
Easy and Reliable Cluster Management:

The Self-management Experience of Fire Phoenix*

Zhang Zhi-Hong, Meng Dan, Zhan Jian-Feng, Wang Lei, Wu Lin-ping and Huang Wei

Institute of Computing Technology
Chinese Academy of Sciences

P.O.Box 2704 Beijing, China 100080
{zzh,dm,jfzh,wl,wlp,hw}@ncic.ac.cn

*
- This work is supported by the National ‘863’ High-Tech Program of China (No. 2004AA616010) and the 15th key project of China

(No. 2004BA811B09-1)

Abstract

High-Performance clusters are rapidly becoming an
important computing platform for both scientific and
business applications. To fulfill the new demands and
challenges, cluster system software is inevitably complex.
Even for experienced administrators, the management of a
cluster system is an exhausting job. This paper introduces
Fire Phoenix, a scalable and self-managing cluster system
software that supports both scientific and commercial
applications. With the self-configuring and self-healing
features, much of the machine configuration and error
recovery can be done automatically. Our design has been
proven effective in the operations of the Dawning 4000A
supercomputer, which is the biggest cluster system in
China.

1. Introduction

Within the last decade, clustering has become one of
the mainstream technologies with its low cost and high
scalability. Not limited in traditional scientific computing
applications, clusters are more and more widely adopted in
business domains including databases, large web sites, and
digital libraries. Compared with scientific computing, the
business domains have different requirements, such as
scalability, reliability and support for heterogeneous
platforms. Facing these challenges, cluster system software
should have a flexible component framework, high
availability service and dynamic configuration ability to
meet the growing and varying demands of business

applications; at the same time, the cluster system software
should hide the complexity and make cluster management
easy and reliable so as to avoid operation errors and
reduce the TCO.

Traditional cluster management software [1-3] targeted
on scientific computing lacks the support for business
applications. Facing this challenge, we developed a new
cluster management software named Fire Phoenix, which
supports both scientific and business computing on
heterogeneous platforms. To make system management
easy and reliable, we borrowed autonomic computing
principle and enabled system self-management. In this
paper, we describe how we design and implement the self-
management mechanism and evaluate it from several
aspects. The research contributions of this paper can be
concluded as:

1. Providing an agent-based solution to self-
configuration of heterogeneous cluster resources,

2. Proposing a role-based self-deployment mechanism
for cluster service components,

3. Proposing a booting protocol, which turns the
unstable initial state of cluster system software into
a self-healing one,

4. Providing a group service based self-healing
solution for high availability of cluster so that
every system element can be recovered from faults
and no single point of failure exists.

The remainder of the paper is organized as follows.
Section 2 outlines the related work. Section 3 gives the
overview of Fire Phoenix. Sections 4 and 5 describe and

1-4244-0054-6/06/$20.00 ©2006 IEEE

analyze the self-configuring and self-healing mechanism of
Fire Phoenix respectively. Section 6 draws a conclusion.

2. Related Work

The configuration and deployment of a large-scale
cluster is an exhausting work. Many earlier cluster
management systems attempt to tackle this problem.
NPACI Rocks [1], an open source Linux-based cluster
solution package, can help significantly reduce the
complexity of building Beowulf HPC clusters. It makes
use of the Redhat’s Kickstart and RPM to manage the
distribution of node file system and provides component-
based configuration method to realize module reuse.
OSCAR [2] (Open Source Cluster Application Resources)
is a snapshot of the best-known practices for building,
programming, and using clusters. It consists of a fully
integrated and easy to install software bundle designed for
high performance cluster computing. Warewulf [3] is a
light-weighted cluster toolkit that facilitates the process of
installing a cluster and long-term administration. These
pioneer researches forward the target of easy and reliable
management of cluster system.

However, the above-mentioned studies cannot fulfill the
demands of high availability and varying configuration.
IBM’s RSCT [4] (Reliable Scalable Cluster Technology)
is the infrastructure used by a variety of IBM products to
provide clusters with improved system availability,
scalability, and ease of use. Now it can provide a
comprehensive cluster environment for AIX and Linux.

