Towards an Analysis of Race Carrier Conditions in Real-time Java *

M. T. Higuera-Toledano
DACYA, Facultad de Informatica
Universidad Complutense de Madrid
Ciudad Universitaria, Madrid 28040, Spain
mthiguer @dacya.ucm.es

Abstract

The RTSJ memory model propose a mechanism based on
a scope three containing all region-stacks in the system and
a reference-counter collector. In order to avoid reference
cycles among regions on the region-stack, RTSJ defines the
single parent rule. The given algorithms to maintain the
region-stack structure are not compliant with the defined
parentage relation. More over, the suggested algorithms to
maintain the single parent rule introduces race carrier con-
ditions on the application behaviour. This paper proposes
alternative approaches in order to avoid this problem.

keywords: Java, Real-Time Systems, Memory Regions,
Garbage Collection.

1. Introduction

The Java environment provides attributes that make it
a powerful platform to develop embedded real-time appli-
cations (e.g., architecture-neutral, multithreaded, dynamic
loading, and garbage collection). However, it does not pro-
vide predictability facilities nor bounded resource usage,
which are needed for the above applications. The National
Institute of Standards and Technology (NIST), has pro-
duced a basic requirements document for a standard real-
-time Java API extension. The NIST document identifies
seven areas for modification; one of them is the memory
management. A solution that complies with this document
is the Real-time Specification for Java (RTSJ) [10]. One
of the main advantages of using high-level languages is that
the programmer must not deal with many low-level resource
allocation issues. Unfortunately, for embedded real-time
systems there is a conflict. The memory management is one
of the major issues that need research when considering the
extension of Java for real-time.

*Ministry of Education of Spain (CICYT); Grant Number
TIC2003-01321

1-4244-0054-6/06/$20.00 ©2006 IEEE

The run-time implementation of Java provides two basic
data structures to treat the memory generated by the pro-
gram: the stack and the heap. Only primitive types (e.g.,
int, boolean, and reference variables) are allocated in
the runtime stack. Objects created from class definitions
are allocated within the heap, and are collected by an im-
plicit Garbage Collector (GC), which runs as part of the
JVM. Implicit garbage collection has always been recog-
nized as a beneficial support from the standpoint of pro-
moting the development of robust programs. However, this
comes along with overhead regarding both execution time
and memory consumption, which makes (implicit) garbage
collection poorly suited for small-sized embedded real-time
systems. Although there has been extensive research work
in the area of making garbage collection compliant with
real-time requirements, there are still problems to use this
technique in time-critical systems. An alternative to the
classical GC is to use region-based memory allocation (e.g.,
[3]), which enables grouping related objects within a region.
This technique, commonly called Memory Regions (MRs)
is used explicitly in the program. This is an intermediate
solution between explicit memory allocation/deallocation
(e.g.,malloc () and £ree () in C) and garbage collection.

RTSJ [10], which use in mission critical systems is cur-
rently being evaluated in a number of projects such as [3],
combines MRs within which objects are not collected, and a
GC within the heap. In real-time systems, the GC must en-
sure memory availability for new objects without interfering
with real-time constraints. In this sense, current Java col-
lectors present a problem because threads may be blocked
while the GC is executing. As an example, consider a
time-critical real-time thread that executes periodically and
a non-critical real-time thread having lower priority than the
critical one. While the non-critical one is running the GC
(e.g., as consequence of an object allocation), it is not safe
for the critical real-time thread to execute, even if it does not
require any new memory. Then, the critical real-time thread
must wait to preempt the non-critical real-time thread until
the GC has finished.

Then, the only way to offer real-time guarantees is by
turning off the GC during the execution of critical real-time
threads. In order to do that, critical real-time threads only
allocate objects outside the heap and cannot reference ob-
jects within the heap. Then, RTSJ introduces immortal and
scoped MRs, which are outside the Java heap and objects
within they are not subject to garbage collection. In this pa-
per we review the RTSJ memory management semantic and
requirements for nested scoped memory regions.

