:

crl [recPowerOnMsgAndSwitchOff]
(msg (powerOnWithDirection D) from L’ to L)
< L : WSNode | status : undecided,
neighbors : NBS, bitmap : BM >
=>
< L : WSNode | status : off, neighbors : NBS L’,
bitmap : updateBitmap(L, BM, L’),
backoffTimer : INF >
if (L withinTwiceTheSensingRangeOf L’)
/\ sensingAreaCovered(updateBitmap(L, BM, L’)) .

4The direction is a parameter of the power-on message; its
name does not imply that directed broadcast is used.

5.3 Simulation and Formal Analysis

We have subjected the OGDC algorithm to the fol-
lowing kinds of formal analyses in Real-Time Maude:

e Monte Carlo simulation, where probabilistic be-
havior is simulated using our pseudo-random num-
ber generator, using timed fair rewriting.

e Time-bounded reachability analysis and temporal
logic model checking of all possible behaviors from
an initial state with respect to the values gener-
ated by the random function. That is, our analysis
is incomplete since we only analyze those behav-
iors that can take place with the specific choice of
pseudo-random numbers used to simulate proba-
bilistic behaviors. Nevertheless, such analysis cov-
ers many different behaviors from a given state.

As mentioned in Section 3, a time sampling strat-
egy must be chosen before the analysis can take place.
Since all events in the OGDC algorithm happen at spe-
cific times, we have shown in [14] that we can “fast
forward” between these events without losing any in-
teresting behaviors. Therefore, in our analysis, we use
the mazimal time sampling strategy which advances
time as much as possible (as defined by mte).

Simulation Using Timed Rewriting. In [19],
Zhang and Hou use the simulation tool ns-2 [12] with
the wireless extension [5] to simulate OGDC and mea-
sure the following performance metrics:

e The number of active nodes and the percentage of
coverage they provide at the end of the first round.

e The percentage of coverage and the total amount
of remaining power for the whole system through-
out the network’s lifetime.

e The total time during which at least « percent of
the sensing area is covered.

We cannot use Real-Time Maude’s timed rewrite com-
mand directly to perform the corresponding analyses,
since these performance metrics should be measured at
different points in time throughout the lifetime of the
system, and since the metrics themselves do not appear
explicitly in the state.’ Therefore, we add to the initial
state a new construction called analysis message. An
analysis “message” is defined so that, at the same time
in each round of the algorithm, it computes the ap-
propriate performance metric of the current state and
stores the value in a list. The analysis message remains

5In principle, one could use Real-Time Maude’s tracing ca-
pabilities to trace the state at these different points in an exe-
cution, but this is not practical, given the large states and the
large number of rewrites involved.

in the state throughout the execution and can be re-
viewed afterwards. We have defined in [19] three analy-
sis messages: activeNodes, which records the number
of active nodes in the state; coverage’, which records
the percentage of the sensing area that is covered by
the active nodes; and totalPower, which records the
amount of power remaining in the system.

The following timed fair rewrite simulates 50 rounds
of the algorithm (in time <= roundTime * 50) with
75 nodes in a 25m x 25m sensing area. The initial
state also contains the analysis messages coverage,
and totalPower that compute their metrics at time
roundTime — 1, i.e., just before the end of each round:®

Maude> (tfrew {genInitConf (75, 313)
dly(coverage’,(nil), roundTime - 1)
dly(totalPower(nil), roundTime - 1)}

in time <= roundTime * 50 .)

Result ClockedSystem :

{dly(coverage’ (100 ++ ... ++ 100 ++ 92 ++ 100 ++ 99

++ ... ++ 51 ++ 0 ++ ... ++ 0), 999999)
dly (totalPower (146337556845 ++ 14067654877
++ ... ++ 0 ++ ... ++ 0), 999999)

... } in time 50000000

The result messages show that the nodes can provide
100% coverage for 25 rounds, with a decrease of cover-
age in certain intermediate rounds. We have also sim-
ulated one round of the protocol with up to 400 sensor
nodes to measure the number of active nodes [18].

Further Formal Analysis. Due to the large states
involved, we restricted our search and model checking
analyses to systems with 5 to 6 nodes in a 15m x 15m
sensing area. Executing the find latest command
with many different initial states, we found that the
system will reach the steady state phase in at most
1647 ms. One round of the OGDC algorithm is 1000
seconds, which means that the network spends most of
its lifetime performing its sensing task.

We used Real-Time Maude’s temporal logic model
checker to check whether the system remains in the
steady state phase throughout the first round once it
has reached this phase. That was indeed the case. Fi-
nally, we used time-bounded search to show that the
entire sensing area is covered in the steady state phase
in the first round (see [18] for details).

Summary of the Analysis. Using analysis mes-
sages, rewriting could simulate the OGDC algorithm
with several hundred sensor nodes and could measure
all performance metrics measured by the OGDC devel-
opers using ns-2. We generally got a larger number of
active nodes than reported in [19], and, consequently

SParts of the Real-Time Maude output are replaced by ‘...’

we got better coverage and shorter network lifetime.
One explanation could be the location of the sensor
nodes. A more plausible explanation is the following:
In OGDC, if two nodes are fairly close to one another,
the difference between their backoff timer values is of-
ten smaller than the transmission delay. If transmis-
sion delays are ignored during the simulations, poten-
tially because the simulation tool makes it inconvenient
to simulate transmission delays, then only one of the
neighbors will become active. However, if, as in our
case, we capture transmission delays, then the backoff
timer of the “worse” node will expire before it receives
the power-on message from the “better” node, and,
hence, both nodes will become active.

