
Resource Management with Stateful Support for Analytic Applications

Liana L. Fong1, Catherine H. Crawford2, Hidayatullah Shaikh1

1IBM T. J. Watson Research Center
2IBM System Technology Group

{llfong, catcraw, hshaikh}@us.ibm.com

Abstract

Analytic applications from various industrial sectors

have specific attributes and requirements including
relatively long processing time, parallelization, multiple

interactive invocations, web services, and expected

quality of service objectives. Current parallel resource
management systems for batch-oriented jobs lack the

effective support for multiple interactive invocations with

consideration in quality of service objectives, while
transaction processing systems do not support dynamic

creation of parallel application instances. To better serve

the analytic applications, a set of additional resource
management services, defined as stateful support,

introduces the concept of Service Instance and Service

Instance Management. This set of stateful support
services can be implemented as extension to existing

parallel resource management to serve these analytic
applications that rapidly increase in the demand of

computing power.

1. Introduction

Analytic applications are broadly referred to as
software to assist decision making or action navigating
based on data possibly from various sources. The use of
computing power for executing these analytic
applications is growing in many different sectors such as
government, medical, automotive, and etc. One of the
well publicized computing infrastructures used for
running financial analytic applications was JP Morgan
Chase’s Compute Backbone that was planned for
combining up 1000 CPU in a grid system environment
[19]. Our work will address some resource
management issues related to analytic applications.

In this paper, we first describe a set of specific
attributes and requirements existing in these classes of
analytic applications from different industries. Based on
these attributes and requirements, we justify the
introduction of a generic set of resource management
services, which we refer to as stateful support services, to

better support many of the analytic applications. These
services are designed as an extension to current resource
management systems (also known as resource scheduling
systems).

1.1. Motivation for Stateful Support

In various market segments, many customers desire
better than current support in their analytic applications
to gain competitive advantage in programming model,
execution models and differentiating quality of services
without large increase in the total cost of ownership on
system infrastructure. These analytic applications have
unique or combinations of attributes that are different
from transactional and legacy batch workload. These
attributes, described in details below, include relatively
long processing time, parallelism, stateful invocation, and
invocations with quality of service objectives.

Unlike transactional workload, analytic applications
usually have relatively long processing time

requirements. Instead of sub-second processing time,
applications may run in tens or hundreds of seconds.
Processing time of different applications likely has high
variance. Moreover, the processing time of the same
application may vary greatly with different input
parameters. For example, the processing time for pricing
American option of an asset portfolio with 5 entries took
approximately 380 seconds while a portfolio of 7 entries
took about 518 seconds with the same mesh size of 1024
and running on a single processor [2].

While analytic applications can benefit from high
speed processing power and I/O as well as large memory
sizes, some applications can also leverage parallelism to
optimize execution across processing systems in
clustered infrastructures. In term of parallelism, there are
similarities of these applications to high performance
scientific parallel batch workload. The term
“embarrassing parallelism” is used to describe a common
technique consisting of splitting up a large piece of work
into a set of independent execution units to take
advantage of multiple processing units in clustered
environments. Many analytic applications can take

1-4244-0054-6/06/$20.00 ©2006 IEEE

advantage of “embarrassing parallelism”. Both “push”
and “pull” work assignment models between the
scheduling management function and the work
processing units are applicable. For parallel applications
that require communication or data exchanges between
parallel processing units, the use of MPI (message
passing interface) prevails in scientific applications. The
trend is less clear that the use of MPI would become
increasingly common among analytic applications. Until
there are new common parallel programming and
communication models, the support for MPI will be
necessary. Launching a parallel application, using MPI
or not, has considerable overhead. There are costs in
using a scheduling management function to allocate
multiple resources, and costs in establishing connectivity
to the parallel tasks.

Customers often express strong requirements in a low-
latency infrastructure to support their analytic
applications. These requirements go beyond the
hardware infrastructure such as high speed network
connections and high power servers in clustered
environments. Minimizing the launching of applications
costs would help lower the infrastructure latency. Many
analytic applications often also require permission to use
certain software licenses, establishment of many
connections to data sources, and/or loading of large
amounts of data and library routines into memory as
working sets. In addition to launching costs, there is
great advantage of maintaining the permission,
connections, data, and routines for many invocations to
the same application such that all these costs can be
amortized across invocations. Information for
permission, connections, data, routines, resources
allocated, and others is generally referred to as
infrastructure “states” of applications. A system
management that can support multiple stateful

invocations is therefore desirable for analytic
applications to achieve low-latency and high performance
execution.

