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Abstract
In this paper, we propose a methodology for developing

component-based real-time systems based on the concept of
hierarchical scheduling. Recently, much work has been de-
voted to the schedulability analysis of hierarchical schedul-
ing systems, in which real-time tasks are grouped into com-
ponents, and it is possible to specify a different scheduling
policy for each component. Until now, only independent
components have been considered.

In this paper, we extend this model to tasks that interact
through remote procedure calls. We introduce the concept
of abstract computing platform on which each component is
executed. Then, we transform the system specification into
a set of real-time transactions and present a schedulabil-
ity analysis algorithm. Our analysis is a generalization of
the holistic analysis to the case of abstract computing plat-
forms. We demonstrate the use of our methodology on a
simple example.

1 Introduction

The research on design methodologies for real-time em-
bedded systems is now moving towards component-based
approaches. This trend can be explained with the need
for a structured approach to rapid development of increas-
ingly complex systems, and for short time-to-market re-
quirements. Among many advantages of component-based
approaches, we cite the possibility to easily reuse existing
pieces of software that provide a well-defined functional-
ity; a better de-composition of a complex system into sepa-
rate, smaller and more manageable sub-systems; the possi-
bility to upgrade the system by adding or replacing compo-
nents. However, a component-based methodology for real-
time embedded systems covering all aspects of the design
flow is still to come. One of the main problems is that a
component specification must include functional as well as
non-functional parameters, like periods and deadlines, and
allow a compositional schedulability analysis of the entire
system starting from the components properties.

Many design methodologies for real-time systems have
been proposed in the literature. One of the most popular is
HRT-HOOD [3], which has been recently extended to UML
[9]. A system is specified as a set of active, protected or pas-

sive objects, and it can be analyzed with classical fixed pri-
ority schedulability analysis. Similar design methodologies
have been proposed in the context of UML. In particular, the
Object Management Group (OMG) has proposed a Profile
for Schedulability, Performance and Time (SPT) [5]. How-
ever, schedulability analysis can only be performed after all
the system components have been specified.

Recently, several approaches to the problem have been
proposed that are based on hierarchical scheduling [12, 4,
1, 7]. In such approaches, the system consists of many in-
dependent applications (also referred to as components in
[12]). An application is a set of periodic or sporadic tasks
and a local dedicated scheduler. Each application is as-
signed a fraction of the computational resource. The system
implements a two-level scheduling strategy: at the global
level, a system-wide scheduler selects which application is
to be scheduled next. The application then selects which
task to execute by running the local scheduler. This ap-
proach guarantees temporal isolation: the behavior of an
application does not depends on the characteristics of the
other applications in the system.

The hierarchical scheduling approach has many advan-
tages. First, the global scheduler needs no information on
the internal characteristics of the applications. Thanks to
this separation of concerns, it is possible to change the
internal implementation of the application (even the local
scheduler) without influencing the rest of the system. Sec-
ond, thanks to the temporal isolation property, it is possible
to analyze each application independently from the rest of
the system. For these reasons, the hierarchical scheduling
approach can be seen as a promising starting point for a
component-based methodology [12, 4, 8].

Until now, applications have been considered indepen-
dent from each other. This is a very strong limitation for
applying such techniques to real component-based systems.
Moreover, given the recent trends in embedded real-time
systems, it is necessary to take into account multiprocessor
and distributed systems.

Contributions of this paper In this paper, we provide a
first step to the final objective of a component-based real-
time methodology. We follow the hierarchical scheduling
approach by defining a component as a set of real-time
tasks plus a real-time scheduler, but unlike previous work,
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we allow components to interact through Remote Procedure
Calls (RPC). We start by de ning the component interface
as a set of provided and required methods, and the compo-
nent implementation as a set of real-time threads (Section
2). We also specify how to integrate a set of components
into the nal system architecture. Then, we describe our
scheduling architecture by de ning the concept of abstract
computing platform (in Section 2.3) on which each compo-
nent executes. Finally, given a set of components, we pro-
vide a schedulability analysis to see if the response time of
every thread is within the thread’s deadline. Our analysis is
a generalization of the holistic analysis [10, 14] to the case
of abstract computing platforms.

