
Analytical Performance Modelling of Partially Adaptive Routing in Wormhole

Hypercubes

Ahmad Patooghy, Hamid Sarbazi-Azad

School of Computer Science, IPM & Sharif University of Technology, Tehran, Iran

{patooghy,azad}@ipm.ir

Abstract
Although several analytical models have been proposed in
the literature for different interconnection networks with
different routing algorithms, there is only one work
dealing with partially adaptive routing algorithms. This
paper proposes an accurate analytical model to predict
message latency in wormhole-routed hypercube based
networks using the partially adaptive routing algorithm.
The results obtained from simulation experiments confirm
that the proposed model exhibits a good accuracy for
various network sizes and under different operating
conditions.

1. Introduction

The hypercube, has been one of the most common
multicomputer networks due to its desirable properties,
such as high connectivity to deal with fault tolerance,
ability to exploit communication locality to reduce
message latency, recursive structure to solve important
and popular problems such as FFT and matrix
multiplication, symmetry in vertex and edge that makes it
suitable for VLSI implementation and ability to simulate
and embed many other important topologies. The
hypercube has been used in several machines such as n-
Cube, iPSC/2, Cosmic Cube [8].

Modern parallel routers significantly reduce average
latency by using wormhole switching. Wormhole is a
switching strategy that divides each packet in elementary
units called flit, each of a few bytes for transmission and
flow control, and advances each flit as soon as it arrives at
a node. The header flit (containing routing information)
governs the route and the remaining data flits follow it in a
pipelined fashion. If a channel transmits the header of a
message, it must transmit all the remaining flits of the
message before transmitting flits of another message.
Once the header is blocked, the data flits are blocked in
situ. Wormhole switching is attractive because it reduces
the latency of message delivery compared to the store and
forward switching. Network throughput of wormhole
routed networks can be increased by organizing the flit
buffers associated with each physical channel into several

virtual channels. These virtual channels are allocated
independently to different packets and compete with each
other for using the bandwidth of the physical channel.
This decoupling allows active messages to pass blocked
messages using network bandwidth that would otherwise
be wasted [8].

The routing algorithm indicates the path a message
should take to reach to its destination by selecting the
proper output channel. This channel can be selected from
a set of possible choices and according to the size of this
set, routing algorithms are divided into three categories.
Deterministic routing, assigns a single path to each source
and destination (i.e., size of the mentioned set is one in
this category.) [8]. This form of routing has been popular
due to its simple deadlock-avoidance algorithm, resulting
in a simple router implementation [1]. However, in
deterministic routing a message cannot use alternative
paths to avoid congested channels along its route and
therefore the network performance is low. Several
multicomputers have used deterministic routing [8]. Fully
adaptive routing algorithm has often been suggested [8] to
overcome this limitation by enabling messages to explore
all available paths (i.e., the above mentioned set has
maximum size here) and consequently offers the potential
for making better use of network resources; but these
algorithms imply more router complexity for deadlock-
freedom. Partially adaptive routing algorithms try to
combine the advantages of the two other categories to
produce a routing with limited adaptivity and establish a
balance between performance and router complexity [2,
3]. They allow selecting output channel from a subset of
all possible channels; in fact these algorithms limit the size
of the set of possible choices. Turn model based
algorithms [3] and planar adaptive routing algorithm [2]
are the most important partially adaptive routing
algorithms for the mesh, torus, and hypercube networks.

Mathematical models are cost-effective and versatile
tools for evaluating performance of a network under
different design alternatives. The significant advantage of
analytical models over simulation is that they can be used
to obtain performance results for large systems and
behaviour under different network configurations and
working conditions which may not be feasible to study

1-4244-0054-6/06/$20.00 ©2006 IEEE

using simulation on conventional computers due to the
excessive computation demands. Although several
researchers have proposed analytical models of
deterministic and fully adaptive routing in wormhole-
routed hypercube networks [6, 13], there is only one
model [10] dealing with the partially adaptive routing
algorithm that has low accuracy. This paper proposes an
accurate analytical model for P-cube routing as the most-
known partially adaptive routing algorithm in hypercubes.

