
Analytical Performance Modelling of Partially Adaptive Routing in Wormhole 

Hypercubes

Ahmad Patooghy, Hamid Sarbazi-Azad 

School of Computer Science, IPM & Sharif University of Technology, Tehran, Iran 

{patooghy,azad}@ipm.ir

Abstract
Although several analytical models have been proposed in 
the literature for different interconnection networks with 
different routing algorithms, there is only one work 
dealing with partially adaptive routing algorithms. This 
paper proposes an accurate analytical model to predict 
message latency in wormhole-routed hypercube based 
networks using the partially adaptive routing algorithm. 
The results obtained from simulation experiments confirm 
that the proposed model exhibits a good accuracy for 
various network sizes and under different operating 
conditions. 

1. Introduction 

The hypercube, has been one of the most common 
multicomputer networks due to its desirable properties, 
such as high connectivity to deal with fault tolerance, 
ability to exploit communication locality to reduce 
message latency, recursive structure to solve important 
and popular problems such as FFT and matrix 
multiplication, symmetry in vertex and edge that makes it 
suitable for VLSI implementation and ability to simulate 
and embed many other important topologies. The 
hypercube has been used in several machines such as n-
Cube, iPSC/2, Cosmic Cube [8].  

Modern parallel routers significantly reduce average 
latency by using wormhole switching. Wormhole is a 
switching strategy that divides each packet in elementary 
units called flit, each of a few bytes for transmission and 
flow control, and advances each flit as soon as it arrives at 
a node. The header flit (containing routing information) 
governs the route and the remaining data flits follow it in a 
pipelined fashion. If a channel transmits the header of a 
message, it must transmit all the remaining flits of the 
message before transmitting flits of another message. 
Once the header is blocked, the data flits are blocked in 
situ. Wormhole switching is attractive because it reduces 
the latency of message delivery compared to the store and 
forward switching. Network throughput of wormhole 
routed networks can be increased by organizing the flit 
buffers associated with each physical channel into several 

virtual channels. These virtual channels are allocated 
independently to different packets and compete with each 
other for using the bandwidth of the physical channel. 
This decoupling allows active messages to pass blocked 
messages using network bandwidth that would otherwise 
be wasted [8]. 

The routing algorithm indicates the path a message 
should take to reach to its destination by selecting the 
proper output channel. This channel can be selected from 
a set of possible choices and according to the size of this 
set, routing algorithms are divided into three categories. 
Deterministic routing, assigns a single path to each source 
and destination (i.e., size of the mentioned set is one in 
this category.) [8]. This form of routing has been popular 
due to its simple deadlock-avoidance algorithm, resulting 
in a simple router implementation [1]. However, in 
deterministic routing a message cannot use alternative 
paths to avoid congested channels along its route and 
therefore the network performance is low. Several 
multicomputers have used deterministic routing [8]. Fully 
adaptive routing algorithm has often been suggested [8] to 
overcome this limitation by enabling messages to explore 
all available paths (i.e., the above mentioned set has 
maximum size here) and consequently offers the potential 
for making better use of network resources; but these 
algorithms imply more router complexity for deadlock-
freedom.  Partially adaptive routing algorithms try to 
combine the advantages of the two other categories to 
produce a routing with limited adaptivity and establish a 
balance between performance and router complexity [2, 
3]. They allow selecting output channel from a subset of 
all possible channels; in fact these algorithms limit the size 
of the set of possible choices. Turn model based 
algorithms [3] and planar adaptive routing algorithm [2] 
are the most important partially adaptive routing 
algorithms for the mesh, torus, and hypercube networks.  

Mathematical models are cost-effective and versatile 
tools for evaluating performance of a network under 
different design alternatives. The significant advantage of 
analytical models over simulation is that they can be used 
to obtain performance results for large systems and 
behaviour under different network configurations and 
working conditions which may not be feasible to study 
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using simulation on conventional computers due to the 
excessive computation demands. Although several 
researchers have proposed analytical models of 
deterministic and fully adaptive routing in wormhole-
routed hypercube networks [6, 13], there is only one 
model [10] dealing with the partially adaptive routing 
algorithm that has low accuracy. This paper proposes an 
accurate analytical model for P-cube routing as the most-
known partially adaptive routing algorithm in hypercubes.  

The rest of the paper is organized as follows. A brief 
description on P-cube routing algorithm is introduced in 
section 2. Section 3 proposes a mathematical model for P-
cube routing in wormhole-switched hypercubes. The 
proposed model is validated in section 4. Finally, some 
concluding remarks and suggestions for future work in 
this line are made in section 5.   