We have specified coverage areas as “bitmaps,” and
have emphasized ease and elegance over computa-
tional efficiency when defining bitmaps and functions
on bitmaps. A more sophisticated representation of
coverage areas should allow model checking systems
with much more than six nodes.

6 Concluding Remarks

We have proposed the general-purpose high-
performance Real-Time Maude tool as a formal tool for
modeling, simulating, and further analyzing advanced
wireless sensor network algorithms. Real-Time Maude
emphasizes generality and ease of specification (at the
expense of decidability of key properties), and allows us
to specify advanced systems, with various data types
and communication forms, in an intuitive and uniform
formalism that has proved useful to network engineers.

We have tested our tool on the challenging OGDC
density control algorithm. Our model is essentially
“just” a formalization of OGDC at the level of abstrac-
tion of its informal specification. We have been able to
perform all the analyses performed using ns-2 in [19],
as well as additional analyses of many behaviors from
an initial state. We have good reasons to believe that
modeling and simulating OGDC in Real-Time Maude
require significantly less effort than implementing and
simulating the algorithm on a simulation tool.

Much work remains. We cannot yet model and an-
alyze probabilistic behaviors as such, although we can
do Monte Carlo simulations using pseudo-random num-
bers. It would be useful to further validate Real-Time
Maude as a simulation tool by showing that differences
in performance between two algorithms as measured by
a simulation tool carry over to their Real-Time Maude
simulations. Finally, an important challenge consists
of making network algorithm developers use our tool.

Acknowledgments. We are grateful to Jennifer Hou
for suggesting the OGDC algorithm as a challenging mod-

eling task and to José Meseguer for discussions on modeling
communication in sensor networks.

References

[1] G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-
based specification language for probabilistic object
systems. In QAPL’05, 2005.

[2] G. Behrmann, A. David, and K. G. Larsen. A tutorial
on UPPAAL. In SFM-RT 2004, volume 3185 of LNCS.
Springer, 2004.

[3] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis.
The IF toolset. In SFM’04, volume 3185 of LNCS.
Springer, 2004.

[4] M. Clavel, F. Diran, S. Eker, P. Lincoln, N. Marti-
Oliet, J. Meseguer, and C. Talcott. Maude Manual,
April 2005. http://maude.cs.uiuc.edu.

[5] CMU monarch extensions to ns.
monarch.cs.cmu.edu/.

[6] S. Coleri, M. Ergen, and T. J. Koo. Lifetime analysis
of a sensor network with hybrid automata modelling.
In WSNA ’02. ACM, 2002.

[7] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech:
A model checker for hybrid systems. Software Tools
for Technology Transfer, 1:110-122, 1997.

[8] L. Lamport. The temporal logic of actions. ACM
Toplas, 16(3):872-923, 1994.

[9] Y. Luo and J. J. P. Tsai. A graphical simulation sys-
tem for modeling and analysis of sensor networks. In
Intl. Symposium on Multimedia, 2005. To appear.

[10] J. Meseguer. Membership algebra as a logical frame-
work for equational specification. In Proc. WADT’97,
volume 1376 of LNCS. Springer, 1998.

[11] S. Nair and R. Cardell-Oliver. Formal specification
and analysis of performance variation in sensor net-
work diffusion protocols. In MSWiM ’04. ACM, 2004.

[12] ns-2 network simulator. www.isi.edu/nsnam/ns.

[13] P. C. Olveczky and M. Caccamo. Formal simula-
tion and analysis of the CASH scheduling algorithm
in Real-Time Maude. In FASE’06, 2006. To appear.

(14] P. C. Olveczky and J. Meseguer. Abstraction and com-
pleteness for Real-Time Maude. In WRLA’06.

[15] P. C. Olveczky and J. Meseguer. Specification and
analysis of real-time systems using Real-Time Maude.
In FASE 2004, volume 2984 of LNCS. Springer, 2004.

[16] P. C. Olveczky and J. Meseguer. Semantics and prag-
matics of Real-Time Maude. Higher-Order and Sym-
bolic Computation, 2006. To appear.

[17] P. C. Olveczky, J. Meseguer, and C. L. Talcott. Speci-
fication and analysis of the AER/NCA active network
protocol suite in Real-Time Maude. http://www.ifi.
uio.no/RealTimeMaude, 2004.

(18] S. Thorvaldsen and P. C. Olveczky. Formal model-
ing and analysis of the OGDC wireless sensor net-
work algorithm in Real-Time Maude. Manuscript.
http://www.ifi.uio.no/RealTimeMaude/0GDC, 2005.

[19] H. Zhang and J. C. Hou. Maintaining sensing coverage
and connectivity in large sensor networks. Wireless Ad
Hoc and Sensor Networks, 1, 2005.

http://wuw.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