The rest of the paper is organized as follows. A brief
description on P-cube routing algorithm is introduced in
section 2. Section 3 proposes a mathematical model for P-
cube routing in wormhole-switched hypercubes. The
proposed model is validated in section 4. Finally, some
concluding remarks and suggestions for future work in
this line are made in section 5.

2. The P-cube Routing Algorithm

The P-cube is a routing algorithm based on turn model
for designing deadlock-free routing algorithms with
maximal adaptivity. The turn model involves analyzing
the directions in which packets can turn in the network
and the cycles that the turns can form and then prohibiting
just enough number of turns to break all of the cycles
preventing network from deadlock. The steps of the turn
model algorithm are as follows:
Step 1. Partition the channels of the network into sets
according their direction.
Step 2. Identify the possible turns from one direction to
another, ignoring 0-degree turns. A 0-degree turn is only
possible when there are multiple virtual channels in one
direction.
Step 3. Identify the cycles that may form through these
turns. Generally, identifying the simplest cycles in each
plane of the topology is adequate.
Step 4. Prohibit one turn in each cycle so as to prevent
deadlocks. The turns must be chosen carefully in order to
break every possible cycle, including complex cycles not
identified in step 3.

Routing algorithms that route packets along the sets of
channels identified in step 1 and use only the turns from
one set to another allowed by step 4 are deadlock free
because breaking all the cycles prevents circular waits. In
other words, preventing circular wait in this way means
that it is possible to number the channels in the network so
that the algorithm routes every packet along channels in
strictly decreasing (or increasing) order. This, together
with the fact that a network contains a finite number of
channels, means that a packet will reach its destination
after limited number of hops. Thus, the turn model based
algorithms are livelock free [3] and maximally adaptive,
as the model prohibits just the minimum required number
of turns. The most important partially adaptive routings
algorithms based on the turn model are West first, North
last, and Negative first routing algorithms for the mesh
and P-cube routing algorithm for the hypercube.

 (a) (b) (c)

Figure 1. Prohibited turns in West first (a), North last (b), and

Negative first (c) routing algorithms.

For instance figure 1.c shows a way to prohibit two
turns in a 2D mesh. The prohibited turns are the two from
a positive direction to a negative direction. To travel in a
negative direction, a packet has to start out in a negative
direction consequently Negative first routing algorithm
routes a packet first adaptively west and south, and then
adaptively east and north.

P-cube routing algorithm is a special case of the
Negative first routing algorithm that has a particularly
compact expression. Let C be the binary address of the
node the header flits currently occupy, and D be the binary
address of the destination node. The P-cube routing
algorithm has two phases which in the first phase, starts
and algorithm routes the packet along a dimension i for
which ci=1 and di=0. When there is no such a dimension,
the second phase routes the packet along dimension i for
which ci=0 and di=1. These steps are easily computed
using bitwise logic operation as shown in Figure 2. The
only input transmitted in the header flits is D. C is a
unique constant for each router.

Figure 2. The Pseudo code for the P-cube routing

More precisely it is obvious that, in the first phase of
the P-cube routing, packets are routed towards a pivot
node and the second phase will start from this node. For
example, if source and destination nodes be 10101010 and
10010011 respectively, then the pivot node will be
10000010. Note that the pivot node tends to have 0s in its
address patterns for all dimensions. That is, the probability
of being a pivot node for a node with more 0's in its
address is higher than a node with 1's in its address
pattern. This causes more traffic over channels connected
to the nodes with more 0's in their address (the most
crowded channels are those connected to node 0=(000..0)
in the hypercube. This means even with a uniform traffic
pattern for the destination of messages, the P-cube routing
algorithm results in an unbalanced traffic rate over
network channels. Figure 3 shows the message arrival rate
over network channels in a 10-D hypercube when P-cube
routing algorithm is used and nodes are generating

Algorithm P-cube routing (n-D hypercube);

Input: Current address, C, and destination address, D.