With the increasing scale and complexity of clusters,
cluster system software becomes more complex.
Autonomic computing presents a new way to tackle this
issue. Inspired by the functioning of a human nervous
system, automatic computing is to build and design
computer systems that function like it. The object of
automatic computing is self-management, i.e. self-
configuration, self-optimizing, self-protection and self-
healing. In this way, a computing system can hide the
complexity from users and make them concentrate on high-
level management objectives instead of low-level
management operations. The papers [5, 6]conceives the
picture of autonomic computing and outlines the
architecture upon that an autonomic system might be built.
[7]Believes that the way in conquering autonomic systems
is the integration of three existing research communities:
the multi-agent systems community allows natural
modeling of the system and explicitly considers
autonomous behavior and distributed interaction,
dynamical systems theory allows analysis of the dynamics
of these models and the decentralized control community
can use insights gathered from analysis to create
decentralized control mechanisms to control the dynamics
of autonomic systems. A few approaches show the promise

of using a comprehensive architecture to address the
modeling of autonomic computing, but have not realized
the promise.

3. Overview of Fire Phoenix Cluster
Operating System

Fire Phoenix Cluster Operating System [8] (in short,
Phoenix) is a cluster system software, which is designed
and developed from the perspective of an operating system,
and aims to provide a scalable and highly available
distributed heterogeneous platform to support both
scientific and business applications. Like a UNIX
operating system, Phoenix has a 3-layered architecture.
The top layer is the user environment, through which users
utilize cluster resources to fulfill their requirements. The
second layer is Cluster Operating System Kernel (in short,
Phoenix Kernel), which defines the minimum set of core
functions with scalability and fault-tolerance support. The
lowest layer is the heterogeneous resource layer, which
shields heterogeneous hardware architectures, host
operating systems and communication protocols with
heterogeneous middleware. Figure 1 shows the main
components in Phoenix Kernel layer. The green blocks
indicate modules responsible for self-configuring and blue
blocks indicate modules responsible for self-healing.

4. Self-configuring mechanism

4.1 Scenario and Motivation of Self-configuring

Phoenix supports several heterogeneous platforms,
including Linux, Windows, Solaris and Aix. When we talk
about the deployment of Phoenix, we assume that a host
operating system has already been installed.

Parallel Command and API

C
onfiguration

Security

Event
Management

Data Bulletin

Group Service

Detector WD Agent

Parallel Loading Service

self-healing self-configuring

Figure 1. Layered architecture of Phoenix Kernel

To deploy Phoenix from scratch, the following steps are
needed:
1. Configuration: gathering the cluster hardware
information, such as number of nodes � physical resources
and network configuration, and planning how to deploy
different service components on each node,
2. Deployment: installing service programs on every node
according to the configuration,
3. Booting: bringing up service programs according to the
dependences between services,
4. Maintenance: ensuring the correctness and consistency
of the running environment on every node.

Originally we designed and implemented a series of
tools to do these work:
1. A GUI tool named Configuration Center is used to edit
the configuration of the cluster.
2. Several shell scripts based on RSH and RCP commands
are used to install the service components.
3. A GUI tool named Control Center is used to bring up
service components in order.
4. If any problem occurs, the manager is responsible for
maintenance.

We call this solution as the GUI+Scripts mode. This
solution has several shortcomings: Firstly, configuration,
deployment, booting and maintenance are separated and
the manager must do a lot to glue them into an integrated
process. Secondly, all the operations based on RSH or
RCP commands are sent from one management console
and highly centralized management leads to low efficiency.
Thirdly, remote shell commands fail to interoperate in
heterogeneous environments.

To overcome these shortcomings, we present an agent-
based solution, which works in a distributed and
cooperative way to provide full support to heterogeneous
platforms. This solution can greatly ease the management
by means of self-configuration.

An agent is a software entity that is capable of taking
autonomous actions to meet its design objectives in a
situated environment. We believe an agent-based solution
can meet the demands of cluster construction. Firstly,
agents, situated in nodes with different hardware
architectures and host operating systems, can detect
resources and accommodate to circumstances, and hence
support the cluster construction in heterogeneous platforms;
secondly, agents, taking actions autonomously, make
cluster construction easier.

4.2 Architecture

As Figure 2 shows, Phoenix s self-configuring
mechanism includes 4 elements: Decision-making Module,
Configuration Service, Deployment Service, and Node
Agent.

Deployment
Service

Node 1

Node 2

Node n

Agent

...

Agent

Agent

Conifgure
Server

Decision Making
Module

Figure 2. Architecture of phoenix self-configuring
mechanism

4.2.1 Decision-making Module

This module decides how to configure cluster resources
and services according to the cluster information stored at
Configuration Service. Decision-making Module may be
designed in two ways. In the first way, a human manager
makes decisions and this module is actually a convenient
GUI tool; and in the second way, the module will be a
daemon that can make decisions autonomously. We
compromise these two ways: a GUI tool displaying the
system information helps the manager make decisions, and
a daemon executes the decisions. In this way the manager
may absolutely control the system or make some rules to
direct the daemon to work automatically when the
conditions are met.