The remainder of the paper is organized as follows: af-
ter a brief discussion of related work (Section 2), we out-
line de nition and use of the RTSJ memory model (Sec-
tion 3). We study race carrier conditions on programs using
scope MRs in RTSJ (Section 4). Then, we give the main
guidelines of two alternative solutions to solve this prob-
lem, considering and analyzing compliance with RTSJ and
deterministic behaviour (Section 5). Finally a summary of
our contribution conclude this paper (Section 6).

2. Related Work

The RTSJ reference implementation and the guidelines
given by some RTSJ members (e.g., [8] [2]) are based on a
dynamic parentage relation of scoped memory regions. The
main contribution of this paper is to show that this relation
presents several problems:

(i) It results in an unfamiliar programming model, because
the parentage relation is not trivial: there are orphans
regions and the parent of a region can change along its
life.

(ii) It requires checks for all ancestors of a scoped region
each time a real-time thread changes its allocation con-
text (e.g., it is created/destroyed or enters/exits a re-
gion).

(iii) It introduces a high overhead: the algorithms checking
for the scoped region ancestors are stack-based, having
a time complexity of O(n).

(iv) It is not time-predictable, which is contradictory with
real-time systems: the introduced overhead must be
bounded because the size of the stack is only known
at run time.

(v) It presents race carrier conditions which makes non-
deterministic the RTSJ application behaviour.

A study of the behaviour of the RTSJ parentage relation of
scoped regions, and a rst approach in order to solve some
of these problems (e.g., to avoid checks for all ancestors
when a real-time thread enters/exits a scoped region) has
been presented in [5].

Given that to collect scoped regions the used mechanism
is different from the GC within the heap and local variables
within the stack, RTSJ impose some restrictions on assign-
ments. Otherwise dangling references (i.e., references to
objects that have been collected when reclaiming the scoped
region) between the different types of memory may occur.
In order to maintain the safety of applications, RTSJ re-
quires that the imposed restrictions be enforced.

A technique to subtype test in Java have been presented
in [4]. This technique has been extended to perform mem-
ory access checks in constant-time. Given that one of the
general requirements of RTS]J is that the existing Java base-
line compilers must be used to compile the RTSJ programs,
the assignment rules must be enforced by the JVM. That is
at run-time. Static analysis on the compiler can be used in
order to detect illegal assignment. However, given the dy-
namic nature of the Java language, and that there is not a
special representation in the Java bytecode, only static anal-
ysis is not enough. Then, the solution to detect illegal refer-
ences requires write barriers.

The most common approach to implement write barri-
ers is by in-line code, consisting in generating the instruc-
tions executing barrier events for every load/store operation.
Beebe and Rinard use this approach [11], and their im-
plementation uses ve runtime heap checks to ensure that
a critical real-time thread does not manipulate heap refer-
ences. Alternatively, the solution proposed in [6] instru-
ments the bytecode interpreter, avoiding space problems,
but this still requires a complementary solution to handle
native code.

The success of RTSJ depends on the possibility to of-
fer an ef cient implementation of the assignments restric-
tions. The use of hardware support for write barriers has
been studied in [7], where an existing microprocessor archi-
tecture has been used in order to improve the performance
of checks for illegal references. The solution proposed in
[5] makes the scoped ancestor tree static and it is based on
the display structure used to check illegal assignments in
[1]. Hence, the improvement of one of solution proposed
in this paper come along name-based checking for illegal
references, which is ef cient and time-predictable.

3. The RTSJ Memory Model

Region-based memory allocation (e.g., [3]) enables
grouping related objects within a region, which are used ex-
plicitly on the program code. The RTSJ speci cation [10]
[9] supports the region paradigm through three kinds of
memory regions (see Figure 1): (i) immortal memory that
contain objects whose life ends only when the JVM termi-
nates; (if) (nested) scoped memory, that enables grouping
objects having well-de ned lifetimes; and (iii) the conven-
tional heap.

MemoryArea

T

HeapMemory y y ImmortalPhysi y

| % |

VTMemory LTMemory VTPhysi y LTPhysi y

Figure 1. The Memoryarea hierarchy in RTSJ.

