Evaluating Cooperative Checkpointing for Supercomputing Systems

Adam Oliner’? and Ramendra Sahoo?

IStanford University
Department of Computer Science
Palo Alto, CA 94305-9025 USA
oliner@cs.stanford.edu

Abstract

Cooperative checkpointing, in which the system dy-
namically skips checkpoints requested by applications at
runtime, can exploit system-level information to im-
prove performance and reliability in the face of fail-
ures. We evaluate the applicability of cooperative check-
pointing to large-scale systems through simulation stud-
ies considering real workloads, failure logs, and dif-
ferent network topologies. We consider two coopera-
tive checkpointing algorithms: work-based cooperative
checkpointing uses a heuristic based on the amount of
unsaved work and risk-based cooperative checkpointing
leverages failure event prediction. Our results demon-
strate that, compared to periodic checkpointing, risk-
based checkpointing with event prediction accuracy as
low as 10% is able to significantly improve system uti-
lization and reduce average bounded slowdown by a fac-
tor of 9, without losing any additional work to failures.
Similarly, work-based checkpointing conferred tremen-
dous performance benefits in the face of large check-
point overheads.

1 Introduction

Providing reliability and performance in the pres-
ence of failures is a central problem in supercomputing.
Large-scale systems, like IBM’s Blue Gene/L (BG/L),
are simultaneously capable of more intensive parallel
computation and susceptible to a greater number of
failures [9]. Because the application space is domi-
nated by long-running scientific applications, with run-
times of the order of weeks or months, checkpointing

2Work was performed at IBM T.J. Watson Research Center
as part of the VI-A Internship Program, an MIT cooperative ed-
ucation program with Industry, together with a VI-A Fellowship
funded by IBM.

1-4244-0054-6/06/$20.00 ©2006 IEEE

3IBM
T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532 USA

rsahoo@us.ibm.com

schemes are crucial for providing reliability. Many su-
percomputing systems, including BG/L, do not sup-
port system-initiated checkpointing. Thus, while most
supercomputing systems do not have the ability to ini-
tiate a checkpoint, almost all can be easily modified to
ignore an application’s call to perform a checkpoint.

Cooperative checkpointing allows the system to dy-
namically skip checkpoints requested by applications
[10]. Checkpoint requests are placed liberally through-
out the code, wherever a checkpoint may be efficient.
At runtime, each request is either granted or denied.
This scheme is based on the philosophy that appli-
cations know best when to checkpoint, while systems
know best when not to checkpoint. This paper con-
siders cooperative checkpointing algorithms that use
system-wide information to skip requested checkpoints
that appear either inefficient or unlikely to be used
for rollback. Specifically, we present work-based coop-
erative checkpointing, which considers workload, and
risk-based cooperative checkpointing, which uses fail-
ure event prediction.

We evaluate the applicability of cooperative check-
pointing to large-scale supercomputing systems with
predominantly long-running applications. Hence, run-
time techniques used in this paper assume that the
system knows information such as the checkpoint over-
head cost and the checkpoint interval. A trace-based
simulation study is carried out for different supercom-
puter topologies (general cluster and 3-D torus) while
using failure and job logs used in earlier studies [12, 13].

This paper answers the following questions, among
others. What is the impact of cooperative checkpoint-
ing on common metrics like bounded slowdown and uti-
lization? How does it fare relative to the standard re-
liability technique, periodic checkpointing? What role
does the network topology play in machine reliability?
How accurate must event prediction be to yield a ben-
efit, and what benefit might be expected?

2 Related Work

Checkpointing, including checkpointing algorithms
for supercomputing systems, is a rich field of research.
Recently, there have been a number of studies on check-
pointing based on certain failure characteristics [15], in-
cluding Poisson distributions. Plank and Elwasif [14]
carried out a study on system performance in the pres-
ence of real failure distributions and concluded that it
is unlikely that failures in a computer system would
follow a Poisson distribution. The workloads consid-
ered by Plank and Elwasif were artificial. Tantawi
and Ruschitzka [18] developed a theoretical framework
for performance analysis of checkpointing schemes. In
addition to considering arbitrary failure distributions,
they present the concept of an equicost checkpointing
stategy, which varies the checkpoint inverval according
to a balance between the checkpointing cost and the
likelihood of failure.

