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Abstract

The growing reliance on services provided by software
applications places a high premium on the reliable and ef-
ficient operation of these applications. A number of these
applications follow the event-driven software architecture
style since this style fosters evolvability by separating event
handling from event demultiplexing and dispatching func-
tionality. The event demultiplexing capability, which ap-
pears repeatedly across a class of event-driven applica-
tions, can be codified into a reusable pattern, such as the
Reactor pattern. In order to enable performance analysis of
event-driven applications at design time, a model is needed
that represents the event demultiplexing and handling func-
tionality that lies at the heart of these applications. In this
paper, we present a model of the Reactor pattern based on
the well-established Stochastic Reward Net (SRN) modeling
paradigm. We discuss how the model can be used to obtain
several performance measures such as the throughput, loss
probability and upper and lower bounds on the response
time. We illustrate how the model can be used to obtain the
performance metrics of a Virtual Private Network (VPN)
service provided by a Virtual Router (VR). We validate the
estimates of the performance measures obtained from the
SRN model using simulation.

1. Introduction

Service oriented computing (SoC), which is made feasi-
ble by middleware-based distributed systems, is an emerg-
ing technology to provide the next-generation services to
meet societal needs ranging from basic necessities, such as
education, energy, communications and healthcare to emer-
gency and disaster management. For SOC to be successful
in meeting the demands of society, assurance on the perfor-
mance of these services is necessary. Since these services
are primarily built using communication middleware, the
problem reduces to the issue of performance assurance of
the middleware platforms.

Middleware typically comprises a number of building
blocks, which are essentially patterns-based reusable soft-
ware frameworks. The building blocks are then combined
in a variety of ways to provide a complete middleware so-
lution for hosting the services. However, the middleware
problem is made more complex due to the large number
of options available for each building block of the middle-
ware. The choice of building blocks and their configuration
options have an impact on the performance of the services
provided by the systems.

The current state of the art in middleware performance
analysis requires configuring, integrating and composing
the building blocks to form entire middleware solutions,
which are then evaluated via empirical benchmarking and
extensive profiling. Any ill desired effects of the choices
made in the configuration, composition and integration can
be determined only very late in the lifecycle, which can
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be detrimental to system development costs and schedules.
In order to enable the right design choices, a systematic
methodology to analyze the performance of these systems at
design time is necessary. Such a methodology may consist
of models to analyze the performance of individual building
blocks comprising the middleware and the composition of
these building blocks.

The performance models may be based upon well-
known analytical/numerical modeling paradigms [14, 1, 5]
and simulation techniques [17, 19]. As a first step towards
the development of such a methodology, this paper presents
a model of the Reactor pattern [2, 16], which provides im-
portant synchronous demultiplexing and dispatching capa-
bilities to network services and applications. The model
is based on the Stochastic Reward Net (SRN) modeling
paradigm [14]. Our previous efforts [3] have discussed the
use of the model to obtain an upper bound on the response
time of a service. In this paper we extend our previous work
and describe how the model can be used to obtain several
additional performance measures including throughput and
loss probability. We also demonstrate how the model can
be used to obtain the lower bound on the response time. We
illustrate how the model can be used to estimate the per-
formance metrics of a Virtual Private Network (VPN) ser-
vice provided by a Virtual Router (VR) [9]. We validate the
performance metrics obtained from the model using simu-
lation.
Paper organization: The paper is organized as follows:
Section 2 presents the performance model of the Reactor
pattern. Section 3 illustrates how the performance model of
the Reactor pattern can be used to estimate the performance
metrics of a VPN service provided by a VR. Section 4 offers
concluding remarks and directions for future research.

2. Performance Model of the Reactor Pattern

This section provides a context for understanding the
contribution of this paper summarizing our earlier work.
We first provide an overview of the Reactor followed by
the SRN model of the Reactor pattern.

2.1. Reactor Pattern in Middleware Imple-
mentations

Figure 1 depicts a typical event demultiplexing and dis-
patching mechanism documented in the Reactor pattern.
The application registers an event handler with the event
demultiplexer and delegates to it the responsibility of lis-
tening for incoming events. On the occurrence of an event,
the demultiplexer dispatches the event by making a callback
to its associated application-supplied event handler. This
is the idea behind the Reactor pattern, which provides syn-
chronous event demultiplexing and dispatching capabilities.