2. The P-cube Routing Algorithm

The P-cube is a routing algorithm based on turn model 
for designing deadlock-free routing algorithms with 
maximal adaptivity. The turn model involves analyzing 
the directions in which packets can turn in the network 
and the cycles that the turns can form and then prohibiting 
just enough number of turns to break all of the cycles 
preventing network from deadlock. The steps of the turn 
model algorithm are as follows: 
Step 1. Partition the channels of the network into sets 
according their direction. 
Step 2. Identify the possible turns from one direction to 
another, ignoring 0-degree turns. A 0-degree turn is only 
possible when there are multiple virtual channels in one 
direction. 
Step 3. Identify the cycles that may form through these 
turns. Generally, identifying the simplest cycles in each 
plane of the topology is adequate. 
Step 4. Prohibit one turn in each cycle so as to prevent 
deadlocks. The turns must be chosen carefully in order to 
break every possible cycle, including complex cycles not 
identified in step 3. 

Routing algorithms that route packets along the sets of 
channels identified in step 1 and use only the turns from 
one set to another allowed by step 4 are deadlock free 
because breaking all the cycles prevents circular waits. In 
other words, preventing circular wait in this way means 
that it is possible to number the channels in the network so 
that the algorithm routes every packet along channels in 
strictly decreasing (or increasing) order. This, together 
with the fact that a network contains a finite number of 
channels, means that a packet will reach its destination 
after limited number of hops. Thus, the turn model based 
algorithms are livelock free [3] and maximally adaptive, 
as the model prohibits just the minimum required number 
of turns. The most important partially adaptive routings 
algorithms based on the turn model are West first, North 
last, and Negative first routing algorithms for the mesh 
and P-cube routing algorithm for the hypercube. 

       (a)                   (b)          (c) 

Figure 1. Prohibited turns in West first (a), North last (b), and 

Negative first (c) routing algorithms.

For instance figure 1.c shows a way to prohibit two 
turns in a 2D mesh. The prohibited turns are the two from 
a positive direction to a negative direction. To travel in a 
negative direction, a packet has to start out in a negative 
direction consequently Negative first routing algorithm 
routes a packet first adaptively west and south, and then 
adaptively east and north. 

P-cube routing algorithm is a special case of the 
Negative first routing algorithm that has a particularly 
compact expression. Let C be the binary address of the 
node the header flits currently occupy, and D be the binary 
address of the destination node. The P-cube routing 
algorithm has two phases which in the first phase, starts 
and algorithm routes the packet along a dimension i for 
which ci=1 and di=0. When there is no such a dimension, 
the second phase routes the packet along dimension i for 
which ci=0 and di=1. These steps are easily computed 
using bitwise logic operation as shown in Figure 2. The 
only input transmitted in the header flits is D. C is a 
unique constant for each router. 

Figure 2. The Pseudo code for the P-cube routing

More precisely it is obvious that, in the first phase of 
the P-cube routing, packets are routed towards a pivot 
node and the second phase will start from this node. For 
example, if source and destination nodes be 10101010 and 
10010011 respectively, then the pivot node will be 
10000010. Note that the pivot node tends to have 0s in its 
address patterns for all dimensions. That is, the probability 
of being a pivot node for a node with more 0's in its 
address is higher than a node with 1's in its address 
pattern. This causes more traffic over channels connected 
to the nodes with more 0's in their address (the most 
crowded channels are those connected to node 0=(000..0) 
in the hypercube. This means even with a uniform traffic 
pattern for the destination of messages, the P-cube routing 
algorithm results in an unbalanced traffic rate over 
network channels. Figure 3 shows the message arrival rate 
over network channels in a 10-D hypercube when P-cube 
routing algorithm is used and nodes are generating 

Algorithm P-cube routing (n-D hypercube); 

Input: Current address, C, and destination address, D.

{  If  C = D then route packet to local processor and exit; 

DCR ;

    If  R = 0 then DCR ;

    Route the packet adaptively along any available 

channel in dimension i for which ri = 1;

}



message with an average 01.0  messages per cycle. 
For the sake of comparison, the white bar shows the rate 
when a traffic-balanced routing algorithm (e.g. e-cube or 
Duato's fully adaptive routing algorithm) is used for which 
the traffic rate over network channels is distributed 
evenly. The traffic rate over channels with small 
Hamming weights (with a small number of 1’s in the 
address pattern of nodes indicating the channel) is high 
and gradually decreases when the channel Hamming 
weight increases.  
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Figure 3. The message arrival rate on different channels in a 

10-cube using P-cube routing; (top) negative channels, 

(down) positive channels.