2 System model
In this section we give informal de nitions of the build-

ing blocks of our methodology. The concepts will be ex-
plained by means of a simple example that will be carried
out through the entire paper. In our model, a system consists
of a set of components that are connected through a system
architecture. Each component executes upon an abstract
computing platform.

2.1 Components

A component consists of a provided interface, a required
interface, and an implementation.

The provided interface is a set of methods offered to
other components of the system. Each method is charac-
terized by: (1) the method signature, which is the name of
the method and the list of parameters, and (2) a worst-case
activation pattern, which describes the maximum number
of invocations the method is able to handle in an interval
of time. In this paper, we will restrict this parameter to a
single value, the minimum interarrival time (MIT) between
two consecutive calls of the method.

We use the dot notation, common in object oriented lan-
guages, to identify the different parameters of a component.
For example, the method read() of the provided interface
of component A is denoted by A.provided.read and
its MIT by A.provided.read.T.

The semantic of invocation of a method can be syn-
chronous (the caller waits for the method to be completed)
or asynchronous (the caller continues to execute without
waiting for the completion of the operation). In this paper
we will only consider synchronous method invocation.

The required interface is a set of methods that the com-
ponent requires for carrying out its services. Each method
is characterized by its signature and the MIT, as in the pro-
vided interface. Method write of component A’s required
interface will be denoted by A.required.write.

The implementation of a component is the speci cation
of how the component carries out its work. In our model,
a component is implemented by a set of concurrent threads

and by a scheduler. The scheduler is local to a component,
and is used to schedule the component threads. Different
components can have different schedulers. In this paper, we
will only consider a xed priority local scheduler. How-
ever, our methodology can be easily extended to other lo-
cal schedulers like EDF. Using local schedulers allows in-
dependent analysis of each component. The thread priori-
ties are local to a component: the schedulability analysis of
the component can be carried out earlier in the design cycle
with obvious advantages from a design point of view.

Threads can be activated in two different ways: (1)
time-triggered, when it is activated periodically, and (2)
event-triggered, when it is activated by a call to a provided
method of the component.

Time-triggered threads are assigned a period and a rela-
tive deadline, denoted by Thread.T and Thread.D, re-
spectively. The parameters of the event-triggered threads
derive from the corresponding parameters coming from the
provided method to which they are attached. See Section
2.4 for more details.

Each thread is then implemented by a sequence of tasks
and method calls. Tasks are pieces of code that are imple-
mented directly by the component, while method calls are
invocations of methods of the required interface. As antic-
ipated before, in this paper we only consider synchronous
method invocations: when invoking a method of the re-
quired interface, which is realized by a provided method
of a different component, the thread is suspended until the
method is completed.

2.2 Example

We now present an example of a very simple subsystem.
The goal of this system is to realize a sensor fusion between
the readings of two sensors of the same kind located in dif-
ferent places in the environment. As an example, consider
a stereoscopic system which tries to compute the distance
from an object in the environment. We decompose the ap-
plication into 3 components: two components will get the
images and extract the relevant features, while a third com-
ponent will analyze the results of the two feature extractions
and compute the distance of a speci ed object.

The SensorReading components are two realization
of the same component class described in Figure 1. The
interfaces and the implementation are speci ed in pseudo
object oriented languages.

The component provides a method read() that can be
invoked by other components to obtain the value of the most
recent sensor data. The component is self-contained, as it
does not require any method from other components. It
implements its functionality with 2 threads scheduled by a

xed priority scheduler. Thread1 is periodic with period
equal to 15 msec, and has the highest priority. Its goal is to
periodically get the data from the sensor board. Thread2



SensorReading {
provided:
read(); // MIT = 50 msec

implementation:
Scheduler: fixed priority;
Thread1 : periodic(period=15 msec),

priority=2;
Thread2 : realizes read(), priority = 1;

}

Figure 1. The SensorReading class.