It has been well recognized that job scheduling plays
an important role in system performance [3]. There are
a number of research efforts analyzing job scheduling
and its impact on system performance [2, 5, 6, 7]. For
large-scale supercomputers like Blue Gene/L [1] and
Earth Simulator, there are very few research efforts
considering failure distributions, critical event predic-
tions, and job scheduling aspects all together for dif-
ferent communication topologies.

Absence of any research in the area of fault-aware
checkpointing involving real job logs, communication
topologies, scheduling policies, and real failures is the
main motivation for this work. Furthermore, this pa-
per is intended to experimentally validate the general
claims of previous work on cooperative checkpointing
theory [10]. Other experimental work evaluated the
theoretical results more explicitly [11], but did not sim-
ulate a system with the complexity and robustness as
in this paper.

3 Problem Description

This section describes the problem and explains the
cooperative checkpointing behavior. Details of the co-
operative checkpointing theory are covered elsewhere
[10]. A few aspects of our experiments, including the
simulator, the metrics, and the architectures, share
similarities with [13]. Some are also covered here for
the sake of completeness.

3.1 Terms and Definitions

Most high-performance systems provide OS sup-
port and libraries for applications to perform check-

point/restarts. We use the following model of behavior
in this paper. When an application initiates a check-
point at time ¢, progress on that job is paused for the
checkpoint overhead (C') after which the application
may continue. The checkpoint latency (L) was shown in
[14] to typically have an insignificant impact on check-
pointing performance. There is also a checkpoint recov-
ery parameter (R) which is the time required for a job
to restart from a checkpoint; this, like the downtime,
is unavoidable. Therefore, we let C ~ L and R = 0.
Most scientific applications tend to be run many
times, and the machines are largely homogeneous. As
a result, there is a great deal of predictability. Estima-
tion techniques for parameters like C' and I are beyond
the scope of this paper, but we assume the system can
determine them. Despite such efforts to reduce check-
point overhead, these costs continue to increase with
the size of the machine, and are heavily dependent on
system conditions like network traffic and disk activity.
For BG/L, the target upper bound for checkpointing
any application is C' = 12 minutes (used in Section 4).

3.2 Cooperative Checkpointing Strategies

Let s;_1 be the time to which progress would be
rolled back in the event of a failure. This may be ei-
ther the start of the most recently-completed check-
point or the time at which the application was first
started. Let s; be the time at which application j re-
quests checkpoint i for i > 1, and let f; be the time at
which checkpoint 7 is completed. Let s;4; be the time
at which the next checkpoint will be started. We define
I to be the checkpoint interval such that I = f; 1 —s;
Vi > 1, unless checkpoint ¢ —1 is skipped, in which case
the interval is dI = f;_4 — s;, where i — d is the last
checkpoint that was performed.

Let C; be the checkpoint overhead for checkpoint i
of job j under the system conditions at time s;. Note
that C; = f; —s;, or 0 if the checkpoint is skipped. For
a typical system, it is possible to predict C', as well as
I, with relative accuracy by drawing on system-level
performance guarantees and prior application behav-
ior. Job j runs on n; nodes. We define a unit of work
to be a node-second, so occupying n nodes for k seconds
consumes work n - k.

3.2.1 Work-Based Cooperative Checkpointing

For work-based checkpointing, at time s; when job
j requests a checkpoint, we pose the following ques-
tion: should j perform the checkpoint or skip it? Be-
cause checkpoints can be initiated only by the applica-
tion, this choice is the only opportunity for the system

to exert its influence over the checkpointing strategy.
The question the system must answer is expressed by
Equation 2, which compares the cost of performing the
checkpoint with the risk associated with skipping it.
If the inequality holds, the checkpoint should be per-
formed. In this way, the system cooperates with the
application to select a mutually agreeable checkpoint-
ing strategy.