Analytic applications can be scheduled to run on
systems like other scientific high performance batch-
oriented jobs. However, there is an increasing demand
in interactive invocations, similar to transaction requests,
of these analytic applications. Interactive invocations also
provide users the ability to examine results and steer the
direction of the subsequent invocations. Instead of batch-
oriented job submissions, invocations of these
applications as services would also be desired. By
defining the appropriate service interfaces for these
applications, one would reduce the complexity of
application deployment and invocation, including
dynamic resource allocation, and would also enhance the
interoperability of these applications.

Unlike batch-oriented job execution, the demand for
quality of services of analytic applications as interactive

invocations would be similar to transactional execution
with response time goals, or/and to real-time application
execution with completion deadlines. The quality of
services for interactive invocations affects greatly the
productivity and satisfaction of users. However,
achieving good quality of services should also be
balanced with the total cost of ownership of the system
infrastructure. Without adequate management on
resource allocation and appropriate control of application
service instances, achieving quality of service can lead to
over-provisioning of services, causing increased total
cost of ownership.

After describing the general attributes and
requirements of analytic applications, we will explore
some concrete applications that exhibit these attributes in
the next section.

1.2. Numerical Simulations in Capital Markets

In the financial industry, workload, such as Value at
Risk (VaR) and Profit and Loss reporting of portfolios, is
both data and computation intensive. For these
computations, typically a stochastic time integration
technique such as Monte Carlo, can be parallelized by
splitting up the scenarios for a portfolio and loading
various data sets associated with deals onto the
computation nodes in a clustered system environment.
The parallel calculations can possibly yield results in few
seconds for a portfolio instead of ten of minutes without
parallelism. Explorations of parallel techniques to reduce
response time for such calculations are many [2, 11]. As
to the previous example on the processing time for
pricing the American option of an asset portfolio with 5
entries, the job took about 380 seconds on a single
processor, but only took about 16 seconds on a SGI
Origin with 32 processors [2]. Also, when computation
power posts no usage constraint, the application users
have the options in generating more accurate results by
increasing the iterations of calculations or even using
better, yet more computation intensive, simulation
models.

Moreover, the effort in reducing the response time of
these calculations also reflects the demand of changing
the role of risk management and portfolio analyses from
the middle-office function, primary for end-of-day
reporting and over-night batch processing, to the online,
real-time valuation and user facing instruments used by
market analysts or traders. To further push the
technologies in improving response time from multiple
seconds to sub-second, one can use methodologies of
incremental calculation. However, increment
calculations require storing the results of individual
simulations or parameters necessary to reproduce the
results at an invocation or portfolio/sub-portfolio level
[16]. Applications, like incremental calculations,

motivate our design in building system support for
multiple and stateful invocations of applications.

The long-running calculations and real-time valuations
outlined here are often executed on the same cluster of
resources. The resources must be shared and allocated
across the cluster in a manner that is consistent with the
overall business values that each calculation provides.
Specifications of quality of service objectives and
optimization of resource allocation to meet the quality of
service objectives are topics of many studies for batch
oriented systems or transactions. However, the need to
optimally meet the quality of services for mixed
interactive and batch parallel applications with stateful
invocations is likely to impose additional constraints for
the resource optimization problems.

In summary, we described that the analytic financial
applications are computation intensive, and can be
benefited from paralellization, stateful invocation
support, and differentiating quality of services.

1.3. Image Analysis and Modeling in Medical

Industry

Medical image analysis and modeling are essential to
the medical industry [14]. More than ever, computer
power is used to store and manipulate the tremendous
amount of image data generated from medical devices
(MRI, CT scanners). A single radiology department may
produce tens of terabytes per year. The use of federated
data within or across medical institutes assists medical
researchers in statistical and epidemiological studies.
Computer systems are also used to generate 3D medical
images that are more realistic representation of our 3D
human organs and functions than 2D imaging data
produced from devices such as scanners. The use of 3D
medical images generated from real medical data has the
promise to assist clinicians in more timely diagnosis and
appropriate treatment. Simulated medical images based
on both hand and automated segmentation would be
potentially useful to create virtual anatomy for education
and training purposes [10].