SensorIntegration {
provided:
read();

required:
readSensor1();
readSensor2();

implementation:
Thread1 : realizes read(), priority=1;
Thread2 : periodic(period=50 msec),

priority=2
{

init;
readSensor1();
readSensor2();
compute();

}
}

Figure 2. The SensorIntegration class.

realizes the interface to the other components: it is invoked
every time another component calls the read() method,
and has the lowest priority. We do not report the code of the
two threads.

The second component class implements the sensor in-
tegration component, and is reported in Figure 2. The
provided interface consists on a single method read()
which allows other components to read the sensor data.
Since this component has to merge the data read from
the sensors, its required interface consists of two meth-
ods readSensor1() and readSensor2(). The im-
plementation consists of two threads: Thread1 acts as
an interface towards the other components and realizes
method read(); Thread2 periodically reads from the
two sensors and performs the elaboration. The pseudo-
code of Thread2 is reported in the gure. The period of
Thread2 is 50 msec, and its relative deadline is the same
as the period.

2.2.1 Integration

The nal subsystem under analysis consists of two
components of class SensorReading and one compo-
nent of class SensorIntegration, called , Sensor1,
Sensor2 and Integrator, respectively. The required
interface of Integrator will be connected to the pro-
vided interfaces of Sensor1 and Sensor2.

We now need to specify what happens when a method

of a component is invoked. Suppose a component A in-
vokes a method of another component B. If the two com-
ponents reside in the same computational node the method
invocation is just a function call with no delay. However, if
the two components are located on different computational
nodes the invocation of the method results in one or more
messages being sent over a network. Thus, we assume that
abstraction of RPC is realized by some middleware or op-
erating system mechanism. From a schedulability analysis
point of view, we assume that the network is similar to a
computational node and messages are scheduling according
to the network scheduling policy [2].

2.3 Computing platforms

In our model, each component is executed on a dedicated
abstract computing platform. Each abstract computing plat-
form runs on top of a physical computing platform. The
mechanisms that implements the abstract platforms upon
the physical platform is the global scheduler.

One possible strategy for global scheduling is to use an
aperiodic server algorithm like Polling Server, CBS or sim-
ilar [7, 1, 12]. Moreover, it is also possible to use differ-
ent strategies, like static partitioning of the resource [4] or
a p-fair scheduler [13], depending on the available phys-
ical platform. The important thing is that the underlying
scheduling mechanism supports the concept of reservation:
each component is reserved a fraction of the physical com-
puting platform. From the components point of view, the
shared physical platform can then be seen a set of indepen-
dent abstract computing platforms. This approach is valid
for both the processor and the network.

The concept of abstract computing platform does not
rely on any speci c global scheduling policy. In fact, it is
simply characterized by the amount of cycles it can pro-
vide to the components in any arbitrary interval of time.
The modeling through the provided cycles has been already
adopted both in networking [6, 2] and in real-time sys-
tems [7, 12, 1]. We denote the abstract computing platform
by the letter Π.

The actual computational resource that is provided de-
pends clearly on the speci c conditions which occurs on-
line (i.e. depending on the requirements of the component).
However we can generalize this concept by de ning the
minimum and the maximum number of cycles which can
be provided by a platform Π. For this purpose we de ne the
supply functions.

Definition 1 Let Π be a computing platform, we de ne
minimum supply function Zmin

Π (t) of the platform, the func-
tion de ned as follows

Zmin
Π (t) = min

t0
{cycles provided in [t0, t0 + t] under

any conditions.} (1)



Definition 2 Let Π be a computing platform, we de ne
maximum supply function Zmax

Π (t) of the platform, the
function de ned as follows

Zmax
Π (t) = max

t0
{cycles provided in [t0, t0 + t] under

any conditions.} (2)

The amount of cycles provided by the platform Π in the
interval [t0, t0 + t], for any t0, is always between Zmin