The inequality is calculated by considering the
worst-case failure scenario, in which a failure would
occur just before the successful completion of check-
point i + 1. We consider the amount of time by which
the successful completion of checkpoint 7 + 1 would be
delayed from the scenario in which no checkpoint is
performed, and no failure occurs. That is, we mea-
sure the delay beyond I + C;y;. For example, if we
skip checkpoint 7, then after paying I + C;41 and fail-
ing, we would roll back to f;_q (where i — d is the last
checkpoint that was performed), pay dI to return to
where we were, and then pay another I 4+ C;41 to fin-
ish the checkpoint. On the other hand, performing the
checkpoint would mean that we only roll back to f;.
Performing the checkpoint already delayed progress by
C;, but to finish checkpoint ¢ 4 1, it is only necessary
to pay another I 4+C 1. So we perform the checkpoint
if

n; - ((d+1)I+ Citq)
dr

> n; - (I + Ci+1 + Cz) (1)
> G (2)

We call the checkpointing heuristic represented
by Equation 2 work-based, because it compares the
amount of unsaved work to the opportunity cost, in
units of work, of performing the checkpoint. This claim
is intuitive; it does not make sense to perform a check-
point that takes longer than the work you are trying
to save. In such a situation it would be cheaper to re-
compute than to checkpoint. Note that dI in Equa-
tion 2 represents the time since the last completed
checkpoint, not merely the static checkpoint interval.
Consequently, it is possible to have checkpoints which
can be skipped with some regularity.

3.2.2 Risk-Based Cooperative Checkpointing

Work-based cooperative checkpointing considers the
worst-case loss due to failures. A more realistic mea-
sure is expectation: how much work do we expect to
lose before checkpoint i + 1 is completed? If that mea-
sure is greater than the cost of checkpointing, then
we perform the checkpoint. This strategy is called
risk-based cooperative checkpointing. Let py be the
probability that the partition on which job j is run-
ning will fail before f;1;. Using the same measure as

above, the expected cost of skipping the checkpoint
is pr((d + 1)I + Ci41), with no cost if a failure does
not occur. The cost of performing the checkpoint is
pr(L+ Cip1 +C;) + (1 —py)C;. Using Ciqq ~ C}, this
reduces to the heuristic for risk-based checkpointing,
which is expressed in Equation 4.

pf((d + 1)[+ Cl)
pde

Z pf(I + 201) + (1 —pf)C’i(?))
> G (4)
Thus, work-based is the special case of risk-based where
ps = 1. That is, even if failure is a certainty, we should
not spend more time checkpointing job progress than
would be required to simply recompute. Additionally,
work-based bounds how badly risk-based cooperative
checkpointing will do in the presence of false positives
in the event prediction; a 100% false positive rate will
do at most as many checkpoints as work-based cooper-
ative checkpointing.

3.3 Event Prediction

In order to use risk-based cooperative checkpointing
to make runtime decisions about whether to skip or
grant a given checkpoint, the system must have a mech-
anism for estimating ps, the probability that a failure
occurs before f;11. Such event prediction systems [16]
have been demonstrated to be capable of accuracies
near 70%. Even without statistical techniques, event
prediction can be achieved with great accuracy. For
example, scheduled maintenance events can be commu-
nicated to the system, allowing it to estimate py = 1
with absolute confidence for the duration of that time.

This raises the question of how accurate event pre-
diction needs to be in order to be useful. Because our
model of the problem assumes that all checkpoints will
be performed unless the strategy explicitly skips it, we
have a simple performance baseline. Work-based and
risk-based strategies only lose in one situation: a check-
point is skipped and a failure occurs. Therefore, the
performance of these strategies will only be worse if
there is a high rate of false negatives.

3.4 Topology and Job Scheduling

The simulations (Section 4) cover the two most com-
mon communication topologies: flat (all-to-all) and
toroidal. Examples of flat architectures include large
Linux/AIX clusters like ASCI Purple. Cray T3D
and Blue Gene/L [1] are examples of toroids. Most
systems with toroidal interconnects, including BG/L,
are limited by certain constraints when scheduling