{ If C = D then route packet to local processor and exit;

DCR ;

 If R = 0 then DCR ;

 Route the packet adaptively along any available

channel in dimension i for which ri = 1;

}

message with an average 01.0 messages per cycle.
For the sake of comparison, the white bar shows the rate
when a traffic-balanced routing algorithm (e.g. e-cube or
Duato's fully adaptive routing algorithm) is used for which
the traffic rate over network channels is distributed
evenly. The traffic rate over channels with small
Hamming weights (with a small number of 1’s in the
address pattern of nodes indicating the channel) is high
and gradually decreases when the channel Hamming
weight increases.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1

Channels

M
es

sa
g

e
a

rr
iv

a
l

ra
te

du
0000000000->0000000001
0000000001->0000000011
0000000011->0000000111
0000000111->0000001111
0000001111->0000011111
0000011111->0000111111
0000111111->0001111111
0001111111->0011111111
0011111111->0111111111
0111111111->1111111111

Figure 3. The message arrival rate on different channels in a

10-cube using P-cube routing; (top) negative channels,

(down) positive channels.

Message arrival rate over positive and negative

channels respectively can be calculated by [12]
1

1

,

0 0

2

2 1 (1)

n m m j
n m m

i j

a b n i j
i j ii j

 (1)

1 1
1

,

0 0

2

2 1 (1)

n m m j
n m m

i j

a b n i j
i j ii j

. (2)

3. The Model

In this section, we propose an analytical performance

model for P-cube routing in the hypercube. The modelling

approach used here can be equally applied for other

routing schemes after minor changes in the model. The

parameter studied in our model is the average message

latency as a criterion for network performance.

3.1. Model Assumptions

The following assumptions are made when developing

the proposed performance model. These assumptions have

been widely used in similar modelling studies [4, 5, 6, 7,

9, 10, 11, 13]:
a) Messages are of fixed length and equal to M flits. The
flit transfer time between any two adjacent routers is
assumed to be one cycle.
b) Message destinations are uniformly distributed across
the network nodes.

c) Nodes generate traffic independently of each other,
and follow a Poisson process with a mean rate of

g messages/cycle.
d) Messages are transferred to the local processor
through the ejection channel once they arrive at their
destination.
e) Each physical channel is shared between V virtual
channels.

3.2. Model Description

The model computes the mean message latency as

follows. First, the mean network latency which is the

required time to cross the network, S , is determined. Then,

the mean waiting time seen by a message in the source

node to be injected into the network,
sW , is evaluated. To

model the effect of virtual channels multiplexing, the

mean message latency is scaled by the average virtual

channels multiplexing degree, V . Therefore, the mean

message latency can be given as

VWSLatency s)(. (3)

Let source and destination node addresses be

01321 ... ssssss nnn
 and

01321 ... dddddd nnn
. The

parameters nh and ph are defined as the number of the

required hops in the first and second phases of P-cube

routing algorithm, respectively, and can be given by

.

.

.

1

0

1

0

n

i

iin

n

i

iip

dsh

dsh
 (4)

Thus, the total number of hops needed to deliver a

message to the destination is
pn hhH .

The number of different nodes,
iK , that a message may

be located at, after making i hops from the source node

towards its destination, can be given by

.

if

if

p

p

n

p

p

i

hi
hi

h

hi
i

h

K
 (5)