There is only one object instance of the heap and the immor-
tal region in the system, which are resources shared among
all threads in the system and whose reference is given by
calling the instance () method. In contrast, for scoped
and immortal physical regions several instances can be cre-
ated by the application. An application can allocate mem-
ory into the system heap, the immortal system memory re-
gion, several scoped memory regions, and several immortal
regions associated with physical characteristics. Several re-
lated real-time threads, can share a memory region, and the
region must be active until at least the last thread has exited.

The default memory region is either the heap or the
immortal memory region. Also, the initial default mem-
ory allocation area of a real-time thread can be specified
when the thread is constructed. The active region associ-
ated with the real-time thread change when executing the
enter () method, which is the mechanism to activate a re-
gion. This method associates a memory area object to a
real-time thread during the execution of the run () method
of the object passed as parameter. Also, a real-time thread
can allocate outside the active region by performing the
newInstance () or the newArray () methods.

Since the lifetime of objects allocated in scoped regions
is governed by the control flow. Strict assignment rules
placed on assignments to or from memory regions prevent
the creation of dangling pointers (i.e., references from an
object to another one within a potentially shorter lifetime).
Then, we must ensure that the following conditions are
checked before executing an assignment:

e Objects within the heap or an immortal region cannot
reference objects within a scoped region.

e Objects within a scoped region cannot reference
objects within a non-outer scoped region.

Illegal assignments must be checkedwhen executing in-
structions that store references within objects or arrays. The
IllegalAssignment () exception throws when detecting
an attempt to make an illegal pointer. Since assignment

rules cannot be fully enforced by the compiler, some dan-
gling pointers must be detected at runtime, which requires
the introduction of write barriers [6]. That is, to introduce
a code checking for dangling pointers when creating an as-
signment.

As an example, the program code of Figure 2 allocates
an array h of 20 integers within the heap (line 17), and an-
other array i of 30 integers within the immortal region (line
6). Also shows a real-time thread called myTasks that al-
locates an array x of 10 integers within the scoped region
called & (line 6), an array y of 20 integers within the scoped
region called B (line 10), which is inner toa. In this exam-
ple, the following assignment statement can cause dangling
pointers, as consequence are illegal references: m h[i] =
x[31,h[i] = y[31,404i] = x[j],i[i] = y[3j], and
x[i] = yI[3].

1: import javax.realtime;

2: class RegionUseExample {

3:

4: class r1 implements Runnable {

5: public void run() {

6: int[] x = new int[10];

7: ScopedMemory B = new LTMemory(1024, 1024);

8: B.enter(new Runnable(){

9: public void run() {

10: int[] y = new int[20];

11:

12: }

13: }

14:

15:

16: public static void main (String[] args) {

17: int[] h = HeapMemory.instance().newArray(Integer, 20);
18: int[] i = new int[30];

19: ScopedMemory A =new VTMemory(2*1024, 4*1024);
20: RealtimeThread myTask = new RealtimeThread(....., s
21: new MemoryParameters(3*1024, 0, 1024),

22: A, ...,

22: new code());

23: myTask.start();

24: }

25: }

Figure 2. Using memory regions in RTSJ.

Scoped regions can be nested. A safe region implemen-
tation requires that a region gets deleted only if there is
no external reference to it. This problem has been solved
by using a reference-counter for each region that keeps
track of the use of the region by threads, and a sim-
ple reference-counting GC collects scoped memory regions
when their counter reaches 0. Before cleaning a region, the
finalize () method of all the objects in the region must
be executed, and it cannot be reused until all the finalizes
execute to completion.

4. Analyzing Nested Memory Regions

In order to keep track of the currently active MR of each
schedulable object, RTSJ uses a stack associated which
each real-time thread. Every time a real-time thread enters
a MR, the identi er of the region is pushed onto the stack.
When the real-time thread leaves the MR, its identi er is
popped of the stack. The stack can be used to check for
illegal assignments among scoped MR ':

e A reference from an object X within a scoped region
A to a object Y within a scoped region B is allowed
whether the region B is below the region A on the stack.

o All other assignment cases among scoped regions (i.e.,
the region B is above the region A or it is not on the
stack) are forbidden.