jobs [8, 2, 3]. Jobs are required to be placed in dis-
tinct, contiguous, cuboidal partitions. In order to sat-
isfy these requirements, a job partition must be com-
posed as a three-dimensional integer orthotope of com-
pute node blocks. Hence, the job scheduler sees the
cluster as a torus of these blocks or supernodes (nodes).
The scheduler is given the following input: node
topology, the current status of each node, a queue of
waiting jobs, checkpointing information, and fault pre-
dictions. For every job j, the scheduler knows the job
size in nodes (n;) and the estimated execution time
of the job (e;), and the execution time including all
checkpoints (E;). After a job j has been scheduled to
start at time s;, the scheduler can compute the esti-
mated completion time of the job (f; = E;+s,). Once
a job completes execution, the estimated value for f;
is replaced by its actual value. Migration is disabled.
The scheduler operates under the constraints for
toroidal architectures based on earlier job scheduling
work for BG/L [8] with new constraints related to fail-
ures. Specifically, there is no co-scheduling or multi-
tasking, a job partition must be a cuboid, and nodes
may fail at any time; if a job is running on a node when
it fails, all unsaved work on that job is lost. There is no
cuboid requirement for flat interconnect architectures.

3.5 Metrics

We consider metrics similar to those in Krevat’s
scheduler [8]. The actual job execution time is calcu-
lated based on start time s; and actual finish time f;
of each job; when measuring utilization, we use execu-
tion time excluding checkpoints. Similarly, s;, f;, and
job arrival time (a;) can be used to calculate wait time
wj = $; — a;, response time r; = f; —a;, and bounded
max(r;,I")
min(e;,I')
Therefore, we consider the following metrics when eval-
uating overall system performance: (1) {Averagew;]},
(2) {Average[r;]} and (3) {Averagelbs;]}.

In order to be consistent, we treat checkpointing
overhead as being wasted work. That is, e; is the exe-
cution time of the job without checkpoints. Therefore,
values for bounded slowdown, for example, may seem
unusually high. In fact, we believe that this is a more
accurate representation of the performance of the clus-
ter; if the checkpoints could be skipped, the baseline
optimal may be improved.

slowdown bs; = where I' = 10 seconds.

4 Experiments

We perform quantitative comparisons among var-
ious checkpointing and system parameters using a

simulation-based approach. An event-driven simula-
tor is used to process actual supercomputer job logs,
and failure data from a large-scale cluster [17].

4.1 Simulation Environment

The event-driven simulator models a 128 (su-
per)node cluster with either flat or three dimensional
(4 x 4 x 8) torus topology. The simulator is provided
with a job log, a failure log, and other parameters (e.g.:
C and I). The events include: (1) arrival events, (2)
start events, and (3) finish events. Additionally, the
simulator supports (4) failure events, which occur when
a node fails, (5) recovery events, which correspond to
a failed node becoming available again, (6) checkpoint
start events, indicating the start of a job checkpoint,
and (7) checkpoint finish events, which correspond to
the completion of a checkpoint. The downtime of a
failed node is set at a constant 120 seconds, which is
estimated to be a modest restart time for nodes in any
large-scale computer system.

The simulation produces values for the last start
time (s;) and finish time (f;) of each job, which are
used to calculate wait time (w;), response time (r;),
and bounded slowdown (bs;j). We calculated system
capacity utilized and work lost based on the following
formulations. If T' = (maxv;(f;) — miny;(a;)) denotes
the time span of the simulation, then the capacity uti-
lized (wyi]) is the ratio of work accomplished to com-
putational power available: wy ;] = >y, 2Z. Let t,
be the time of failure x, and jz be the job that fails
as a result of x, which may be null. If ¢;, is the time
at which the last successful checkpoint for jx started,
then the amount of work lost as a result of failure x
is (tz — ¢jo)njz (this equals 0 for jo = null). Hence,
the total work lost (W) gt) 1S Wipgt = D va (te = Cjz) Nz
There is an additional component (w but we
do not consider it in this paper.

unused)

4.2 Workload and Failure Models

We considered job logs from the Parallel Workload
Archive [4] to induce load on the system. These include
a log from NASA Ames’s 128-node iPSC/860 machine
collected in 1993 (NASA log, henceforth), San Diego
Supercomputer Center’s 128-node IBM RS/6000 SP
(1998-2000) job log (SDSC log), and Lawrence Liver-
more National Laboratory’s 256 node Cray T3D (1996)
job log (LLNL log). Each log contained 10000 jobs.
Some characteristics are shown in Table 1, where run-
times do not include checkpoints.