3.2.1. Calculation of the Average Multiplexing Degree

Due to the unbalanced traffic rate over network

channels, we must calculate the average degree of

multiplexing, dsV , , for all possible physical channels

which can be used by a message communicated between

each pair of source and destination nodes (s, d). Using

dsV , we can calculate the total average degree of

multiplexing as

)
1

1
(

1
,

Gs sGd

dsV
NN

V (6)

where G is the set of all nodes in the network and nN 2

is the number of nodes in the network. dsV , may be

evaluated by averaging the average multiplexing degrees

in all H hops from the source node s to the destination

node d. Also, the average degree of multiplexing of

channels at the i-th hop is itself the average of

multiplexing degree of all possible output channels in all

1iK reachable nodes by the (i-1)-th hop from the source

node towards the destination node. Thus, we can write

np i

ii

hh

i

i

K

j

jdsba

np

ds KV
hh

V
1

1

1

),,(,,)(
1 1

 (7)

where jdsba ii
V),,(, is the average of the multiplexing

degree of all reachable output channels at the i-th hop in

the j-th node among
1iK nodes reachable at the (i-1)-th

hop from the source node to the destination node. To

calculate jdsba ii
V),,(, , it should be noted that the current

node address and possible output channels for the next

hop are known. This simplifies the problem to calculating

the multiplexing degree of some specific channel at a

specific node. As discussed in [14], baV , , i.e. the

multiplexing degree of the channel connecting nodes a

and b, can be expressed as

V

v
vba

V

v
vba

ba

vP

Pv

V

1
,,

1
,,

2

,

 (8)

where
vba

P
,,

, is the probability that v virtual channels are

busy at physical channel ba, .

3.2.2. Calculation of the Average Message Blocking

Time

Different traffic rates over network channels force us to

calculate mean traversal latency,
dsS ,

, i.e. the mean time

to cross the network from a specific source s to a specific

destination d for all possible source/destination pairs

(s,d), sGdGs , . The mean network latency, S , is

calculated as the average of these values as

sGd

dss S
N

S ,
1

1 (9)

Gs

sS
N

S
1 (10)

where
dsS ,

 consists of two parts. One is the delay due to

the actual message transmission time, H+M, where M is

the message length, and the other delay is due to the

message blocking in the network,
dsblockingT ,

. Therefore,

dsS ,
 can be written as

ejectdsblockingds WTMHS ,, . (11)

where ejectW is the waiting time for a message arrived at

its destination to pass through the ejection channel. With

respect to P-cube routing algorithm,
dsblockingT ,

, can be

divided to blocking time in the first and second phases of

routing. Thus, we can write

),(),(),(dpivotblockingpivotsblockingdsblocking TTT . (12)

Mean blocking time in the first phase of routing for any

pair of source/destination, (s,d), is equal to the probability

of blocking multiplied by the mean waiting time in all nh

hops. Thus,

nh

i

ipivotsmeanipivotspivotsblocking WPT
1

),,(,),,(),(
. (13)

Mean blocking time for the second phase can be

calculated in a similar way as
ph

i

idpivotmeanidpivotdpivotblocking WPT
1

),,(,),,(),(
. (14)

Blocking probability of a message from s towards d

can be calculated by averaging this probability in all
1iK

nodes that the message can reach after i-1 hops. Thus,
1

1

),,(

1

,,

1 iK

j

ipivots
j

i

ipivots PB
K

P (15)

Similarly, for the second phase we can write
1

1

),,(

1

,,

1 iK

j

idpivot
j

i

idpivot PB
K

P (16)

where iba
jPB),,(is the blocking probability of the message

in the j-th node among
1iK nodes that the message can

reach after i-1 hops. In such a node the message can

select one of the 1ihn
 (or 1ihp

 for the second

phase of routing) unselected channels to continue its way

towards its destination and consequently all of these

channels must be simultaneously occupied in order for

blocking to occur. Thus,
1

1

,

),,(,,,

ih

k

kj

ipivotsusedipivots
j

n

PPB (17)

1

1

,

),,(,,,

ih

k

kj

idpivotusedidpivot
j

p

PPB (18)

where kj

ipivotsusedP ,

),,(,
 is the probability that the k-th physical

channel of the j-th node among
1iK nodes reachable after

i-1 hops from the source node to the pivot node is busy.
kj

ipivotsusedP ,

),,(,
 is the same probability for the second phase.