Note that it can appear cycles among scoped MRs on the
stack. For example, if both scoped regions A and B appears
on the following order: A, B, A, then are allowed both refer-
ence types: from A to B, and from B to A. That means that
the A scoped MR is inner to the A scoped MR, and vice-
versa. Since the assignment rules and the stack-based al-
gorithm by themselves does not enforce safety pointers, the
RTSJ de nes the single parent rule, which goal is to avoid
scoped MR cycles on the stack.

4.1. The Single Parent Rule

Some of semantics and requirements that RTSJ estab-
lishes across classes supporting memory regions [10] relate
to the parent of a scoped region and the single parent rule.
These requirements establish a nested order for scoped re-
gions and guarantees that a parent scope will have a lifetime
that is at least that of its child scopes. The behaviour of the
RTSJ suggested algorithm implicitly establishes the follow-
ing parentage relation:

“If a scoped region is not in use, it has no parent. For all
other scoped objects, the parent is the nearest scope on the
current entered scoped region stack. A scoped region has
exactly zero or one parent.”

This parentage relation guarantees that once real-time
thread has entered a set of scoped regions in a given or-
der, any other real-time thread will have to enter them in the
same order. At this time, if the scope region has no parent,
then the entry is allowed. Otherwise, the real-time thread

entering the scoped region must have entered every proper
ancestor of it in the scope stack. There are four the opera-
tions affecting the scope stack:

1. The enter () method in the MemoryArea class.
2. The construction of a new RealtimeThread object.

3. The executeInArea () method in the MemoryArea
class.

4. The newInstance () and newInstance () methods
in the MemoryArea class.

Since the suggested algorithms implementing these meth-
ods require an exploration of the stack, they have a com-
plexity of O(n), where n is the depth of the stack.

The reference-counter of a scoped MR is increased when
entering a new scoped through the enter () method, the
creation of a real-time thread with a scoped region, or the
opening of an inner scope. It is decreased when returning
from the enter () method, when the real-time thread us-
ing the scoped region exits, or when an inner scope returns
from its enter () method. When the reference-counter of
a scope region is zero, a new nesting (parent) for the region
will be possible.

Note that it is possible for a scoped region to have several
parents along its live, which results in an unfamiliar pro-
gramming model. But, the problem hence is that the RTSJ
suggested implementation of the single parent rule can re-
sult in race carrier conditions, which gives an non determin-
istic behaviour to RTSJ programs.

vspace0.5cm

4.2. Race Carrier Conditions

The single parent rule and the parentage relation among
scoped regions makes non deterministic the behaviour of
the RTSJ programs. As an example, consider the code of
Figure 3 that creates two scoped regions: A (line 8) and B
(line 9), and two real-time threads 71 and 75 (line). Where
the real-time thread 7; enters regions in the following order:
A and B (line 10) , whereas 7o enters regions as follows:
B and A (line 11) . We found different behaviorus when
executing this program depending on race carriers:

e If 74 enters A and B before 79 enters B,
To violates the single parent rule raising the
ScopedCycleException () exception.

e But, if 7 enters B and A before 77 enters A, when 7
tries to enter A, it violates the single parent rule and

llegal assignments are pointers from a non-scoped MR (i.e., heap or . .. i
an immortal MR) to a scoped one, or from a scoped region to a non-outer raises raising the ScopedCycleException () excep-
scoped region. Pointers to a non-scoped region are always allowed. tion.

import javax.realtime.*;
: public class MyProgram {

1

2

3

4: LTMemory A;
S: LTMemory B;
6:

7

8

public static void main(String[] arg) {
A =new LTMemory(1024,1024);

9: B =new LTMemory(1024,1024);
10: MyTask T1 = new MyTask(A, B);
11: MyTask T2 = new MyTask(B, A);
12: }