Message arrival rate over positive and negative 

channels respectively can be calculated by [12] 
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3. The Model

In this section, we propose an analytical performance 

model for P-cube routing in the hypercube. The modelling 

approach used here can be equally applied for other 

routing schemes after minor changes in the model. The 

parameter studied in our model is the average message 

latency as a criterion for network performance. 

3.1. Model Assumptions 

The following assumptions are made when developing 

the proposed performance model. These assumptions have 

been widely used in similar modelling studies [4, 5, 6, 7, 

9, 10, 11, 13]: 
a) Messages are of fixed length and equal to M flits. The 
flit transfer time between any two adjacent routers is 
assumed to be one cycle. 
b) Message destinations are uniformly distributed across 
the network nodes.

c) Nodes generate traffic independently of each other, 
and follow a Poisson process with a mean rate of 

g messages/cycle.
d) Messages are transferred to the local processor 
through the ejection channel once they arrive at their 
destination.
e) Each physical channel is shared between V virtual 
channels. 

3.2. Model Description 

The model computes the mean message latency as 

follows. First, the mean network latency which is the 

required time to cross the network, S , is determined. Then, 

the mean waiting time seen by a message in the source 

node to be injected into the network, 
sW , is evaluated. To 

model the effect of virtual channels multiplexing, the 

mean message latency is scaled by the average virtual 

channels multiplexing degree, V . Therefore, the mean 

message latency can be given as 

VWSLatency s )( .                              (3) 

Let source and destination node addresses be 

01321 ... ssssss nnn
 and 

01321 ... dddddd nnn
. The 

parameters nh  and ph  are defined as the number of the 

required hops in the first and second phases of P-cube  

routing algorithm, respectively, and can be given by 
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Thus, the total number of hops needed to deliver a 

message to the destination is 
pn hhH .

The number of different nodes, 
iK , that a message may 

be located at, after making i hops from the source node 

towards its destination, can be given by 
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3.2.1. Calculation of the Average Multiplexing Degree  

Due to the unbalanced traffic rate over network 

channels, we must calculate the average degree of 

multiplexing, dsV , , for all possible physical channels 

which can be used by a message communicated between 

each pair of source and destination nodes (s, d). Using 

dsV ,  we can calculate the total average degree of 

multiplexing as 
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where G is the set of all nodes in the network and nN 2

is the number of nodes in the network. dsV ,  may be 

evaluated by averaging the average multiplexing degrees 

in all H hops from the source node s to the destination 

node d. Also, the average degree of multiplexing of 

channels at the i-th hop is itself the average of 

multiplexing degree of all possible output channels in all 

1iK  reachable nodes by the (i-1)-th hop from the source 

node towards the destination node. Thus, we can write 
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where jdsba ii
V ),,(,  is the average of the multiplexing 

degree of all reachable output channels at the i-th hop in 

the j-th node among 
1iK  nodes reachable at the (i-1)-th 

hop from the source node to the destination node. To 

calculate jdsba ii
V ),,(, , it should be noted that the current 

node address and possible output channels for the next 

hop are known. This simplifies the problem to calculating 

the multiplexing degree of some specific channel at a 

specific node. As discussed in [14], baV , , i.e. the 

multiplexing degree of the channel connecting nodes a

and b, can be expressed as 
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where
vba

P
,,

, is the probability that v virtual channels are 

busy at physical channel ba, .

3.2.2. Calculation of the Average Message Blocking 

Time

Different traffic rates over network channels force us to 

calculate mean traversal latency, 
dsS ,

, i.e. the mean time 

to cross the network from a specific source s to a specific 

destination d for all possible source/destination pairs 

(s,d), sGdGs , . The mean network latency, S , is 

calculated as the average of these values as  

sGd

dss S
N

S ,
1
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where
dsS ,

 consists of two parts. One is the delay due to 

the actual message transmission time, H+M, where M is 

the message length, and the other delay is due to the 

message blocking in the network, 
dsblockingT ,

. Therefore, 

dsS ,
 can be written as  

ejectdsblockingds WTMHS ,, .             (11) 

where ejectW  is the waiting time for a message arrived at 

its destination to pass through the ejection channel. With 

respect to P-cube routing algorithm, 
dsblockingT ,

, can be 

divided to blocking time in the first and second phases of 

routing. Thus, we can write 

),(),(),( dpivotblockingpivotsblockingdsblocking TTT .                  (12) 