4.2.2 Configuration Service

The Configuration Service provides calling interfaces
for other applications to access the cluster configuration
information. In most implementations of existing cluster
management systems, managers need to manually input the
configuration information. The manual work is annoying
and error-prone especially when the scale of cluster
enlarges and when the configuration changes dynamically.
In Phoenix, the Node Agent automatically detects the local
machine configuration and reports it to the Configuration
Service. Then the Configuration Service can edit this
information into a uniform format for access.

4.2.3 Deployment Service

The Deployment Service provides program packages
for access. In our implementation, the Deployment Service
is an FTP server and the Node Agent can access program
packages through ftp protocol. To support heterogeneous
hardware architectures and host operating systems, the
Deployment Service stores packages according to a
hierarchical directory structure as Figure 3 shows.

Phoenix

x86_64

i386

linux
windows
...

...

Turbolihux

SuSE linux
...

Event_Service-1.0-1.x86_64.rpm
gsd-1.0-1.x86_64.rpm

...

architecture

operating system

version
package

Figure 3. Hierarchical directory structure in
Deployment Server

Along with a package, Deployment Service also keeps a
text file, named recipe, which provides instructions on how
to install and bring up a service program properly.

Figure 4 shows the recipe format of one service
component named Event_Service on Linux system.

4.2.4 Node Agent

Node Agent is the key module of this architecture. It
can cooperate with other modules and take the actions of
configuring, installing, booting and maintaining.

In traditional computing clusters, the role of a node is
simply classified as either a computing (or slave) node or a
management (or master) node, where a large number of
computing nodes carry out high density computing task
and a few management nodes manage the computing node.
For example, Chiba[9], a 312-node cluster � is divided
into several parts called towns. Every town is composed
of 8-32 computing nodes and one master node called
mayor. The mayor carries out all services to manage the
computing nodes in the town. And a master node called
president manages all mayors in higher hierarchy. The
main lesson one learns from Chiba is that statically linking
managed nodes to a specific master node leads to poor
server load distribution and single point of failure.

In Phoenix, the role of a node is defined as a
combination of services and we classify the role of a node
according to the services running on this node. For
example, if node N is configured to run service S, we can
say node N has a role including S. In this way services are
not statically linked to specific nodes, but are able to be
dynamically configured on any nodes and to serve any
requesting nodes. The role of a node will change when the
services configured on it change. When a service is ready
to be configured and deployed in Phoenix, it will be
assigned a unique ID less than 64. So we can define the
role of node in the following way:

The Role of Node is represented by a 64-bit integer, in
which every bit represents a service ready to run on
Phoenix. If one service is configured on the node, the
corresponding bit defined by its unique ID will set 1, else 0.

Figure 4. Recipe example of Linux version of
Event Service

In this way the assignment, comparison and update
operation on a role can be carried on flexibly and
efficiently by binary AND, OR and XOR operation.

4.3 Self-configuring Process

The self-configuring process is triggered by Node
Agent s automatic actions, which are guided by Decision-
making Module. The actions of Node Agent are composed
of the four steps: configuration, installment, booting and
maintenance. These actions may alter the state of node,
hence the whole cluster system. The Figure 5 shows the
state-transition of a Node Agent.
Configuration: In this step, the function of Node Agent is
somewhat like that of the BIOS system in PC. When a
Node Agent starts, it will make a self-test to detect the
resources in the local environment, including hardware,
host operating system and network configuration. Then it
will report the information to the Configuration Service.
Configuration Service edits the information and notifies
the Decision-making Module. The Decision-making
Module assigns a role to this Node Agent according to the
resources of the node.

Maintain

Configure

Install

Withdrawwell-configured

well-installed well-booted

error-existed

initial

Boot

Go wrong

Shutdown
Join

Figure 5. State diagram of a Node Agent’s actions

Installment: After a Node Agent joins, it will accept a
role from the Decision-making Module, representing
which services should be running in this node. According
to its role, the Node Agent will download service recipes
and program packages from the Deployment Service. Then
it will install programs and make proper configuration for
the programs in the local node instructed by the service
recipes.