Now, the problem has been simplified to calculating

the probability that V virtual channels of a specific

baS ,

1

baS ,

1

…

ba, ba,ba,ba,ba,

0 1 2 1V V

ba
baS

,
,

1

physical channel are busy at the same time. This new

simplified problem can be solved using the Markov model

as shown in figure 4 [11]. As shown in the figure, state

,1, Vvv corresponds to v virtual channels being

busy at a physical channel. The transition rate out of state

v to state 1v is the channel traffic rate
ba ,

 while the

rate out of state v to state 1v is
baS ,1 . The transition

rate out of state v is reduced by
ba ,

 to account for the

arrival of the message while a channel is in this state. The

steady-state solution of the Markov model yields the

probability
vba

P
,,

, Vv1 , for the channel ba, .

Figure 4. Markov model of a physical channel with V virtual

channels. State Si corresponds to i virtual channels being

busy.

Vvif
S

S

VvifS

Q

baba

v
baba

v
baba

vba
,

1

10,

,,

,,

,,

,,

 (19)

VvifQP

vif

QP

vbaba

V

i
ibavba

1,

0,
1

,,0,,

0
,,,,

. (20)

Service time of channel ba, , baS , , is approximated by

averaging
),(dsS for all pairs of source/destination that can

use this channel in at least one of their minimal paths, and

can be expressed as

ba

ba

Gds
bads

Gds
badsds

ba

m

mS

S

,

,

,
,),,(

,
,),,(,

,
 (21)

where
bads

m
,),,(

 is the number of different minimal

paths from the source node s to the destination node d that

can use channel ba, in at least one of the possible paths

between s and d.

The average waiting time to acquire a channel ba,

when a message is blocked at this channel,
ba

w
,

, can be

computed using an M/G/1 queue with arrival rate
ba,

and service time baS , can be given by [11]

baba

ba

ba
baba

ba

S

S

MS
S

w

,,

2
,

2
,2

,,

,

12

1

 (22)

Note that, the variance of the service time of channel

ba, is approximated by
2

, MS ba as suggested in [5,

11].

3.2.3. Calculating the Average Waiting Time at the

Source Node

A message originating from a given source node, s,

sees a network latency of sS . Modeling the local queue in

the source node as an M/G/1 queue, with the mean arrival

rate of Vg / (recalling that a message in the source node

can enter the network through any of the V virtual

channels) and service time sS with an approximate

variance of
2

MS s yields the mean waiting time seen

by a message at the source node s as [11]

s
g

s

s
s

g

s

S
V

S

MS
S

V
W

12

1 2

2
2

 (23)

and consequently the average waiting time at the source

node is given by

Gs

sW
N

W
1 . (24)

3.2.4. Calculating the Average Waiting Time at

Ejection Channel

In the steady state, the rate at which messages exit the

network through ejection channel is equal to the injection

rate of messages, which is in turn equal to the generation

rate
g

. Utilization of the ejection channel (in each node)

is therefore equal to
gM . Given that messages are of

fixed length, there is no variance in service time. Using an

M/D/1 queuing model [5, 9], we can calculate the waiting

time at the ejection channel as

)1(22

ggejection MMW . (25)

3.3. Solving the Model Equations

The above equations reveal that there are several inter-

dependencies between the different variables of the model.

For instance, Equations 11 reveals that
dsS ,

 is a function

of
dsblockingT ,

 while equation 13 shows that
dsblockingT ,

 is a

function of
ipivotsP),,(
. Equations 15 to 18 tell us that

ipivotsP),,(
 depends on

vba
P

,,
 and equations 19 and 20

show that
vba

P
,,

is itself a function of baS , while we

calculate baS , by averaging the average network crossing

times for each arbitrary source/destination pair, i.e.
dsS ,

.

As the closed-form solutions to such inter-

dependencies are very difficult to determine, the different

variables of the model are computed using an iterative

technique as discussed in [11].