For failure logs, we used filtered traces collected for
a year from a set of 350 AIX machines for a previous

[Job Log [| Avg Size | Avg RT (s) | Max RT (hr) |

NASA 6.3 381 12
SDSC 9.7 7722 132
LLNL 10.2 1024 41

Table 1. Job log characteristics. RT stands
for the runtime, or execution time.

study on failure analysis and event prediction [17, 16].
By failure we mean any temprary or permanent failure
leading to a failure of a job. We use failures from the
first 128 such machines, resulting in 1,021 failures, an
average of 2.8 failures per day. The MTBF on any node
in the cluster was 8.5 hours. Therefore, the timing and
distribution of failures used in this study reflect the
behavior of actual hardware and software in a large
cluster.

5 Simulation Results

The simulations, in all, represent more than 600,000
days of cluster time, and involve the scheduling of more
than 30 million jobs. The results presented here are
necessarily a subset of these simulations. Included re-
sults are representative.

5.1 System Performance

Figure 1 plots checkpointing interval against aver-
age bounded slowdown for the SDSC log, on a flat
cluster, with a checkpoint overhead of 12 minutes (720
seconds). The same runs for the NASA log and runs
for the SDSC log on a toroidal interconnect architec-
ture are not shown, but exhibited the same properties
as Figure 1; the NASA bounded slowdowns were de-
creased by a constant factor and the toroidal values
were increased by a constant factor. The five curves
represent, periodic, work-based, and risk-based coop-
erative checkpointing for three accuracy levels respec-
tively. Periodic checkpointing means every checkpoint
is performed at intervals defined by the x-axis value.
Similarly, work-based cooperative checkpointing is per-
formed according to the definition in Equation 2.

Risk “a” indicates risk-based checkpointing with a
false negative rate of 1—a. Thus, a = 0 implies that the
predictor will always return py = 0 (no checkpointing
is performed). Despite the fact that no checkpoints are
performed, the metric for Risk 0 varies with the check-
point interval because the job scheduler must estimate
the completion time of the job. The scheduler esti-
mates the total running time (R) as if all checkpoints

120001

—— Periodic
—— Work
—— Risk 1
10000 —— Risk 0.5
—+— Risk 0
c
£ 8000f
el
2
o
[
® 6000
hel
=
=3
o
o
2 4000
<
20001
bR S eaan il Ll
0 . .) . . .
0 0.5 1 1.5 2 25 3
Interval (seconds) x 10°

Figure 1. Bounded slowdown vs. checkpoint
interval in seconds for the SDSC job log, with
a checkpoint overhead of 720 seconds.

are to be performed based on R = r + C - |(r/I)].
Therefore, a smaller I makes performance enhancing
techniques, like backfilling, less likely.

For a checkpoint overhead of 720 seconds (I < C')
work-based cooperative checkpointing results in the
same curve as periodic checkpointing. As the check-
pointing interval is decreased, bounded slowdown for
the periodic checkpointing scheme increases exponen-
tially. In general, risk-based cooperative checkpointing,
at any accuracy, results in a lower bounded slowdown
compared to either work-based or periodic checkpoint-
ing. This is because the bounded slowdown is domi-
nated by the checkpointing overhead. Risk-based will
never perform more checkpoints than work-based, and
work-based will never perform more checkpoints than
periodic checkpointing.

As a representative case of checkpointing results for
higher overheads (say C' = 3600 seconds), Figure 2
plots bounded slowdown for the SDSC log on a flat
cluster. Between the intervals of I = 3500 seconds and
I = 4000 seconds, work-based cooperative checkpoint-
ing diverges suddenly and dramatically from periodic
checkpointing. The checkpoint overhead is 3600 sec-
onds, so I > 3600 seconds means that every checkpoint
will be performed. Below 3600 seconds, the work-based
heuristic takes effect. At I = 3500 seconds, for exam-
ple, every other checkpoint is performed, starting with
the second one. This immediately results in a 7-fold
decrease in average bounded slowdown. Again from
Figure 2, there is nearly a 50% gap in performance be-
tween the Work and Risk 1 maximum values. A simi-
lar gap can be seen in all Figures for C' = 720 seconds.
Work-based will perform every checkpoint such that
dI > C, whether or not the event predictor indicates