Mean blocking time in the first phase of routing for any 

pair of source/destination, (s,d), is equal to the probability 

of blocking multiplied by the mean waiting time in all nh

hops. Thus, 

nh

i

ipivotsmeanipivotspivotsblocking WPT
1

),,(,),,(),(
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Mean blocking time for the second phase can be 

calculated in a similar way as  
ph

i

idpivotmeanidpivotdpivotblocking WPT
1

),,(,),,(),(
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Blocking probability of a message from s towards d

can be calculated by averaging this probability in all 
1iK

nodes that the message can reach after i-1 hops. Thus, 
1
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Similarly, for the second phase we can write 
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where iba
jPB ),,(  is the blocking probability of the message 

in the j-th node among 
1iK  nodes that the message can 

reach after  i-1 hops. In such a node the message can 

select one of the 1ihn
 (or  1ihp

 for the second 

phase of routing) unselected channels to continue its way 

towards its destination and consequently all of these 

channels must be simultaneously occupied in order for 

blocking to occur. Thus, 
1
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where kj

ipivotsusedP ,

),,(,
 is the probability that the k-th physical 

channel of the j-th node among 
1iK  nodes reachable after 

i-1 hops from the source node to the pivot node is busy. 
kj

ipivotsusedP ,

),,(,
 is the same probability for the second phase.  

Now, the problem has been simplified to calculating 

the probability that V virtual channels of a specific 
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physical channel are busy at the same time. This new 

simplified problem can be solved using the Markov model 

as shown in figure 4 [11]. As shown in the figure, state 

,1, Vvv  corresponds to v virtual channels being 

busy at a physical channel. The transition rate out of state 

v  to state 1v  is the channel traffic rate 
ba ,

 while the 

rate out of state v  to state 1v  is 
baS ,1 . The transition 

rate out of state v  is reduced by 
ba ,

 to account for the 

arrival of the message while a channel is in this state. The 

steady-state solution of the Markov model yields the 

probability
vba

P
,,

, Vv1 , for the channel ba, .

Figure 4. Markov model of a physical channel with V virtual 

channels. State Si corresponds to i virtual channels being 

busy.
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Service time of channel ba, , baS , , is approximated by 

averaging 
),( dsS  for all pairs of source/destination that can 

use this channel in at least one of their minimal paths, and 

can be expressed as 
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where
bads

m
,),,(

 is the number of different minimal 

paths from the source node s to the destination node d that 

can use channel ba,  in at least one of the possible paths 

between s and d.

The average waiting time to acquire a channel ba,

when a message is blocked at this channel, 
ba

w
,

, can be 

computed using an M/G/1 queue with arrival rate 
ba,

and service time baS ,  can be given by [11] 
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Note that, the variance of the service time of channel 

ba,  is approximated by 
2

, MS ba as suggested in [5, 

11]. 

3.2.3. Calculating the Average Waiting Time at the 

Source Node 

A message originating from a given source node, s,

sees a network latency of sS . Modeling the local queue in 

the source node as an M/G/1 queue, with the mean arrival 

rate of  Vg /  (recalling that a message in the source node 

can enter the network through any of the V virtual 

channels) and service time sS with an approximate 

variance of 
2

MS s  yields the mean waiting time seen 

by a message at the source node s as [11] 
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and consequently the average waiting time at the source 

node is given by 

Gs

sW
N

W
1 .                           (24) 

3.2.4. Calculating the Average Waiting Time at 

Ejection Channel  

In the steady state, the rate at which messages exit the 

network through ejection channel is equal to the injection 

rate of messages, which is in turn equal to the generation 

rate
g

. Utilization of the ejection channel (in each node) 

is therefore equal to 
gM . Given that messages are of 

fixed length, there is no variance in service time. Using an 

M/D/1 queuing model [5, 9], we can calculate the waiting 

time at the ejection channel as 

)1(22

ggejection MMW .               (25)



3.3. Solving the Model Equations

The above equations reveal that there are several inter-

dependencies between the different variables of the model. 

For instance, Equations 11 reveals that 
dsS ,

 is a function 

of 
dsblockingT ,

 while equation 13 shows that 
dsblockingT ,

 is a 

function of 
ipivotsP ),,(
. Equations 15 to 18 tell us that 

ipivotsP ),,(
 depends on 

vba
P

,,
 and equations 19 and 20 

show that 
vba

P
,,

is itself a function of baS ,  while we 

calculate baS ,  by averaging the average network crossing 

times for each arbitrary source/destination pair, i.e. 
dsS ,

.