Figure 1. Event Demultiplexers in Middleware

The Reactor pattern can be implemented in many dif-
ferent ways depending on the event demultiplexing capa-
bilities provided by the underlying operating system and
the concurrency requirements of the applications. For
example, the demultiplexing capabilities of a Reactor
could be based on the select () or poll () system
calls provided by POSIX-compliant operating systems, or
WaitForMultipleObject () as found in the differ-
ent flavors of Win32 operating systems. Moreover, the han-
dling of the event in the event handler could be managed
by the same thread of control that was listening for events
leading to a single-threaded Reactor implementation. Alter-
natively, the event could be delegated to a pool of threads to
handle the events leading to a thread-pool Reactor.

2.2. Characteristics of the Reactor Pattern

We consider a single-threaded, select-based implemen-
tation of the Reactor pattern with the following characteris-
tics:

• The Reactor receives two types of input events with
one event handler for each type of event registered with
the Reactor.

• Each event type has a separate queue, which holds the
incoming events of that type. The buffer capacity for
the queue of type #1 events is denoted N1 and of type
#2 events is denoted N2.

• Event arrivals for both types of events follow a Poisson
process with rates λ1 and λ2, while the service times
of the events are exponentially distributed with rates
µ1 and µ2.

• In a snapshot, an event of type #1 is serviced with
a higher priority over an event of type #2. In other
words, when event handles corresponding to both



event types are enabled in a snapshot, the event han-
dle corresponding to type #1 is serviced with a priority
that is higher than the event handle of type #2.

2.3. Desired Performance Metrics

The following performance metrics are of interest for
each one of the event types in the reactor pattern described
in Section 2.2:

• Expected throughput – which provides an estimate of
the number of events that can be processed by the sin-
gle threaded event demultiplexing framework. These
estimates are important for many applications, such as
telecommunications call processing.

• Expected queue length – which provides an estimate
of the queuing for each of the event handler queues.
These estimates are important to develop appropriate
scheduling policies for applications with real-time re-
quirements.

• Probability of event loss – which indicates how many
events will have to be discarded due to lack of buffer
space. These estimates are important particularly for
safety-critical systems, which cannot afford to lose
events. These also provide an estimate on the desired
levels of resource provisioning.

• Expected response time – which indicates the time
taken to service an event. It is also important to es-
tablish lower and upper bounds on the response time.
These estimates, especially, the upper bound can allow
us to determine whether the deadlines for real-time ser-
vices can be satisfied in the worse case.

2.4. SRN Model

For completeness sake we reproduce the SRN model
of the Reactor pattern illustrated in our earlier work [3].
A Stochastic Reward Net (SRN) substantially extends
the modeling power of Generalized Stochastic Petri Nets
(GSPNs) [14], which are an extension of Petri nets [13].
A SRN is a modeling technique that is concise in its spec-
ification and closer to a designer’s intuition about what a
model should look like. SRNs have been extensively used
for performance, reliability and performability analysis of a
variety of systems [15, 6, 7, 18, 8, 11]. The work closest
to the proposed research is reported by Ramani et al. [15],
where SRNs are used for the performance analysis of the
CORBA event service. A detailed overview of SRNs can
be obtained from [14].

Figure 2 shows the SRN model for the Reactor pattern
with the characteristics described in Section 2.2. Table 1

summarizes the enabling/guard functions for the transitions
in the net. The net on the left-hand side models the arrival,
queuing and service of the two types of events. Transitions
A1 and A2 represent the arrival of the events of type #1 and
#2, respectively. Places B1 and B2 represent the queue for
the two types of events. Transitions Sn1 and Sn2 are imme-
diate transitions that are enabled when a snapshot is taken.
Places S1 and S2 represent the enabled handles of the two
types of events, whereas transitions Sr1 and Sr2 represent
the execution of the enabled event handlers of the two types
of events. An inhibitor arc from place B1 to transition A1
with multiplicity N1 prevents the firing of transition A1
when there are N1 tokens in place B1. The presence of N1
tokens in place B1 indicates that the buffer space to hold
the incoming input events of the first type is full, and no
additional incoming events can be accepted. The inhibitor
arc from place B2 to transition A2 achieves the same pur-
pose for type #2 events. The inhibitor arc from place S1
to transition Sr2 prevents the firing of transition Sr2 when
there is a token in place S1. This models the prioritized ser-
vice for an event of type #1 over event of type #2 in a given
snapshot.