—+— Periodic
1.8- —— Work

—— Risk 1
16 —— Risk 0.5
’ —+— Risk 0

Avg Bounded Slowdown

0 0.5 1 15 2 25 3
Interval (seconds)

Figure 2. Bounded slowdown vs. checkpoint
interval in seconds for the SDSC job log, us-
ing a checkpoint overhead of 3600 seconds.

that a failure is likely. On the other hand, risk-based,
with no false positives, will only perform a checkpoint
when a failure is predicted to occur before the end of
the subsequent checkpoint. Consequently, work-based
performs more checkpoints than risk-based. If, hypo-
thetically, the false positive rate was set at 1 (always
predicts a failure) and the predictor, therefore, always
returned py = 1, then the Risk 1 and Work curves
would be identical. We therefore call the gap between
these curves the false positive gap.

Because of our choice of job start time, response
time and wait time tend to be similar to each other. In
general, bounded slowdown, response time, and wait
time curves for the same input parameters are similar
in nature. Bounded slowdown curves strongly exhibit
important characteristics, however, so we chose to fo-
cus on that metric.

5.2 System Utilization

Results for the SDSC log on a torus (C' = 720 sec-
onds) are presented in Figure 3. We see that naive
checkpointing can reduce effective utilization from ~
74% to ~ 55%; when C = 3600 seconds, utilization
dropped from ~ 67% to ~ 20%. Simple work-based
checkpointing increases utilization by more than 25%.
In general, for these parameters, not checkpointing de-
creases effective utilization. For smaller intervals, how-
ever, Risk 0 is best for this metric.

We conclude that checkpointing does not generally
act to improve system-level metrics like utilization and
bounded slowdown, for the workloads and failure distri-
butions we observed. Checkpointing increases the effec-

0.74r
0.72r
0.7r
0.68-
& 066F
g
= 0.64
5
2o0.62F
<
0.6r —
—— Periodic
0.58- —— Work
—— Risk 1
0.56- — Risk 0.5
—— Risk 0
0.54r
0 0.5 1 15 2 25 3
Interval (seconds) x10*

Figure 3. System utilization on the torus for
the SDSC log. This is representative of our
results with other inputs. (C = 720 seconds)

tive running time of jobs, and makes efficient schedul-
ing more difficult. Work-based and risk-based coop-
erative checkpointing mitigate this loss of efficiency by
skipping checkpoints that the heuristics perceive as be-
ing superfluous. In Section 5.4, we examine the trade-
off made for those improvements in performance.

5.3 Work Lost

Checkpointing is intended to be a selfish act: a job
checkpoints in order to minimize the amount of recom-
putation it will need to perform after a failure, obliv-
ious to outside constraints. Minimizing the work lost
parameter inherently satisfies the goal of checkpoint-
ing, and is the basis for the requirements of work-based
and risk-based cooperative checkpointing.

Figure 4 shows the total amount of work lost due to
failures for the SDSC log on a flat cluster. The most
outstanding feature is the curve for Risk 0 (no check-
pointing), which is distinctly separate from the other
curves. Compared to no checkpointing, the amount of
work lost from failures is reduced by more than 79%
when the accuracy of the predictor is raised to 10%,
and by 92% at 40% accuracy. In other words, predict-
ing and checkpointing ahead of only 10% of all failures
makes a huge impact in the amount of lost work. Pre-
dicting around half of the failures has the same effect
on lost work as checkpointing periodically, whether or
not a failure is expected.

For curves other than Risk 0, where checkpointing
is being performed, a higher interval tends to increase
the amount of lost work. This is reasonable, because
more freqent checkpointing is a common strategy to
minimize lost work. The fluctuations in Risk 0 are a

—— Periodic
—— Work

—— Risk 1

—— Risk 0.9
—— Risk 0.8
—6— Risk 0.7
—— Risk 0.6
—— Risk 0.5
—+— Risk 0.4
—— Risk 0.3
—— Risk 0.2
—— Risk 0.1
—— Risk 0

Work Lost (node * seconds)

1.5 2 25 3
Interval (seconds) x10°*

Figure 4. Lost work, SDSC, torus, all accura-
cies. At 10% prediction accuracy, lost work is
reduced nearly as much as with perfect pre-
diction.

consequence of the way in which the jobs happen to be
scheduled, and illustrates the variance in the amount
of work that may be lost without checkpointing.