Π (t)
and Zmax

Π (t).
Let us provide an example in order to clarify the mean-

ing of the two functions. Suppose that a computing platform
can provide Q cycles every period P . As reported in Fig-
ure 3, the minimum amount of cycles are experienced when
the beginning of the interval [t0, t0 + t] coincides with the
end of a previous time quanta Q and the next time quanta
is delayed as much as possible. For the same reason the
maximum computational resource is provided when we ob-
tain the time quanta Q as we require it, and the next period
P begins right when we have finished the quanta, so that
a new amount of time Q is available. The two scenarios

P 2P 3P0

P 2P 3P

(max)

(min)

Zmin
Π (t)

Zmax
Π (t)

t

β

∆

α t + β

α(t − ∆)

Figure 3. Examples of ZΠ(t).

are depicted in the Figure 3, where the best scenario is la-
belled with “(max)” and the worst scenario is labelled with
“(min)”.

The actual number of provided cycles will depend on the
on-line conditions. However the two functions Zmax

Π (t) and
Zmin

Π (t) allows to bound the number of cycles provided in
any interval [t0, t0+t], meaning that the actual supply func-
tion is always in the darker gray region of Figure 3.

The figure shows the max/min supply function of a pe-
riodic server. In general the mechanism behind the com-
puting platform Π may be more complex. If, for example,
Π is implemented by a pfair task the min/max supply func-
tions will be quite different than before. However, it is still
possible to calculate the min/max supply functions.

The first very important characteristic of the computing
platform is related to the notion of rate. Intuitively the rate
is the speed at which the computing platform can provide
the computational power. We define it formally as follows.

Definition 3 Let Π be a computing platform and Zmin
Π (t),

Zmax
Π (t) the minimum and the maximum supply functions

respectively. We de ne maximum rate of the platform Π the
following quantity:

αmax = lim
t→+∞

Zmax
Π (t)

t
(3)

and the minimum rate

αmin = lim
t→+∞

Zmin
Π (t)

t
. (4)

If αmax = αmin then we simply call this value rate of the
platform and we indicate it with α.

Notice that in the periodic task model (Figure 3) we have
αmin = αmax = Q

P
. All the state-of-art mechanisms imple-

menting a computing platform have the minimum rate equal
to maximum rate. For this reason, in this paper we always
assume this condition and we will only refer to the rate α.

The rate of a platform can be interpreted as the average
slope of the supply functions. We can find linear upper and
lower bounds of the supply function.

Definition 4 Let Π be a computing platform and α its rate.
We de ne the delay ∆ of Π the following

∆ = max{d ≥ 0 : ∃t ≥ 0 Zmin
Π (t) ≤ α(t − d)}. (5)

Definition 5 Let Π be a computing platform and α its
rate.We de ne the burstiness β of Π the following

β = max{b ≥ 0 : ∃t ≥ 0 Zmax
Π (t) ≥ b + αt}. (6)

The two additional parameters ∆ and β, characterizing
a computing platform, are called respectively delay and
burstiness for their analogy with the network calculus [6].

In this paper we suppose that a set of M computing plat-
forms is available, and we model the jth platform Πj by the
triple (αj , ∆j , βj). It is very important to remark that this
model is a generalization of the classical analysis. In fact,
by setting α = 1, ∆ = 0 and β = 0 we obtain a processor
used at its full capacity.

Finally we also highlight that the cost of using a gen-
eral model is payed in terms of the pessimism introduced
estimating the supply function by linear functions.

2.4 Deriving transactions from components

We model each periodic thread as a real-time transac-
tion. A transaction Γi is a sequence of tasks τi,j . So we have
Γi = (τi,1, τi,2, . . . , τi,ni

), with a precedence constraint,
i.e. task τi,j cannot start before task τi,j−1 has completed.

Each transaction is characterized by a period Ti and a
relative deadline Di, meaning that the last task τi,ni

must
complete no later than Di after the first task of the transac-
tion has been activated.