The net on the right of Figure 2 models the process of
taking successive snapshots and prioritized service of the
event handle corresponding to type #1 events in each snap-
shot. Transition Sn1 is enabled when there is a token in
place StSnpSht, at least one token in place B1, and no
tokens in place S1. Similarly, transition Sn2 is enabled
when there is a token in place StSnpSht, at least one to-
ken in place B2, and no tokens in place S2. Transition
T SrvSnpSht is enabled when there is a token in either
one of the places S1 and S2, and the firing of this transition
deposits a token in place SnpShtInProg.

The presence of a token in the place SnpShtInProg
indicates that the event handles that were enabled in the
current snapshot are being serviced. After these event han-
dles complete execution, the current snapshot is complete
and it is time to take another snapshot. This is accom-
plished by enabling the transition T EndSnpSht. Tran-
sition T EndSnpSht is enabled when there are no to-
kens in both places S1 and S2. Firing of the transition
T EndSnpSht deposits a token in place StSnpSht, indi-
cating that the service of the enabled handles in the present
snapshot is complete, which marks the initiation of the next
snapshot.

We now describe how the process of taking a single snap-
shot is modeled by the SRN model presented in Figure 2.
We consider a scenario where there is one token in each
one of the places B1 and B2, and there is a token in the
place StSnpSht. Also, there are no tokens in places S1
and S2. In this scenario, transitions Sn1 and Sn2 are en-
abled. Both these transitions are assigned the same priority,
and any one of these transitions can fire first. Also, since
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Figure 2. SRN model for the Reactor pattern

Table 1. Enabling/Guard functions
Transition Guard function

Sn1 ((#StSnpShot == 1)&&(#B1 >= 1)&&(#S1 == 0))?1 : 0
Sn2 ((#StSnpShot == 1)&&(#B2 >= 1)&&(#S2 == 0))?1 : 0

T SrvSnpSht ((#S1 == 1)||(#S2 == 1))?1 : 0
T EndSnpSht ((#S1 == 0)&&(#S2 == 0))?1 : 0

these transitions are immediate, their firing occurs instanta-
neously. Without loss of generality, it can be assumed that
transition Sn1 fires before Sn2, which deposits a token in
place S1.

When a token is deposited in place S1, transition
T SrvSnpSht is enabled. In addition, transition Sn2
is already enabled. If transition T SrvSnpSht were to
fire before transition Sn2, it would disable transition Sn2,
and prevent the handle corresponding to the second event
type from being enabled. In order to prevent transition
T SrvSnpSht from firing before transition Sn2, transi-
tion T SrvSnpSht is assigned a lower priority than transi-
tion Sn2. Because transitions Sn1 and Sn2 have the same
priority, this also implies that the transition T SrvSnpSht
has a lower priority than transition Sn1. This ensures that
in a given snapshot, event handles corresponding to each
event type are enabled when there is at least one event in
the queue.

After both event handles are enabled, transition
T SrvSnpSht fires and deposits a token in place
SnpShtInProg. The presence of a token in the place
SnpShtInProg indicates that the event handles that were
enabled in the current snapshot are being serviced. The
event handle corresponding to type #1 event is serviced first,
which causes transition Sr1 to fire and the removal of the
token from place S1. Subsequently, transition Sr2 fires and

the event handle corresponding to the event of type #2 is
serviced. This causes the removal of the token from place
S2. After both events are serviced and there are no tokens
in places S1 and S2, transition T EndSnpSht fires, which
marks the end of the present snapshot and the beginning of
the next one.

The performance measures described in Section 2.3 can
be computed by assigning reward rates at the net level as
summarized in Table 2. The throughputs of events of type
#1 and #2 denoted T1 and T2 respectively are given by
the rate at which transitions Sr1 and Sr2 fire. The queue
lengths of the events denoted Q1 and Q2 are given by the
number of tokens in places B1 and B2 respectively. The
total number of events of type #1 denoted E1 is given by
the sum of the number of tokens in places B1 and S1. Sim-
ilarly, the total number of events of type #2 denoted E2 is
given by the sum of the number of tokens in places B2 and
S2. The loss probability of type #1 events denoted L1 is
given by the probability of N1 tokens in place B1. Sim-
ilarly, the loss probability of type #2 events denoted L2 is
given by the probability of N2 tokens in place B2.