Booting: Like any other operating system, Phoenix needs
several steps to bring up all Phoenix service components.
From this perspective, the Node Agent in Phoenix is
somewhat like the Init process in Linux. Only after a
successful bring-up can the Phoenix kernel transit from
unstable initial state to self-healing state; hence a reliable
booting protocol is necessary.

Main kernel services, such as Group Service Daemon
(in short, GSD), Event Service and Data Bulletin Service,
need to work as a group. The construction of a group is a
process of collective startup, which means the booting of
service group should keep atomicity and consistency.
Hence first of all, we design a group-booting protocol to
guarantee reliable group startup as follows:
Step 1: Decision-making Module nominates one Node
Agent as a commander to coordinate the booting; then the
commander queries the Configuration Service as to which
nodes are configured as group members of this group;
Step 2: The commander issues booting commands to the
Node Agent one by one according to the rank of group
members. The Node Agents which receive the commands
are called executors. After sending all commands, the
commander sets a timeout to wait for replies from the
executors;
Step 3: An executor brings up its group member through
application programming interfaces provided by the local
operating system. Then it sets a timeout and waits for the
message replied from the specified group member;
Step 4: Once the group members bring up, they will
communicate with each other to create a group. After the
group establishes successfully, every member will send a
success message to the local executor.
Step 5: If any one of the executors receives the reply in
time, it will send a success message to the commander; and
if a timeout message arrives, it does not send back any
message and just returns to wait for a new command;
Step 6: If the commander receives a reply from any one
of the executors, the group boots well; if no message
comes before timeout, the booting fails.

Taking into the account of dependencies among
different service components, the booting algorithm of
Phoenix Kernel [8] can be described as follows:

Step 1: The administrator issues the booting command
through the GUI of the Decision-making Module;
Step 2: The Decision-making Module nominates one
Node Agent as the commander responsible for this
booting process; then it sets a timeout to wait for the
commander s reply;
Step 3: The commander boots GSD using the group
booting protocol. If the booting fails, it will send all
executors a shutdown command to cancel the booting
and send a message to the Decision-making Module
about booting failure with GSD;
Step 4: The commander boots Event Service and Data
Bulletin Service using the group booting protocol in the
same way as GSD was booted;
Step 5: The commander notifies all Node Agents to
bring up Watch Daemon (in short, WD) and Detector in
its local nodes;
Step 6: The commander replies a success message to
the Decision-making Module;
Step 7: If the Decision-making Module receives the
success message from the commander before the
timeout, the Phoenix system boots successfully; and if
the failure message or the timeout comes, it will show
the failure message to the administrator.

When the system boots successfully, all groups were
created successfully. The Phoenix system turns into a self-
healing state, which will be described in detail in next
section.

Maintenance: Other than the three actions discussed
above, the Node Agent is responsible for the maintenance
of services running in the environment. Every time before
a booting operation starts, an agent will examine if the
necessary environment variables are configured well and if
programs are installed properly. If any fault is discovered,
the agent will try to recover it by reinstalling the program.

4.5 Evaluation

We evaluate the self-configuring solution from two
aspects: one is the ease of management and the other is the
efficiency compared with the original GUI+script
implementation.

4.5.1 Evaluation of ease of management

The management can be measured by 3 main operations:
deploying Phoenix from scratch, dynamically adding a
node and dynamically adding a service.

To deploy Phoenix from scratch, a little manual work is
needed to install self-configuring modules, including

Configuration Service, Deployment Service, Decision-
making Module and Node Agent. Though installing Node
Agent on every node sounds annoying, we get it done once
and forever. Then the remaining thing is to assign roles to
nodes, which is easy to understand and can be done only
by several clicks in GUI of Decision-making Module.

Dynamically adding a new node into the cluster is very
easy in self-configuring mode, which includes two steps:
installing and running a Node Agent, then assigning a role
to it.

Adding a new service needs a service recipe and the
installment package of the service. The Decision-making
Module assigns a unique ID to this service and setups the
service recipe and package into the Deployment Server.
Then the Decision-making Module creates a new role
including this service and assigns this role to the nodes.
This frame is not specific to the Phoenix kernel service,
but is also suitable for any service in the top user
environment layer if only appropriate service recipes and
packages are provided.

In the three operations, most work can be done
automatically in spite of the necessary initial installment
and role assignment. From the experiences of users, they
usually can understand and master this way of management
in hours.