Applications for medial images analysis and modeling
exhibit many of the attributes and requirements that are
discussed in the Motivation [Section 1.1] of this paper.
The applications are often computation intensive (e.g.
image registration, volume reconstruction). For example,
a volume reconstruction step in the PTM3D image
analyzer took about 20 minutes in processing time on a
PC system of 3GHz speed and 2MB memory [8].
Parallelism can benefit these applications [1, 8, 15].
The processing time of the image analyzer example cited
here was reduced to less than 2 minutes when run on a
grid cluster. These applications also require access to
large amount of data. For example, the image
processing applications for the multiple sclerosis

treatment trial [5] potentially accessed terabytes of data
[15]. The cost in establishing permission to the data,
creating connection and/or loading can be high. It would
be desirable to amortize the cost over multiple iterations
with users input. More importantly, the need to support
interactive tasks is critical for these applications. The
human interactions are required for reasons of legality,
treatment decision, avoiding local minima in high-
degree-of-freedom optimization problems [8, 9, 15].
Unlike batch oriented jobs, the responsiveness
requirements of these interactive applications are similar
to the requirements of transactional workload. Projects
AGIR and GRaDS [6, 8] were initiated to build
application level schedulers to meet the specific needs in
the data management, interactivity and quality of services
(e.g. soft real-time scheduling) of medical image
applications. The use of web services and grid
middleware is explored in these projects.

2. Resource Management Support for

Stateful Invocation

There are many mature resource scheduling systems
that support resource allocations for parallel batch jobs
with sophisticated algorithms in optimizing the usage of
resources in clustered environments [12, 13]. However,
none of them supports our defined concept of stateful
invocations of parallel application services. For each
invocation of an application instance, these scheduling
systems assume that resources are allocated in creating a
new instance of the application and resources are released
at the termination of the invocation.

There are also autonomic management systems that
support dynamic deployment of multiple instances of
application services (e.g. IBM WebSphere Extended
Deployment [21]). The application service instance
would stay as long as there are demands for such
services. However, the multiplicity of these application
instances is deployed to meet the demand and load
balancing of requests, not as instantiations of a parallel
application service. Some of these systems support
affinity routing such that sequenced requests are routed to
the same instance of an application. The ideal of affinity
routing can be viewed as a weaker form of stateful
invocation.

In the following sections, we present the design of a
set of resource management features to support stateful
invocations for the analytic applications.

2.1. Stateful Support Components

We envision that this set of management features is an
enhancement, and not as a replacement, to the existing
resource management systems that support both serial
and parallel applications. In Figure 1, we introduce the

1

IBM Research

© 2005 IBM CorporationIBM Confidential Oct 17, 2005

S
e

rv
ic

e
 In

s
ta

n
c

e

M
a

n
a

g
e

m
e

n
t / A

P
I

(multiple) invoke request

get service

Client

applications

/ libraries

Service

Instance

SI

SI

SI

Parallel

release service

Job
Instance

JI

JI

R
e

s
o

u
rc

e
 A

llo
c

a
tio

n
 M

a
n

a
g

e
m

e
n

t

J
o

b
In

s
ta

n
c

e

M
a

n
a

g
e

m
e

n
t / A

P
I

Client
Job
Submission

submit job

(optional)

return/terminate job

Resource Management

 Figure 1: Stateful support enhancements
 to resource scheduling system

construct of Service Instance and the functional
component of Service Instance Management (in color
magenta) and their relations to an existing generic
resource management system which has functional
components such as job instance management and
resource allocation management.

A Service Instance (SI) is an application service
running on a particular set of resources, loaded with
application specific objects and libraries. The Service
Instance Management (SIM) component has the
responsibility in managing the lifecycle of a Service
Instance in the system. SIM interacts with the Resource
Allocation Management component to acquire and return
sets of resources at the creation and termination of SI’s.
The SIM also supports a set of service interfaces which
clients can use to interact with our system. The next
section details the service interfaces.

2.2. Service Abstractions

Our stateful support design provides two categories of
service abstractions: application services and scheduler
services.

2.2.1. Application Services

Our project assumes that analytic applications can be
structured as application services. Thus, the “how-to” on
structuring applications as services is outside the scope of

this paper. Application services can be either stateless or
stateful. Web Services is the technology of choice for
stateless applications with loosely coupled clients and
servers. A WSDL document can represent the interface
of a stateless application services. For stateful web
services, we use the Web Services Resource Framework
(WSRF) specification [20] which is the emerging OASIS
Web services standard for modeling and accessing
stateful resources, using Web services. The interface of a
stateful application service can also be represented by a
WSDL document. However the WSDL document must
include additional operations as specified by the WSRF
specifications e.g. operations for accessing the state of
the resource as resource properties.