5.4 Strategy Comparison

This section presents a different view of the results
from the previous section, and summarizes the trade-
offs offered by our new checkpointing heuristics. Fig-
ures 5 and 6 show results for the SDSC log on a flat
cluster. The x-axis indicates the type of checkpointing
that was used. All plots are for C' = 720, 3600 seconds
and I = 1000, 10000 seconds.

Consider first the results for I = 10000 seconds.
The bounded slowdowns in Figure 5 show a gradual
decrease in this metric as fewer checkpoints are per-
formed, for both overheads. While Risk 0 is best, note
that Risk 0.1 gives nearly the same values. Utilization
(not shown) showed a similar pattern, with utilization
tending to increase as fewer checkpoints are performed.

For I = 1000 seconds, periodic checkpointing per-
forms significantly worse than either of our heuris-
tics in both bounded slowdown and utilization. In
that case, with C' = 3600 seconds, work-based coop-
erative checkpointing gave an immediate 25% utiliza-
tion boost, with an additional 20% being possible if
all checkpoints are skipped. Work-based cooperative
checkpointing reduced bounded slowdown, in this ex-
treme case, by more than a factor of 90. By themselves,
these measurements of bounded slowdown and utiliza-
tion give the impression that checkpointing should be
abandoned entirely.

90 A 720 Sec.
Il 3600 Sec.

80 i 720 sec.
W 3600 Sec.

Avg. Bounded Slowdown
Thousands
Avg. Bounded Slowdown

Periodic 1 0.8 06 0.4 0.2 0
Work 0.9 07 05 03 0.1

Checkpointing

(b) I = 10000 sec

ic . 08 .4
Work 08 07 05 03 04

Checkpointing

(a) I = 1000 sec

Figure 5. Bounded slowdown, SDSC log, C =
720 and 3600 seconds. Suggests checkpoint-
ing as infrequently as possible.

A 720 sec.
Il 3600 Sec.

60 | B 720 Sec.
I 3600 Sec.

Millions

Total Work Lost (node*seconds)

Total Work Lost (node*seconds)

Periodic 1 0.8 0.6 04 0.2 0
Work 0.9 07 05 03 0.1

Checkpointing

(b) I = 10000 sec

Periodic 08 0.
Vork 038 o7 05 03 01

Checkpointing

(a) I = 1000 sec

Figure 6. Total work lost, SDSC log, C = 720
and 3600 seconds. Unlike Figure 5, suggests
checkpointing as frequently as possible.

Figure 6, however, indicates just the opposite. For
I = 10000 seconds, the amount of lost work increases
as the amount of checkpointing decreases. For a sys-
tem with C' = 720 seconds, a prediction accuracy of
10% reduces the amount of lost work as much as peri-
odic checkpointing, while also bringing bounded slow-
down and utilization to near optimal values. Recall
that event prediction with accuracy as high as 70%
has already been achieved [16]. We conclude that an
application should spend as little time checkpointing as
possible, but no less, and that those important check-
points can be effectively identified with event predic-
tion. The results for I = 1000 seconds were slightly
more complicated, but the conclusion is similar: by in-
telligently skipping checkpoints according to the work-
based heuristic, the amount of lost work can be de-
creased. Using event prediction with a mere 10% ac-
curacy, the amount of lost work can drastically re-
duced, while simultaneously increasing bounded slow-
down and utilization to near-optimal levels.

6 Conclusions and Contributions

Cooperative checkpointing, in which the system can
dynamically skip checkpoints requested by applications
at runtime, is an effective technique for providing relia-
bility on large-scale systems without sacrificing perfor-
mance. Application intitiated checkpointing is central
to providing reliability, but naive checkpointing can be
just as deleterious to performance as the failures [12].
In this paper, we evaluated cooperative checkpointing
strategies [10] for two new checkpointing heuristics:
risk-based (event prediction) and work-based (work-
load characteristics).