4.5.2 Evaluation of efficiency of Deployment

We tested the performance of deploying Phoenix from
scratch on two cluster platforms. The first one is Dawning
4000A, a 532-node homogeneous cluster running Turbo
Linux 8.0. Another one is an 8-node heterogeneous cluster
including 3 kind of hardware architecture: 2-way NUMA
with 64-bit AMD Opteron CPU, 4-way SMP with 32-bit
Intel Xeon CPU and PC with Pentium 4 CPU. The
heterogeneous cluster is hosted with 3 kinds of operating
systems: Turbo Linux 8.0, Redhat Linux 9.0 and Windows
2000 Professional edition.

In this test, the cluster software packages to be
deployed include all Phoenix kernel services, a job
management system and a Business Application Runtime
Environment. We compare the deployment time of self-
configuring mode with original GUI+scripts mode in Table
1 and Table 2.

Table 1. Deployment time in Dawning 4000A

Table2. Deployment time in an 8-node
heterogeneous cluster

From the comparisons, we make sure that the agent-
based solution can save a lot of time in deployment with
autonomous actions and better parallelism.

5. Self-healing Mechanism

The self-healing module works in face of omission
failures of nodes, communication channels and processes.
The group service [10] is a fundamental component that
makes Phoenix a scalable and highly available cluster
system software.

5.1 Group Management Framework

In Phoenix system, the whole cluster is divided into
several cluster partitions, each of which consists of at least
two nodes with the role of GSD (Group Service Daemon):
one node is responsible for management of the partition,
and another is its backup in case of node failure. Several
GSDs form a meta-group, which is created and managed
by the membership protocol. After having been configured
and booted, the service groups can build up and enable
self-healing. We discuss the self-healing mechanism from
three aspects: self-healing at the group level, self-healing
at the node level and self-healing of cluster services with
important data.

5.2 Self-healing at the Group Level

The self-healing mechanism of GSD is the basis of that
of Phoenix. As the Figure 6 shows, the GSD-meta group
takes a ring structure. Every group member sends periodic
heartbeat to its neighbor in the ring.

Once one member does not receive the heartbeat from
its neighbor in time, it will report the suspected failure
about its neighbor to the leader. The leader will decide
whether the suspected node or process has failed. If it is a
process failure, the leader can simply recover it by
rebooting the application. If it is a node failure, the leader
will ask the member who detects the failure to take over
the job of the failed one. Then it will bring up a new GSD
on the backup node in that partition. Once the backup one
is up and joins the group, it will take back its job again.

The one who monitors the leader is called the prince.
When the leader fails, the prince will become the new

leader and the one next to it in the ring becomes a new
prince.

The GSD also provides APIs for creating application-
groups. In the kernel layer, Data Bulletin Service and
Event Service call these APIs to create a service group and
register policies on how to deal with failures.

As Figure 7 shows, GSD takes charge of monitoring the
aliveness of the Event Service. If one member of the Event
Service group fails, the GSD on the same host will notify
all members of the GSD group and then restart the failed
service. If the node on which the Event Service daemon is
running fails, the GSD member next to it in the ring
structure will select a new node for migrating the GSD and
then recovering the Event Service.

5.3 Self-healing at the Node Level

Watch Daemon (in short, WD) is running on every
node in Phoenix system and provides high availability for
all local applications in the same node. WD sends periodic
heartbeat to GSD and GSD takes charge of all WDs in its
partition. Once there is some failure in a WD, GSD can
reboot it. Figure 8 shows the relationship between GSD
and WD.

WD provides a self-healing interface for local
applications. An application can call the interface of WD
to register its failure handler. After registration, WD will
hire Detector (Detector is a daemon responsible for
detecting information about resources and applications of a
node) to monitor the application state. Once Detector
discovers an application failure, WD will reboot the
application with the failure handler that the application had
registered.

5.4 Self-healing of Configuration Service and
Deployment Service

Configuration and Deployment services are important
for Phoenix. Their failures cause a single point of failure to
Phoenix system and make dynamic configuration
impossible. So we should guarantee both the high
avalibility of application process and important data.

Figure 6. Ring of Group Services

Figure 7. Event Service Group based on GSD

Figure 8. Relationship between GSD and WD

Figure 9 shows the solution for this problem, where a
Raid disk [11] is needed to keep the data highly available.
Two nodes, one master and one backup, connect to Raid
through SCSI interfaces. In the Figure 9, CS stands for
Configuration Service and DS stands for Deployment
Service.