Instances of these application services can be created
using application specific scripts and/or programs onto
one or a group of node resources. We also refer the
initialization of the application services onto the
resources as application provisioning. The management
of these applications as service instances and the
associated resources, such as servers, required to host the
services are in the functional scope of the scheduler
services (details in following sections).

2.2.2. Scheduler Services

The scheduler services manage the lifecycle (i.e.
creation and termination) of stateful application services
and also provide query interface to locate a particular
instance of a stateful application service. The scheduler
services for stateful invocations are a generic set for any
scheduler, though the design implementation can be
resource management system specific. These services
create and use service handles to identify specific
application service instances. The WSRF specifications
refer to these stateful resource handles as Endpoint
References (EPR).

Our current design of this generic set includes the
following services:

getService - given a service type, return an EPR
to a service instance, which is obtained by
allocating necessary resources

releaseService – given a EPR, the designated
service instance is released from current usage;
resources allocated to the service instance will
also be released

queryService – query the service instances
managed in the Service Instance Management
and return EPRs based on matching criteria

IBM Research

© 2005 IBM Corporation

Resource

Manager

SI

S2

Stateful

Web Services

Sched

Services

Appl

Services

epr1 = getService(type)

epr1.add(80)

Appl state

Value=105

epr1.sub(10)

result = ep1.getValue()

releaseService(epr1)

Figure 2: Exemplary stateful application and
scheduling Services

Figure 2 shows a sample invocation of various
operations on the scheduler and application services. The
application service is a simple stateful Calculator service
that exposes operations such as add(), sub(), and
getValue(). The invocation of the getService scheduler
service returns the EPR to an instance of Calculator
service. A sample EPR for the Calculator service is
shown in the listing below:

<wsa:EndpointReference>
 <wsa:Address>
 http://www.ibm.com/samples/CalculatorService
 </wsa:Address>
 <wsa:ReferenceParameters>
 <calc:ServiceInstanceId>
 ServiceInstance123

 </calc: ServiceInstanceId>
 </wsa:ReferenceParameters>
</wsa:EndpointReference>

The EPR contains the URL of the web service identifying
the service type and also include the identifier
(ServiceInstanceId) that uniquely identifies the service
instance. This EPR can then be used to perform stateful
invocation of any operation on the application service.
Any stateful invocations of operations on the service

instance will carry the service instance identifier in the
SOAP message. The system uses this identifier to route
the service request to the correct service instance. A
sample SOAP message for invocation of the “add”
operation on the calculator service is shown below:

<soapenv:Envelope xmlns:S=
"http://schemas.xmlsoap.org/soap
/envelope/" xmlns:wsa="...">

<S:Header>
 <wsa:to>
 http http://www.ibm.com/samples
/CalculatorService
 </wsa:to>
 <calc:ServiceInstanceId
wsa:IsReferenceParameter=”true”>
 ServiceInstance123

 </calc: ServiceInstanceId>
</S:Header>
<S:Body>

<add xmlns="http:
//calculator.ibm.com">

 <value>100</value>
 </add>
</S:Body>
</soapenv:Envelope>

Once the Calculator service instance is no longer needed
it can be terminated by using the releaseService .

2.3. Service Instance Management Design and

Implementation Considerations

In the previous sections, we describe the application
and scheduler services abstraction, and also provide a
usage example of these services. In this section, we will
discuss the detailed design and implementation of two
scheduler services: getService and releaseService,
which are services more relevant to the resource
management than other services such as query.

To support getService and releaseServcie, the Service
Instance Management can have designs and
implementations of various levels of sophistication in
functions along two dimensions. One dimension is along
the sophistication of interactions between SIP and
Resource Allocation management when allocating and
deallocation of resources for service instances. The
second dimension is on the provisioning and de-
provisioning of the service instances with application
specifics for the getService and releaseService. On the
simplest level for both dimensions, SIM simply maintains
a list of existing service instances and their usage status.
The getService function will do a search for a not–in-use

services instance of the matched service type and will
then mark it in-use before returning the caller the ERP of
the service instance. The releaseService will change in-
use status to not-in-use for a service instance. In this
way, creating/deleting and provisioning/de-provisioning
of service instances are outside the control of SIM. This
simple design and implementation is useful for functional
testing of the service interfaces.