13: }

14:

15: public class MyTask {

16:

17: Runnable r1 = new Runnable() {
18: public void run() {

19: mrl.enter(r2);

20: }

21: IS

22:

23: Runnable r2 = new Runnable() {

24: public void run() {

25: Thread.sleep(1000);

26: mr2.enter(r3);

27: }

28: IS

29

30: Runnable r3 = new Runnable() {
31: public void run() {

32: // do some stuff

33: }

34: 1}

35:

36: public MyTask(LTMemory mr1, LTMemory mr2) {
37: RealtimeThread rt = new RealtimeThread(
38: null, null, null, null, null, r1);
39: rt.start();

40: }

41: }

Figure 3. Code of tasks ; and ; tasks.

Let us suppose that 71 and 75 have entered respectively the
A and B regions and both stay there for a while. In this
situation, the application has two different behaviours:

e When 7 tries to enter the B scoped region violates the
single parent rule.

e When 75 tries to enter the A scoped region violates the
single parent rule.

Then the ScopedCycleException () exception throws
by four different conditions. As consequence the program-
mer must deal with four executions errors, which makes this
code hard to debug it. More over, the single parent rule is
not violated and the application gives the correct result in
the following cases:

e T enters A and B, and exits both regions before 75 en-
ters B and A.

e 79 enters B and A, and exits both regions before 71 en-
ters A and B.

e 7 enters A and B, 71 exits B before 79 enters it, and 71
exits A before 79 tries to enter it.

e 7o enters B and A, 75 exits A before 71 enters it, and 7o
exits B before 7 tries to enter it.

Note that each of this execution cases alternate two parent-
age relations: A is parent of B while the 7; execution, and
B is parent of A while the 75 execution. Then, assignments
form objects allocated within B to objects within A are al-
lowed when the executing real-time thread is 71, and are
illegal when the executing real-time thread is 7o. And as-
signments form objects allocated within A to objects within
B are allowed when the executing real-time thread is 72,
and are illegal when the executing real-time thread is 7.
This situation that must be taken into account by the RTSJ
programmer, makes difficult and tedious the programming
task.

S. Studying Alternative Approaches

The RTSJ parentage relation is not trivial: there are or-
phans regions and the parent of a region can change along
its life, which results in an unfamiliar programming model.
More over the same program can have several results de-
pending on race carrier conditions.

Another source of indeterminism is the stack: the in-
troduced overhead by the algorithms exploring the stack
is high and unpredictable. Each time a real-time thread
is created/destroyed, enters/exits a region, or executes the
executeInArea () or newInstance () method, requires
the execution of a stack-based algorithm. Real-time appli-
cations require putting boundaries on the execution time of
some piece of code. Since the depth of the stack associated
with the real-time threads of an application are only known
at runtime, to estimate the average write barrier overhead,
we must limit the number of nested scoped levels that an
application can hold. More over, the algorithms checking
for illegal assignments are stack-based, which makes the
overhead that write barriers introduce unpredictable. This
unpredictability can make it impossible to establish bounds
for the time taken by service requests in distributed real-
time Java solutions [1]

In this section, we try to avoid these problems by propos-
ing two alternative solutions: one of then avoids the single
parent rule while the other one avoids the scope stack.

5.1. Removing the Scope Stack

In order to avoid race carrier conditions, we propose to
change the parentage relation among MRs as follows:

“The parent of a scoped memory area is the memory area
in which the object representing the scoped memory area is
allocated”

Note that the parent of a scoped region is assigned when
creating the region and does not change along the live of
the region. As consequence there are not orphan regions,
nor “adopted” regions by several times.

Consider the code of Figure 3, where the A and B scoped
MRs are created within the heap. That means , the heap is
the parent of both scoped regions A and B. As different that
occurs in RTSJ, pointers from objects within A to objects
within B and vice-versa are not allowed. Note that with this
parentage relation, illegal references are known before to
run the program and there are not race carrier conditions.