We obtain the response times of the events using the
tagged customer approach [10]. In the tagged customer ap-
proach, an arriving event is tagged and its trajectory through
the system is followed from entry to exit. The response
time of the tagged event is then determined conditional to



the state in which the system lies when the event arrives.
The unconditional response time can be obtained as the
weighted sum of the conditional response times, with the
weights given by the steady state probabilities of being in
each one of the states. Typically, the response time of an
event consists of two pieces; namely, the time taken to ser-
vice the event hereafter referred to as the “service time,” and
the time that the event must wait in the system before its ser-
vice commences, hereafter referred to as “waiting time”. In
our case, the average service time of an incoming type #1
and type #2 event is given by 1/µ1 and 1/µ2, irrespective
of the state in which the system lies when the event arrives.
The waiting time, however, will depend on the system state.
Next, we discuss how the conditional waiting time of each
event type is determined.

The conditional waiting time for a tagged event of type
#1 will depend on the state of the system, where the state
is given by the number of tokens or markings of places
S1, S2, B1 and B2. Of these four places, the markings
of the places S1 and S2 determine the progress of the cur-
rent snapshot, whereas, the markings of places B1 and B2
determine the state of the queue. The mean time taken to
complete the current snapshot is given by the sum of two
terms, the first term is the product of the number of tokens
in place S1 and 1/µ1, and the second term is the product of
the number of tokens in place S2 and 1/µ2. Even if there
are no additional events in the queues, the current snapshot
must be completed before the service of an incoming event
of type #1 can begin. Hence, the time taken to complete
the current snapshot contributes to the waiting time of the
incoming or tagged type #1 event. In order to obtain the
entire waiting time of a tagged type #1 event, the contribu-
tion of the queued events of type #1 and type #2 needs to be
determined.

Let n1 be the number of events of type #1 in the queue,
and n2 be the number of events of type #2 in the queue,
when the tagged event of type #1 arrives. This implies that
after n1 snapshots the tagged event will be serviced. The
following three possibilities arise between the relative val-
ues of n1 and n2. If n1 ≤ n2, then only n1 of the type #2
events need to be serviced before the service of the tagged
type #1 event can commence, and hence the waiting time is
given by n1(1/µ1 + 1/µ2). If n1 = n2, then n1 events of
type #1 and type #2 need to be serviced before the service
of the incoming type #1 event can commence, and hence
the waiting time is given by n1(1/µ1 + 1/µ2). If n1 > n2,
then in the optimistic case, n1 events of type #1 and n2

events of type #2 need to be serviced before the service of
the tagged event can commence. The optimistic case as-
sumes that no additional events of type #2 arrive in the first
n1 snapshots. In the pessimistic case, however, n1 − n2

events of type #2 will arrive while the first n2 events are be-
ing serviced. Thus, in the optimistic case, the waiting time

will be n1/µ1 + n2/µ2, and in the pessimistic case, the
waiting time will be n1(1/µ1 + 1/µ2). The optimistic case
provides the lower bound and the pessimistic case provides
the upper bound of the response times. The reward rates
to obtain the optimistic and the pessimistic response times
of the events of type #1 and type #2 are summarized in Ta-
ble 2. In the table, R1,o and R1,p denote the optimistic and
pessimistic response times of type #1 events, and R2,o and
R2,p denote the optimistic and pessimistic response times
of type #2 events.

2.5. Model Variations

In the model of the reactor pattern described above, the
arrival, service and failure distributions are assumed to be
exponential. For certain types of applications, this assump-
tion may not hold. For example, for safety-critical appli-
cations, events may occur at regular intervals, in which
case the arrival process is deterministic. In addition to
the deterministic distribution, the arrival, service and fail-
ure processes may also follow any other non-exponential
or general distribution. There are two ways to consider
non-exponential distributions in the SRN model. In the
first method, a non-exponential distribution can be approxi-
mated using a phase-type approximation [14], and the re-
sulting SRN model can then be solved using SPNP [4].
In the second method, the model can be simulated using
discrete-event simulation incorporated in SPNP.

2.6. Model Validation

In order to inspire confidence in the estimates of the per-
formance measures produced by the model, these measures
must be validated using simulation and experimentation. In
this paper we validated the measures using simulation, leav-
ing the experimental validation for future work. The simu-
lation was implemented using CSIM [17].

3. Case Study: VPN Service using Virtual
Router

In this section we describe how the SRN model of the re-
actor pattern presented in Section 2.4 is used to estimate the
response time of a Virtual Private Network (VPN) service
provided by a Virtual Router (VR).