As the closed-form solutions to such inter-

dependencies are very difficult to determine, the different 

variables of the model are computed using an iterative 

technique as discussed in [11]. 

4. Model Validation

The proposed analytical model has been validated 
through a discrete-event simulator that mimics the 
behaviour of the described routing algorithms in the 
network at the flit level. In each simulation experiment, a 
minimum of 200000 messages are delivered. Statistics 
gathering was inhibited for the first 20000 messages to 
avoid distortions due to the initial start-up conditions. The 
simulator uses the same assumptions as the analysis, some 
detailed here with the aim of making the network 
operation clearer. The network cycle time is defined as the 
transmission time of a single flit from one router to the 
next. Messages are generated at each node according to a 
Poisson process with a mean inter-arrival rate of 

g
messages/cycle. Message length is fixed at M flits. 

Destination nodes are determined using a uniform random 
number generator. The mean message latency is defined as 
the mean amount of time elapsed between the generation 
of a message and the last data flit reaching the local 
processor at the destination node. Several validation 
experiments have been performed for several 
combinations of network sizes, message lengths, and 
number of virtual channels to validate the model. 

The accuracy of the proposed model has been validated 
through a large set of simulation experiments for different 
scenarios defining different working conditions. However, 
for the sake of brevity, we report a few of them here. 
Figures 5, 6, 7, 8, and 9 show the results predicted by the 
proposed model against those obtained through simulation 
experiments, for the 6-, 8-, and 9-dimesnional hypercubes, 
with V=3 and 6 virtual channels, and different message 

lengths M=32, 64, and 128 flits. As can be seen in the 
figures, the proposed model has predicted the average 
message latency with good accuracy in low and moderate 
traffic loads. However, Approximations made for some 
parameters has resulted in some underestimation for the 
saturation point of the network, and reducing the accuracy 
of the model for heavy traffic regions slightly. Assuming 
that a network must work in the realistic working 
conditions (under low and moderate traffic loads) and not 
near the saturation region, we can conclude that the 
proposed model can predict the behaviour of the network 
with a good accuracy.  

To exhibit the good accuracy of the proposed model, 
let us compare its accuracy against the only model [10] 
reported in the literature for P-cube routing. Ould-Khaoua 
[10], introduced a model for P-cube routing that suffers 
from low accuracy. This model is applicable only for very 
low traffic loads. It assumes a balanced traffic rate over 
network channels which we previously investigated it and 
saw that it is unbalanced over network channels. Figure 9 
compares the results predicted by Ould-Khaoua’s model 
and the proposed model here for an 8-dimensional 
hypercube with 3 virtual channels per physical channel 
and message length M=32, 64 and 128 flits. The 
inaccuracy of the old model [10] compared to the 
proposed model here can be easily seen in the figure 8.  

5. Conclusions and Future Work

This paper has described an analytical model to 
compute the mean message latency in wormhole-routed 
hypercube networks using P-cube partially adaptive 
routing algorithm. Simulation experiments have revealed 
that the latency results predicted by the model are in good 
agreement with those obtained through simulation 
experiments. This model achieves a good degree of 
accuracy under different operation conditions as it 
computes the exact expression for the traffic rate on each 
channel and the probability of message blocking in any 
given channel of dimensions for all possible pairs of 
source- destination. Furthermore, the good degree of 
accuracy while maintaining acceptable simplicity, makes 
the proposed model a practical evaluation tool that can be 
used to gain insight into the performance behavior of 
partially adaptive routing in wormhole hypercubes. Our 
next objective is to extend our above modeling approach to 
deal with other partially adaptive routing algorithms such 
as planar routing and different traffic patterns, such as 
hotspots. Proposing models for partially adaptive routing 
in other popular networks, such as tori, meshes, and k-ary 
n-cubes, can also be a challenging future work in this line. 
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Figure 6. Average message latency predicted by model 

against simulation results for a) 3 b) 6 virtual channels 

per physical channel and M=32, 64, 128 flits in an 8 

dimensional hypercube.

Figure 7. Average message latency predicted by model 

against simulation results for a) 3 b) 6 virtual channels 

per physical channel and M=32, 64, 128 flits in a 9 

dimensional hypercube. 

Figure 8. Comparison 

between the proposed 

model and Ould-

Khaoua’s model for an 8-

dimensional hypercube, 

with 3 virtual channels 

per physical channel, and 

message lengths of M=32, 

64, 128 flits.

Figure 5. Average message latency predicted by model 

against simulation results for a) 3 b) 6 virtual channels 

per physical channel and M=32, 64, 128 flits in a 6 

dimensional hypercube.
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