Let us give another example, consider two scoped re-
gions: A and B, which have been created in the following
way: the A region has been created within the heap, the
B region has been created within the A region. Then, the
creation of the A and B scoped regions gives the following
parentage relation: the region A is the parent of B. Let us
further consider two real-time threads 71 and 72, we sup-
pose that the real-time thread 7; has entered A, and 79 has
entered B. Suppose that 7; enters B or 7, enters A, at differ-
ent than those that occurs in RTSJ, the single parent rule is
not violated.

Instead of throwing the ScopedCycleException(),
we have the following situation: The scoped stack associ-
ated to the real-time thread 7; includes the A and B scoped
regions. The scoped stack associated to the real-time thread
7o includes only the A scoped regions. Then, even if 74
has entered B before entering A, references from objects
allocated within A to objects allocated within B are dan-
gling pointers, as consequence they are not allowed. And
references from objects allocated within B to objects allo-
cated within A are allowed. Regarding assignment rules,
we found no problem for pointers from B to A created as
consequence of the 7o execution. This situation is stable
independently of the real-time thread that makes the refer-
ence.

Using this program model we can use the name of the re-
gions in order to check for illegal assignment (e.g., we call
respectively A and AB to the adobe A and B regions, and
ABC, ABD to new regions created within the AB re-
gion). Then, it is not required a stack supporting the scoped
regions that the real-time thread can hold, which simplifies
the implementation of write barriers and the operations af-
fecting the stack. By avoiding the stack, the overhead is

significantly reduced, and programs are time-predictable.

An inconvenience of this approach is that it is less ex-
pressive than RTSJ. For example, two regions are created
within region A, then cross references between both are dis-
allowed. Consider a real-time thread 71 that enters into
scoped area A and creates both AB and AC. Then, 7 enters
into scoped area AB and next into AC. Then, only references
from objects allocated within AB or AC to objects within A
are allowed. Note that it is not possible for 71, nor for other
real-time threads, to create a reference from an object within
AB to an object within AC, and vice-versa; even if 71 must
exit the area AC before to exit the area AB. Another incon-
venience is that this approach requires redefining the RTSJ
parentage relation [10].

5.2. Removing the Single Parent Rule

Race conditions carriers and non-deterministic be-
haviour are great problems for real-time systems, a solution
approach consists to avoid the single parent rule allowing
cycles references among scoped regions. Since region cy-
cles including the heap increase considerably the complex-
ity of the collector within the heap. And that a region cycle
that incudes the immortal region becomes immortal. In or-
der to avoid dangling pointers from objects within the heap
or the immortal region to objects within a scoped region,
we maintain the RTSJ assignment rules. Then, there are not
cycles references among objects within scoped regions and
objects within the heap or an immortalregion.

This approach requires the modifications of the
reference-counter collector for scoped regions. Then, we
introduce a new data structure for each scoped memory ob-
ject S, consisting in a list taken into account all scoped re-
gions that must be collected before to collect it (i.e., all
S inner scoped regions). Note that by collecting regions,
problems associated with reference counting collectors are
solved: the space to store reference counters is minimal, and
cyclic structures can be collected because they are known.
By using the list of inner regions, we know all cycle struc-
tures among scoped regions on the system at a given instant.
Then, we can detect whether the scoped regions that com-
pound a cycle are not in use by any thread, and in this case
they can be collected.

Note that by allowing cycles among regions on the
scoped stack (i.e., by removing the RTSJ single parent rule),
the assignment rules and the stack-based algorithm can
themselves to enforce safety pointers. Then, we remove the
ScopedCycleException () exception. Note that scoped
region cycles are now allowed.

Allowing scope cycles in RTSJ programs becomes along
the simplification of the programming model, because the
programmer must not take into account the race carrier con-
ditions. An advantage of this approaches its expressiveness,

which is higher than in RTSJ. Let us consider the above
example, where regions B and C are both created within
region A. Consider further that real-time thread has been
entered the regions in the following order: A, B, C and B.
Then, both types of references are allowed: references from
objects within B to objects within C, and references from
objects within C to objects within B.