Each task τi,j is characterized by a worst-case execution
time Ci,j , a best-case execution time Cbest

i,j , an offset φi,j

(which is the first instant from the activation of the trans-
action at which the task could be activated), a jitter Ji,j



Ri,1

Ri,2

Ri,3

Γi

τi,1τi,1 τi,3τi,2

Ti

φi,2
φi,3

Figure 4. Transaction and task parameters

which is the maximum delay computed from the offset af-
ter which the task can be activated, and a mapping variable
si,j ∈ {1, 2, . . . , M} which means that the task is allocated
on the platform Πsi,j

. These are the classical parameters
used in the holistic analysis [14] and their relationship is de-
picted in Figure 4. The worst-case response time of a task
τi,j is denoted by Ri,j and is measured from the activation
time of the corresponding transaction Γi. The priority of
task τi,j is denoted by pi,j . A greater pi,j corresponds to
a higher priority. We allow both the offset φi,j and jitter
Ji,j to be larger than period of its transactions Ti. In order
to simplify the notation, we consider a reduced task offset,
φi,j = φi,j mod Ti, which is always within in [0, Ti).

Given these definitions, we transform the set of all
threads in the system into a set of transactions. Remem-
ber that, according to the definitions in Section 2.1, a thread
consists of a sequence of one or more tasks (i.e. pieces of
code or internal procedures) and zero or more invocations
of external methods.

We start from a periodic thread belonging to some com-
ponent. All tasks belonging to the thread will be part of one
transaction; moreover, if a method invocation is part of the
thread, all the tasks belonging to the thread corresponding
to the method call will be part of the transaction. The al-
gorithm is applied recursively until all periodic threads are
transformed into transactions.

All the tasks are assigned priorities equal to the priorities
of the threads they belong to (remember that in this paper
we are assuming a fixed priority local scheduler inside each
component). The transaction is assigned a period and a rel-
ative deadline equal to the period and relative deadline of
the originating periodic thread.

The algorithm is better explained through an exam-
ple. Consider again the simple system described in Sec-
tion 2.2. Integrator.Thread2 is a periodic thread
that will originate the first transaction Γ1. It consists of a
task init (that we rename τ1,1), plus two method invo-
cations readSensor1() and readSensor2(). These
methods are connected to threads Sensor1.Thread1
and Sensor2.Thread1. Therefore, they will be part
of the transaction as well. Since these two threads do
not invoke any other methods and consist of only one
task, they originate two tasks τ1,2 and τ1,3. Finally,
Integrator.Thread1 includes another task compute
that we rename as τ1,4. All other periodic threads in the sys-

tem do not invoke any other method and consist of only of
one task. Therefore, they generate transactions Γ2, Γ3 and
Γ4 with one task each.

In general messages can simply be modeled by consid-
ering additional “tasks” that have to be “executed” on a ab-
stract computing platform that models the network. How-
ever, for the sake of clarity, in this example we ignored the
messages exchanged between the components for realizing
the remote procedure call.

τ11

τ12
τ13

τ14

τ21
τ31

τ41

T1 = 50

T2 = 15 T3 = 15

T4 = 70

Π1 = (0.4, 1, 1) Π2 = (0.4, 1, 1)

Π3 = (0.2, 2, 1)

Figure 5. Example of application.

3 Analysis on abstract computing platforms
At this point we are ready to analyze the schedulability

of a system consisting of real-time transactions, where dif-
ferent tasks of a transaction can execute on different abstract
computing platforms.

In this paper, we assume that all components implement
local fixed priority schedulers. To ensure the feasibility of
the system, we need to compute the worst-case response
time of the transaction and check whether this value lower
than or equal to the relative deadline.

3.1 Analysis for Task with Static Offsets

We analyze a set of tasks executing onto the same com-
puting platform Π. As seen in Section 2.4, the tasks are
grouped in transactions. Now we assume that all the offsets
φi,j and jitters Ji,j of the task τi,j are known and static.

The proposed analysis extends several works on trans-
action scheduling [15, 10] when the computing platform Π
is modelled by the triple (α, ∆, β) as seen in Section 2.3.
This is equivalent to say that the computation times of all
the tasks are scaled by a factor 1

α
and they suffer an addi-

tional blocking equal to ∆.