Figure 3 illustrates the architecture of a provider-
provisioned virtual private network (PPVPN) ([12]) using
a VR. A VR is a software/hardware component that is part
of a physical router called the provider edge (PE) router.
A VR contains the mechanisms to provide highly scalable,
differentiated levels of services in VPN architectures. Mul-
tiple VRs can reside on a PE device. VRs can be arranged



Table 2. Reward assignments to obtain performance measures
Performance Reward rate

metric
T1 return rate(Sr1)
T2 return rate(Sr2)
Q1 return (#B1)
Q2 return (#B2)
L1 return (#B1 == N1?1 : 0)
L2 return (#B2 == N2?1 : 0)

R1,o if (#B1 < N1)
{
if (#B1 ≤ #B2)
return((1/µ1 ∗ (#S1 + #B1 + 1) + 1/µ2 ∗ (#S2 + #B1)))
else
return((1/µ1 ∗ (#S1 + #B1 + 1) + 1/µ2 ∗ (#S2 + #B2)))
}
else
return(0.0)

R1,p if (#B1 < N1)
return((1/µ1 ∗ (#S1 + #B1 + 1) + 1/µ2 ∗ (#S2 + #B1)))
else
return(0.0)

R2,o if (#B2 < N2)
{
if (#B1 < #B2)
return((1/µ1 ∗ (#S1 + #B1) + 1/µ2 ∗ (#S2 + #B2 + 1)))
else if (#B1 == #B2)
return((1/µ1 ∗ (#S1 + #B2) + 1/µ2 ∗ (#S2 + #B2 + 1)))
else
return((1/µ1 ∗ (#S1 + #B2 + 1) + 1/µ2 ∗ (#S2 + #B2 + 1)))
}
else
return(0.0)

R2,p if (#B2 < N2)
return((1/µ2 ∗ (#S2 + #B2 + 1) + 1/µ1 ∗ (#S1 + #B2 + 1)))
else
return(0.0)

in a hierarchical fashion within a single PE as shown in Fig-
ure 3. Moreover, an entity acting as a service provider for an
end customer might itself be a customer of a larger service
provider. VRs may also use different backbones to improve
reliability or to provide differentiated levels of service to
customers.

Customer edge (CE) devices wishing to join a VPN con-
nect to a VR on the PE device. A VR can multiplex several
distinct CEs belonging to the same VPN session. A VR may
use tunneling mechanisms to use multiple routing protocols
and link layer protocols, such as IPSec, GRE, and IP-in-IP,
to connect with the CEs. A totally different set of proto-
cols and tunneling mechanisms could be used for inter-VR

or VR-backbone communication. These tunneling mecha-
nisms can also be the basis for differentiated levels of ser-
vice as well as to provide improved reliability. A VR also
comprises firewall capabilities.

We consider a scenario where a VR is used to provide
VPN services to two organizations, with each organization
having a customer edge (CE) router connected to the VR.
The employees of each organization issue VPN set up and
tear down service requests to the VR via CEs. Also, the VR
offers a differentiated level of service, with organization #1
receiving prioritized service over organization #2. From the
point of view of the employees of the organizations, it is
necessary that the service requests be handled in a reason-
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Figure 3. VPN Architecture using Virtual Routers

able amount of time. Also, the probability of denying the
service requests should be minimal. From the point of view
of the VPN service provider, the rate at which the service
requests are processed or the throughput is important. The
throughput will determine determine the revenue collected
by the provider.

In order to implement the VPN service, a reactor pat-
tern with the characteristics described in Section 2.2 can be
used to demultiplex the events. The SRN model of the re-
actor pattern can thus be used for the performance analysis
of the VPN service provided by the VR. In order to use the
SRN model, we designate the requests originating from or-
ganization #1 as events of type #1 and requests originating
from organization #2 as events of type #2.

In the early stages of application development lifecycle,
it is necessary to analyze the impact of design choices and
configuration parameters on the performance metrics. One
of the design choices of the reactor pattern and the VPN ser-
vice is the buffer space to hold the incoming events of each
type. This choice will have a direct impact on all the per-
formance metrics. Most importantly, from the employees’
perspective, the buffer space will influence the probability
of denying the service requests.

We analyze the impact of the buffer capacities on the per-
formance measures. The values of the remaining parame-
ters (except for the buffer capacities) are reported in Table 3.
We consider two values of buffer capacities N1 and N2. In
the first case, the buffer capacity is set to 1 for both types

of events, whereas in the second case the buffer capacity of
both types of events is set to 5. The performance metrics
for both these cases are summarized in Table 4. Because
the values of the parameters of the service requests from or-
ganization #1 (λ1, µ1 and N1) are the same as the values
of the parameters for the service requests from organization
#2 (λ2, µ2, and N2), the throughputs, queue lengths, and
the loss probabilities are the same for both types of service
requests for each one of the buffer capacities as indicated
in Table 4. It can be observed that the loss probabilities
are significantly higher when the buffer capacity is 1 com-
pared to the case when the buffer space is 5. Also, due to
the higher loss probability, the throughput is slightly lower
when the buffer capacity is 1 than when the buffer capacity
is 5.