6. Conclusions

The RTSJ memory model presents several problems,
among them (i) race carrier conditions on program execu-
tion, (ii) an unfamiliar programming model that makes it
difficult and tedious for the programmer, and(iii) a non-
time-predictable execution programs. In order to solve
these problems we give two alternative solutions for the
RTSJ memory model. While one of them redefines the sim-
ple parent rule and avoid the scope stack, the other removes
the single parent rule and maintains the scoped stack. A
comparison of these solutions, taken as reference RTSJ, is
summarized in Table 6, where we use +, =, and - to respec-
tively mean that the corresponding issue has improved, is
similar in RTSJ, and has deteriorated.

FEATURE
Race Programming Time Time Expressivity
Carrier Model Overhead Predictable Power
SOLUTION
Redefining the SPR + + + + -
Removing the SPR + + - = +

Table 1. Comparison of proposed solutions

Both solutions avoids the race carrier conditions and the
ScopedCycleException () exception. In the solution
based on redefining the single parent rule, scoped mem-
ory regions are patented at creation time which allows us to
eliminate the scope stack, and introduces great advantages:
(i) the single parent rule becomes trivially true, which sim-
plifies the semantic of scoped memory, (ii) checking for all
ancestors every time a real-time thread change its allocation
contest are avoided, and (iii) illegal assignment checks are
name-based, which reduces highly the time overhead and
makes programs time-predictable. Note that time determin-
ism is fundamental in real-time systems.

Taken into account static analysis based solutions to en-
force the assignment rules [4], we argue that: since re-
gions are parented at creation time, instead at entering they,
the program model is simpler than the RTSJ one, and the
scope tree created by the application execution becomes
more static. Then, this model simplifies the scope inference
algorithm. More over, since write barrier becomes time-

predictable, critical tasks are tolerant with the dynamic en-
forcement of assignment rules.

The solution based on removing the single parent rule
introduces also great advantages: (i) there are not single
parent rule, which simplifies the semantic of scoped mem-
ory, then (ii) checking for all ancestors every time a real-
time thread change its allocation contest are avoided, but
(iii) it requires stack-based illegal assignment checks, which
makes program execution time unpredictable. Also this so-
lution increases the RTSJ program expressivity power, be-
cause it allows scope cycles, which results in a more flexible
use of scoped regions by the programmer. The drawback of
this solution becomes along the garbage collector of scoped
regions, which increases highly the complexity of the RTSJ
scoped region collector, as well its time overhead. We are
now studying this solution.

References

[1] A. Corsaro and R.K. Cytron. Efficient Reference Checks for
Real-time Java. ACM SIGPLAN LCTES, 2003.

[2] A. Wellings. Concurrent and Real-Time Programming in
Java. Wiley, 2004. http://www.rtj.org.

[3] D. Gay and A. Aiken. Memory Management with Explicit
Regions. PLDI ACM SIGPLAN, 1998.

[4] K. Palacz and J. Vitek. Java Subtype Tests in Real Time.
ECOOP, 2003.

[5S] M.T. Higuera. Towards an Understanding of the Behavior
of the Single Parent Rule. 1EEE RTAS, 2005.

[6] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P. Lesot,
and F. Parain. Region-based Memory Management for Real-
time Java. IEEE ISORC, 2001.

[7]1 M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P. Lesot,
and F. Parain. Memory Management for Real-time Java:
an Efficient Solution using Hardware Support. Real Time
Systems journal, 2004.

[8] P.C. Dibble. Real-Time Java Platform Programming. Pren-
tice -Hall, 2002. http://www.rtj.org.

[9] The Real-Time for Java Expert Group.
WESLEY, 2000. http://www.rtj.org.

[10] The Real-Time for Java Expert Group. Real-Time Spec-
ification for Java. Technical report, RTJEG, 2002.
http://www.rtj.org.

[11] W.S. Beebe and M. Rinard. An Implementation of Scoped
Memory for Real-Time Java. EMSOFT, 2001.

ADDISON-

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