4. Model Validation

The proposed analytical model has been validated
through a discrete-event simulator that mimics the
behaviour of the described routing algorithms in the
network at the flit level. In each simulation experiment, a
minimum of 200000 messages are delivered. Statistics
gathering was inhibited for the first 20000 messages to
avoid distortions due to the initial start-up conditions. The
simulator uses the same assumptions as the analysis, some
detailed here with the aim of making the network
operation clearer. The network cycle time is defined as the
transmission time of a single flit from one router to the
next. Messages are generated at each node according to a
Poisson process with a mean inter-arrival rate of

g
messages/cycle. Message length is fixed at M flits.

Destination nodes are determined using a uniform random
number generator. The mean message latency is defined as
the mean amount of time elapsed between the generation
of a message and the last data flit reaching the local
processor at the destination node. Several validation
experiments have been performed for several
combinations of network sizes, message lengths, and
number of virtual channels to validate the model.

The accuracy of the proposed model has been validated
through a large set of simulation experiments for different
scenarios defining different working conditions. However,
for the sake of brevity, we report a few of them here.
Figures 5, 6, 7, 8, and 9 show the results predicted by the
proposed model against those obtained through simulation
experiments, for the 6-, 8-, and 9-dimesnional hypercubes,
with V=3 and 6 virtual channels, and different message

lengths M=32, 64, and 128 flits. As can be seen in the
figures, the proposed model has predicted the average
message latency with good accuracy in low and moderate
traffic loads. However, Approximations made for some
parameters has resulted in some underestimation for the
saturation point of the network, and reducing the accuracy
of the model for heavy traffic regions slightly. Assuming
that a network must work in the realistic working
conditions (under low and moderate traffic loads) and not
near the saturation region, we can conclude that the
proposed model can predict the behaviour of the network
with a good accuracy.

To exhibit the good accuracy of the proposed model,
let us compare its accuracy against the only model [10]
reported in the literature for P-cube routing. Ould-Khaoua
[10], introduced a model for P-cube routing that suffers
from low accuracy. This model is applicable only for very
low traffic loads. It assumes a balanced traffic rate over
network channels which we previously investigated it and
saw that it is unbalanced over network channels. Figure 9
compares the results predicted by Ould-Khaoua’s model
and the proposed model here for an 8-dimensional
hypercube with 3 virtual channels per physical channel
and message length M=32, 64 and 128 flits. The
inaccuracy of the old model [10] compared to the
proposed model here can be easily seen in the figure 8.

5. Conclusions and Future Work

This paper has described an analytical model to
compute the mean message latency in wormhole-routed
hypercube networks using P-cube partially adaptive
routing algorithm. Simulation experiments have revealed
that the latency results predicted by the model are in good
agreement with those obtained through simulation
experiments. This model achieves a good degree of
accuracy under different operation conditions as it
computes the exact expression for the traffic rate on each
channel and the probability of message blocking in any
given channel of dimensions for all possible pairs of
source- destination. Furthermore, the good degree of
accuracy while maintaining acceptable simplicity, makes
the proposed model a practical evaluation tool that can be
used to gain insight into the performance behavior of
partially adaptive routing in wormhole hypercubes. Our
next objective is to extend our above modeling approach to
deal with other partially adaptive routing algorithms such
as planar routing and different traffic patterns, such as
hotspots. Proposing models for partially adaptive routing
in other popular networks, such as tori, meshes, and k-ary
n-cubes, can also be a challenging future work in this line.

a)

0

100

200

300

400

500

0 0.005 0.01

Simulat ion

Model M=32

Model M=64

Model M=128

b)

0

100

200

300

400

500

0 0.005 0.01 0.015 0.02

Simulat ion

Model M=32

Model M=64

Model M=128

a)

0

100

200

300

400

500

0 0.002 0.004 0.006

Simulat ion

Model M=32

Model M=64

Model M=128

b)

0

100

200

300

400

500

0 0.005 0.01

Simulat ion

Model M=32

Model M=64

Model M=128

a)

0

100

200

300

400

500

0 0.002 0.004

Simulat ion

Model M=32

Model M=64

Model M=128

b)

0

100

200

300

400

500

0 0.002 0.004 0.006

Simulat ion

Model M=32

Model M=64

Model M=128

0

100

200

300

400

500

0 0.005 0.01 0.015

Model M=32

Model M=64

Model M=128

Khaoua's

Model M=32

Khaoua's

Model M=64

Khaoua's

Model M=128

References

[1] A. A. Chien, "A cost and performance model for k-ary n-

cubes wormhole routers", IEEE TPDS 9(2) (1998) 150–162.