These two nodes should be configured into one
partition, so that one GSD monitors both of them. At any
time only the master process works. In case it fails, the
local WD is responsible for rebooting it; if the master node
is down, GSD will detect the node failure in time and
notify the WD to bring up the backup service on the
backup node. Because Configuration Service and
Deployment Service have no state and all data comes from
the reliable Raid disk, the new service can continue the
work when the failed one is checked and repaired.

Figure 9. Duplex machines highly available
solution for Configuration and Deployment
Service

5.5 Self-healing Evaluation

The main performance criteria for evaluating fault-
tolerant system software are failure detection overhead and
failure recovery overhead. In this study, we have
conducted experiments to measure these metrics of the
proposed framework. The testbed is composed of 136
nodes from 8 partitions, with 18 nodes per partition, on the
platform of Dawning 4000A. The interval for sending
heartbeat is configured as 30 seconds for testing.

By the means of fault injection, we get the information
about nodes, groups and applications failure detection time
and recovery time respectively. From the data, we can
conclude that the sum of failure detection time, diagnosis
time and recovery time is almost equal to the interval of
sending heartbeat, while the interval for sending heartbeat
can be dynamically configured. It proves that Phoenix
kernel has good self-healing ability. From the analysis
above we can see that Phoenix provides a self-healing
mechanism from bottom up and makes sure that any
omission failures about process, network and node can be
found and recovered in time.

6. Conclusion

This paper introduces Fire Phoenix, a cluster
management system software supporting both scientific
and business applications on heterogeneous platforms. We
discuss the challenges in the development and management
of Phoenix and provide our self-configuring and self-
healing solutions to meet these challenges. The four
contributions (agent-based configuring mechanism, role-
based deployment, group booting protocol and group
service based self-healing mechanism) are presented and
discussed in detail. Practical experiments show that our
work can deliver easy-to-use and reliable cluster system
management tools to the users.

In this system, some configuration work, such as
designing role and making deployment plan, is not yet
mature. Our future effort will involve injecting more
intelligent behaviors into the Decision-making Module to
improve the self-configuration ability. In the self-healing
aspect, Phoenix can only recover a stateless process. Our
future research will focus on the self-healing of stateful
applications.

References

[1]Philip M. Papadopoulos, M.J.K., and Greg Bruno. NPACI
Rocks: Tools and Techniques for Easily Deploying Manageable
Linux Clusters. In Proceedings of 2001 IEEE International
Conference on Cluster Computing. Newport. 2001

[2]Soctt., S.L. OSCAR and the Beowulf arms race for the
"Cluster Standard". In Proceedings of 2001 IEEE International
Conference on Cluster Computing. Newport,CA. 2001

[3]Labratory, L.B.N., The Warewulf Cluster Toolkit,
http://warewulf.lbl.gov/pmwiki/, April 2005.

[4]IBM Reliable Scalable Cluster Technology
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?topic
=/com.ibm.cluster.rsct.doc/rsctbooks.html

[5] J.O. Kephart and D M Chess, The vision of autonomic
computing. IEEE Computer, 42: 41-55, 2003.

[6]T.A.Corbi, A.G.G.a., The dawning of the autonomic
computing. IBM System Journal, 42: 5-18, 2003.

[7] Tom De Wolf and Tom Holvoet, Towards Autonomic
Computing: Agent-Based Modeling, Dynamical Systems
Analysis, and Decentralized Control. In Proceedings of the First
International Workshop on Autonomic Computing Principles
and Architectures.2003

[8]MENG Dan, Zhan Jianfeng, Wang Lei, TU Bibo and ZHANG
Zhihong, Fully integrated Cluster operating system: Phoenix.
Journal of computer Research and Development, 42(6):979-
986 � 2005.

[9]John-Paul Navarro, R.E., Dan Nurmi, Narayan Desai. Scalable
Cluster Administration Chiba City I Approach and Lessons
Learned. In Proceedings of 2002 IEEE International Conference
on Cluster Computing.2002

[10]Huang Wei, Zhan Jianfeng, and Fan Jianping, DCFT-Kernel:
A Fault-Tolerant Cluster Middleware Based on Group Service.
Journal of computer Research and Development, 42(6): 993-999,
2005.

[11] P.M.Chen, E.K.lee, G.A.Gibson, R.H.Katz, and
D.A.Patterson, RAID: High-perfornamce, Reliable Secondary
Storage, Acm Computing Surveys, Vol.26, No.2, 145-185, June
1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