In our research project, we designed our experimental
SIM model with more functions. Figure 3 shows the
interactions of SIM with Resource Allocation
Management, to allocate resources, and Application
Provisioner, to initialize service instance with application
specifics, when getService is processed. Moreover,
SIM also consults with a QoS component to resolve
resource allocation specifications instead using defaults
or information encoded as part of the service “type”. For
example, “gold” level of Monte Carlo service type will
resolve into certain priority level and 10 servers by the
QoS component.

3. Quality of Services for Stateful

Application Services

There are many studies in the quality of services
(QoS) for batch oriented systems and for transactional
processing environments. However, the QoS
management of interactive parallel workload of analytic
applications has not been addressed extensively.

IBM Research

© 2005 IBM Corporation

SI
SI SI

Resource Allocation

Management

Application

Provisioner

getService (type,QoSprofile)

3 4

Service Instance

Management

QoS services

1

2

5

obtain resources

initialize appl

services

obtain resource spec using QoSProfile

EPR

SI

Figure 3: Interaction model of SIM

Similar to the transaction workload, there would be
expected response time goals for interactive parallel
works as response time would affect the productivity of
interactive users. And, similar to the parallel batch jobs,
the processing time for the workload has relatively high
variance and may greatly depend on the level of
parallelism. Liberal allocations of resources to achieve
high parallel levels may provide better quality of
services, but may increase total cost of system
infrastructure.

The QoS management of analytic applications requires
further studies by researchers. Some of the interesting
topics include the following:

1. QoS establishment: study what appropriate
QoS specifications for application instance
services are meaningful to the users, and are
enforceable by the resource scheduling system
(e.g. a Monte Carlo simulation service may have
a response time of xx seconds as one specific
type of QoS objectives).

2. Resource requirement based on application

service profile derivation: enforceable QoS may
require the appropriate allocation of resources
hosting the service instances. One technique to
explore is based on historical execution
information or benchmark data. The QoS
component will derive from historic or
benchmark data on the required resources to
instantiate a service of certain QoS objectives
(e.g. Monte Carlo service ABC requires 2
servers of 1.6 GHz and 2GB of memory to
achieve an average execution time of xx
seconds).

3. Service instance pool management: proactively
creating and pre-configuring application service
instances to ensure that the service activation
time is short enough to meet the response time
objectives; maintaining appropriate number of
service instances of various application services
in pools to meet the workload demand (e.g.
based on the arriving rate of Monte Carlo
service requests); when demands decline,
superfluous service instances will be released

4. Resource partition management: within an
infrastructure system, resources used by analytic
application workload may be shared with batch
workload and/or transactional workload for
simplicity of system management and achieving
improved total utilization; there are challenges
in managing mixed workloads with
differentiating QoS objectives and with
different rates of resource consumption by
various workloads

As part of our research project, a service instance
pool management prototype (item 3 in the above)

was developed [17]. This prototype used a cost
model to study the effectiveness of varying
algorithms used to manage the numbers of service
instances for different applications within a
computing cluster.

4. Related Work

The GrADSolve [18] project evolved from GrADS [6]
and NetSolve. The NetSolve of GrADSolve supported
the acquiring of grid resources to the execution parallel
applications that were developed using the RPC model.
The RPC model may be appropriate for developing
applications to be deployed unto the service instances of
our project. The project also studied some load-
balancing issues. However, it did not consider analytic
application workload as characterized in this paper.

MedIGrid [3] was a distributed application developed
to use distributed resources managed as grid resources.
It used Globus toolkit [7] for resource management.

The resource management for Globus, GRAM, neither
specifically addressed the requirements of the analytic
applications nor defined the support for stateful
invocation.

5. Conclusion and Future Work

We extracted and provided detailed descriptions on a
set of attributes and requirements from existing analytic
applications in industrial segments such as capital
markets and medical image processing: relatively long
processing time, parallellized, multiple stateful
invocations, application as web services, and with quality
of services goals. To improve support for these classes
of analytic applications, we proposed the stateful support
services, by extending resource scheduling systems
capable of running both serial and parallel jobs.

On the design and implementation of the stateful
support services of getService and releaseService, we
explored different approaches with various level of
sophistication. We find that this is a fertile area for
research and plan to pursuit further.

We also suggested the need to understand workload
characterization of the analytic applications, and included
some research directions for investigating issues related
to quality of services for these applications. Our research
plan includes building a couple of product level
application services using the stateful support for
empirical studies and performance evaluations.