[2] A. A. Chien, J.H. Kim, "Planar-adaptive routing: low-cost

adaptive networks for multiprocessors", proc. of

international symp. on computer architecture, Journal of

ACM 42(1), pp. 91-123, 1992.

[3] C. J. Glass and L. M. Ni, "The turn model for adaptive

routing", Proc. 19th Int'l Symp. on Computer Architecture,

pp. 278-287, 1992.

[4] B. Ciciani, M. Colajanni, C. Paolucci, "An accurate model

for the performance analysis of deterministic wormhole

routing", Proc. 11th Int. Parallel Processing Symp., pp. 353-

359, 1997.

[5] J. T. Draper, J. Ghosh, "A Comprehensive analytical model

for wormhole routing in multicomputer systems", J. Parallel

& Distributed Computing 32, pp. 202-214, 1994.

[6] H. Sarbazi-Azad, "A mathematical model of deterministic

wormhole routing in hypercube multicomputers using virtual

channels", Journal of Applied Mathematical Modelling 27,

943-953, 2003.

[7] H. Sarbazi-Azad, A. Khonsari, M. Ould-Khaoua, "Analysis

of k-ary n-cubes with dimension-ordered routing", Future

Generation Computer Systems 19 (4), 493-502, 2003.

[8] J. Duato, S. Yalamanchili, L. Ni, Interconnection networks:

an engineering approach, Morgan Kaufmann Publication,

2002.

[9] H. H. Najafabadi, H. Sarbazi-azad, P. Rajabzadeh,

"Performance Modeling of Fully Adaptive Wormhole

Routing in 2-D Mesh-Connected Multiprocessors", proc. of

12th International Symp. on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems

(MASCOTS), 2004.

[10] M. Ould-Khaoua, "An approximate performance model for

partially adaptive routing algorithm in hypercubes",

Microprocessors & Microsystems 23 185-190, 1999.

[11] H. Sarbazi-Azad, M.Ould-Khaoua, L. M.Mackenzie, "An

accurate analytical model of adaptive wormhole routing in k-

ary n-cube interconnection networks", Performance

Evaluation, Vol. 43, No. 2-3, pp. 165-179, 2001.

[12] H. Sarbazi-Azad, "Analytic Modeling of Channel Traffic in

n-Cube Networks", Technical report, IPM School of

computer Science, Tehran, Iran, 2005.

[13] M. Ould-Khaoua, H. Sarbazi-Azad, "An analytical model of

adaptive wormhole routing in hypercubes in the presence of

hot spot traffic", IEEE Trans. Parallel Distrib. Syst. 12(3),

pp. 283-292, 2001.

[14] W. J. Dally, “Virtual channel flow control”, IEEE Trans.

Parallel & Distributed Systems, Vol. 3, No. 2, pp. 194-205,

1992

Figure 6. Average message latency predicted by model

against simulation results for a) 3 b) 6 virtual channels

per physical channel and M=32, 64, 128 flits in an 8

dimensional hypercube.

Figure 7. Average message latency predicted by model

against simulation results for a) 3 b) 6 virtual channels

per physical channel and M=32, 64, 128 flits in a 9

dimensional hypercube.

Figure 8. Comparison

between the proposed

model and Ould-

Khaoua’s model for an 8-

dimensional hypercube,

with 3 virtual channels

per physical channel, and

message lengths of M=32,

64, 128 flits.

Figure 5. Average message latency predicted by model

against simulation results for a) 3 b) 6 virtual channels

per physical channel and M=32, 64, 128 flits in a 6

dimensional hypercube.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