Table 4 also summarizes the estimates of the perfor-
mance measures obtained using simulation. As indicated
in the table, the estimates of the performance measures ob-
tained using the model match with the estimates obtained
using simulation for both buffer capacities. Further, the av-
erage response times of the events obtained using simula-
tion lie between the upper and lower bounds obtained from
the model.

In the early stages, it is rarely the case that the values of
the input parameters can be estimated with certainty, which
makes it imperative to analyze the sensitivity of the per-
formance metrics to the variations in the input parameters.
Sensitivity analysis will enable the provider to determine



Table 4. Impact of buffer capacity on performance measures
Performance measure Buffer space

N1 = 1, N2 = 1 N1 = 5, N2 = 5
SRN Simulation SRN Simulation

T1 0.37/sec. 0.37/sec. 0.39/sec. 0.39/sec.
T2 0.37/sec. 0.37/sec. 0.39/sec. 0.39/sec.
Q1 0.06 0.06 0.12 0.12/sec.
Q2 0.06 0.06 0.12 0.12/sec.
L1 0.06 0.06 0.00024 0.00026
L2 0.06 0.06 0.00024 0.00026

R1,o 0.63 sec. 0.67 sec. 0.79 sec. 0.80 sec.
R1,p 0.63 sec. 0.83 sec.
R2,o 0.65 sec. 0.72 sec. 0.82 sec. 0.86 sec.
R2,p 1.10 sec. 1.33 sec.

Table 3. Parameter values
Event type Arrival rate Service rate

#1 λ1 = 0.400/sec. µ1 = 2.000/sec.
#2 λ2 = 0.400/sec. µ2 = 2.000/sec.

the regions of operation during which service performance
is acceptable. The SRN model can be easily used to assess
the sensitivity of the performance measures to the variations
in the arrival and service rates. For the sake of illustration,
we determine the variations in the response times as a func-
tion of the arrival rates λ1 and λ2. Towards this end, we vary
the arrival rates of the events from 0.4/sec to 1.8/sec one at
a time. The highest setting of the arrival rate was chosen
to be 1.8/sec. to ensure that the arrival rate of an event is
always less than the corresponding service rate of the event.
If there is a possibility that the arrival rate exceeds the ser-
vice rate, then a redesign to ensure higher service rate may
be necessary. For each setting of the arrival rate, we obtain
the lower and the upper bounds of the response times from
the SRN model. We also obtain an estimate of the average
response time using simulation.

Figure 4 show the upper and lower bounds of the re-
sponse time as well as the expected response time for events
of type #1 and type #2 as a function of event arrival rate λ1.
Referring to the left plot in the figure, it can be observed
that when the arrival rate λ1 is low, the response time of the
events of type #1 approaches the lower bound. As the ar-
rival rate increases, the response time approaches the upper
bound. The right plot in Figure 4 indicates that the lower
and the upper bounds of the response time of type #2 events
are not very different from each other for the entire range of
variation of λ1. Also, the average response time obtained
from the simulation are within the two bounds. The re-

sponse time (lower and upper bounds, average) of events
of type #1 and type #2 as a function of λ2 follow the same
trends and are not shown here due to space limitations. The
plots also establish that the average response time estimated
using simulation always lies between the bounds of the re-
sponse times obtained from the model for the entire range
of variation of λ1 and λ2. The model can be used to ob-
tain the lower and the upper bounds of the response times
with high confidence. This can facilitate an exploration of
the design space beyond what would otherwise be permitted
using cumbersome and lengthy simulations.

4. Conclusions and future research

In this paper we presented a performance model of the
Reactor pattern which offers the important synchronous de-
multiplexing and dispatching capabilities in middleware.
The model was based on the Stochastic Reward Net (SRN)
modeling paradigm. We illustrated how the performance
model could be used to obtain an estimate of the response
time of a VPN service provided by a Virtual Router (VR).
Our future research consists of empirically validating the
response time estimates obtained from the performance
model. Developing and validating the performance models
of other middleware building blocks and the composition of
these building blocks is also a topic of future research.
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