6. Acknowledgements

We would like to acknowledge Waiman Chan, Asit
Dan, Nathan Falk, Kevin Gildea, David Jensen, Alan

King, Chin Lee, Gary Mincher and Kavitha Ranganathan
for their contribution in our collaborative design effort.

7. References

[1] Ansorge, R. E., Carpenter, T. A. et al. “Parallel
Comupting with MPI for Medical Image Codes”.
http://www.wbic.cam.ac.uk/~rea1/research/MPIpape
r.pdf

[2] Avramidis, T. A., Zinchenko, Y., Coleman, T. F.,
Verma, A. “Efficiency Improvements for Pricing
American Options with a Stochastic Mesh”,
Financial Engineering News, Dec. 2000

[3] Bertero, M., Bonetto, P., et al. ”MedIGrid: a Medical
Imaging Application for Computational Grids”.
Proceedings of IPDPS 2003, April 2003.

[4] Casanova. H., Dongarra, J. “NetSolve: A Network
Server for Solving Computational Science
Problems”. International Journal of Supercomputer
Applications and High Performance Computing,
Vol. 11, No. 3, 1997.

[5] Collins, D. L., Montagnat, J., et al. “Automated
Estimation of Brain Volume in Multiple Sclerosis
with BICRR”. Proceeding of the Annual
Symposium on Information Processing on Medical
Imaging, vol 2082, Lecture Nodes in Computer
Science, Springer, 2001.

[6] Cooper, K. et al. “New Grid Scheduling and
Rescheduling Methods in the GrADS Project”. 18th
International Parallel and Distributed Processing
Symposium (IPDPS'04) – Workshop

 [7] Foster, I., Kesselman, C. "Globus: A
Metacomputing Infrastructure Toolkit," The
International Journal of Supercomputer Applications
and High Performance Computing, vol. 11, no. 2,
1997.

[8] Germain, C., Breton, V., et al. “Grid-enabling
Medical Image Analysis”. Proceedings of the
IEEE/ACM International Symposium on Cluster
Computing and the Grid (Biogrid'05), Cardiff, UK,
May 2005.

[9] Glatard, T., Montagnat, J., Pennec, X. “Grid-enable
Workflow for Data Intensive medical Applications”.
http://www.i3s.unice.fr/~glatard/publis/CBMS05.pdf

[10] Imielinska, C., Molholt, P. “Incorporating 3D
Virtual Anatomy into the medical Curriculum”.
Communication of ACM, Feb. 2005. Vol 48, No 2.

[11] Leong, M.-P., Cheung, C.-C., et al. “CPE: A
Parallel Library for Financial Engineering
Applications”. IEEE Computer, Vol 38, No 10,
October, 2005.

[12] IBM Corp. “Workload Management with
LoadLeveler”. 2001.
http://www.redbooks.ibm.com/redbooks/SG246038.
html

[13] Platform Computing Inc.
http://www.platform.com/Products/Platform.LSF.Fa
mily/

[14] Metraxas, D. “Medical Image Modeling, Tools and
Applications”. Communication of ACM, Feb. 2005,
Vol 48, No 2.

[15] Montagnat, J. Davila, E. Magnin, I. E. “Efficient
Visualization of 3D Medical Scenes for Remote
Interactive Applications”. Image and Signal
Processing and Analysis, September, 2003, Roma,
Italia.

[16] Porada, W. “The Changing Face of Risk
Management”. http://www.midas-
kapiti.com/files/file5298_Misys%20Risk%20Manag
ement%20Whitepaper.pdf

[17] Ranganathan, K. and Dan, A. "Proactive
Management of Service Instance Pools for meeting
Service Level Objectives“, International Conference
on Service Oriented Computing ICSOC 2005

[18] Vadhiyar, S. S., Dongarra, J. J. ”GrADSolve: a grid-
based RPC System for Parallel Computing with
Application-level Scheduling”. Journal of Parallel
and Distributed Computing”. Vol 64, Issue 6. June
2004.

[19] Waters Financial Technology Intelligence,
December 1, 2003
http://www.watersonline.com/public/showPage.html
?page=129214

[20] OASIS, “Web Service Resource Framework –
Primer” http://docs.oasis-open.org/wsrf/wsrf-
primer-1.2-primer-cd-01.pdf

[21] IBM Corp. “Websphere Extended Deployment
Version 6.0. 2005
http://publib.boulder.ibm.com/infocenter/wxdinfo/v6
r0/index.jsp?topic=/com.ibm.websphere.xd.doc/info/
odoe_task/codoeprovision.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