This paper makes the following contributions:

e Presents the results of trace-based simulations us-
ing real workloads and failure logs, suggesting that
the performance impact of communication topol-
ogy is secondary to the scheduling policies and fail-
ure charateristics.

e Shows that risk-based and work-based coopera-
tive checkpointing can dramatically improve uti-
lization and other system-level metrics, while si-
multaneously reducing the amount of work lost
due to failures.

e Demonstrates that forecasting or predicting fail-
ures with an accuracy as low as 10% can pro-
vide tremendous performance benefits. Even with
a false-negative rate of 90%, risk-based coopera-
tive checkpointing cut the amount of work lost
to failures many-fold, while providing exceptional
bounded slowdown and utilization values.

References

[1] N. Adiga and et. al. An overview of the bluegene/1 su-
percomputer. In Supercomputing (SC2002) Technical
Papers, November 2002.

[2] D. Feitelson. A survey of scheduling in multipro-
grammed parallel systems. IBM Research Technical
Report, RC 19790, 1994.

[3] D. Feitelson and M. A. Jette. Improved utilization
and responsiveness with gang scheduling. In In IPPS
97 Workshop on Job Scheduling Strategies for Parallel
Processing, volume 1291, April 1997.

[4] D. G. Feitelson. Parallel workloads archive.
http://cs.huji.ac.il/labs/parallel fworkload /index. html,
2001.

[5] H. Franke, J. Jann, J. E. Moreira, and P. Pattnaik.
An evaluation of parallel job scheduling for asci blue-
pacific. In Proc. of SC’99. Portland OR, IBM Research
Report RC 21559 , IBM TJ Watson Research Center,
November 1999.

(6]

(7l

(8]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

18]

B. Gorda and R. Wolski. Time sharing massively par-
allel machines. In Proc. of ICPP’95. Portland OR,
pages 214-217, August 1995.

B. Kalyanasundaram and K. R. Pruhs. Fault-tolerant
scheduling. In 26th Annual ACM Symposium on The-
ory of Computing, pages 115-124, 1994.

E. Krevat, J. G. Castanos, and J. E. Moreira. Job
scheduling for the bluegene/1 system. In JSSPP, pages
38-54, 2002.

Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam,
and R. K. Sahoo. Blue gene/] failure analysis and
prediction models. In Submitted to Intl. Conf. on De-
pendable Systems and Networks (DSN), June 2006.
A. J. Oliner, L. Rudolph, and R. K. Sahoo. Coop-
erative checkpointing theory. In IEEE IPDPS, Intl.
Parallel and Distributed Processing Symposium, Apr.
2006.

A. J. Oliner, L. Rudolph, and R. K. Sahoo. Robust-
ness of cooperative checkpointing. In Proceedings of
the Intl. Conf. on Dependable Systems and Networks
(DSN), submitted, June 2006.

A. J. Oliner, R. K. Sahoo, J. E. Moreira, and
M. Gupta. Performance implications of periodic check-
pointing on bluegene/1 systems. In Submitted to IEEE
IPDPS, Intl. Parallel and Distributed Processing Sym-
posium, 2005.

A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta,
and A. Sivasubramaniam. Fault-aware job scheduling
for bluegene/1 systems. In IEEE IPDPS, Intl. Parallel
and Distributed Processing Symposium, Apr. 2004.

J. S. Plank and W. R. Elwasif. Experimental as-
sessment of workstation failures and their impact on
checkpointing systems. In The 28th Intl. Symposium
on Fault-tolerant Computing, June 1998.

J. S. Plank and M. G. Thomason. Processor allocation
and checkpoint interval selection in cluster computing
systems. Journal of Parallel and Distributed Comput-
ing, 61(11):1570-1590, November 2001.

R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E.
Moreira, S. Ma, R. Vilalta, and A. Sivasubramaniam.
Critical event prediction for proactive management in
large-scale computer clusters. In Proceedings of the
ACM SIGKDD, Intl. Conf. on Knowledge Discovery
Data Mining, pages 426435, August 2003.

R. K. Sahoo, A. Sivasubramanian, M. S. Squillante,
and Y. Zhang. Failure data analysis of a large-scale
heterogeneous server environment. In Proceedings of
the Intl. Conf. on Dependable Systems and Networks
(DSN), pages 772-781, June 2004.

A. N. Tantawi and M. Ruschitzka. Performance anal-
ysis of checkpointing strategies. In ACM Transactions
on Computer Systems, volume 110, pages 123-144,
May 1984.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