3.1.1 Exact Response Time Analysis

Now we show how to compute the worst-case response
time of a generic task τa,b. From now on we indicate the
task under analysis by τa,b. As proved by Tindell [15], the
worst-case for a task happens inside a busy period for the
task under analysis, where we adopt the same definition of
busy period as in [15].

Without loss of generality, we set the beginning of the



busy period for task τa,b at time 0. Let us focus on the ac-
tivation pattern of task τi,j . We call Φi the length of the
interval between the activation of the transaction Γi that oc-
curred immediately before or at the beginning of the busy
period, and the beginning of the busy period. Obviously,
0 ≤ Φi < Ti. For each task τi,j we define the phase ϕi,j as
the instant of its first activation after t = 0. Formally,

ϕi,j(Φi) = Ti − (Φi − φi,j) mod Ti (7)

Thanks to previous results on transaction analysis (The-
orem 1 in [10]), we know that the worst-case pattern of ac-
tivation of the higher priority jobs occurs when all the jobs
are released as close as possible to the start of the busy pe-
riod.

Now, assume that the busy period of τa,b has length t.
According to Theorem 1 in [10], the worst-case contribution
of a higher priority task τi,j to the busy period is:

Wi,j(Φi, t) =

(⌊
Ji,j + ϕi,j(Φi)

Ti

⌋
+

⌈
t − ϕi,j(Φi)

Ti

⌉)
Ci,j

α
(8)

The total contribution of of the transaction Γi to the busy
period is obtained by considering the contributions of all
higher priority tasks, as follows

Wi(Φi, t) =
∑

τi,j∈hpi(τa,b)

Wi,j(Φi, t) (9)

where hpi(τa,b) is the set of tasks in Γi with priority greater
than or equal to pa,b.

The contribution of Γi to the busy period, as it is possible
to see in Eq. (9), depends on the value of Φi. In order to
evaluate the maximum response time of the task τa,b, we
must take into account many possible values of Φi. The
next theorem [10] determines all these values.

Theorem 1 (Theorem 2 in [10]) The worst-case contribu-
tion of transaction Γi to a task τa,b is obtained when the
first activation of some task τi,k in hpi(τa,b) that occurs
within the busy period coincides with the critical instant,
after having experienced the maximum possible delay, i.e.,
the maximum jitter, Ji,k.

If we known the task τi,k starting the busy period of the
transaction Γi, then Eq. (7) becomes:
ϕi,j(Φi(τi,k))=ϕk

i,j =Ti−(φik+Jik−φi,j) mod Ti (10)

where we introduced the compact notation of ϕk
i,j .

Using this value, we can now obtain the expression of the
worst-case contribution Γi, when the busy period is initiated
with τi,k. We will call this function W k

i (τa,b, t), and we
obtain it by replacing Eq. (10) in Equation (8) and (9):

W k
i (τa,b, t) =

∑
τi,j∈hpi(τa,b)

(⌊
Ji,j+ϕk

i,j

Ti

⌋
+

⌈
t − ϕk

i,j

Ti

⌉)
Ci,j

α

(11)
In order to obtain the worst-case response time of task

τa,b we need to evaluate the above function for all the trans-
actions in the system. Unfortunately we don’t know in ad-

vance which tasks τi,k ∈ hpi(τa,b) would lead to the max-
imum response time. For this reason we must consider all
the possible scenarios. Each scenario is represented by a
vector of indexes ν. ν(i) is associated to the transaction Γi

and varies in 1, . . . , ni. A scenario ν means that all the tasks
τi,ν(i) are released simultaneously at t = 0.

The number of possible scenarios N(τa,b) is determined
by the number of tasks in hpi(τa,b) that exist in each trans-
action Γi. Moreover the task τa,b may be released at time
t = 0 as well. Thus, the total number of scenarios is:

N(τa,b) = (Na(τa,b) + 1)
∏
i�=a

hpi(τa,b) �=∅

Ni(τa,b) (12)

where Ni(τa,b) is the number of tasks in hpi(τa,b).
For convenience, we will number the jobs of the task

under analysis using the letter p and we denote the job by
τa,b(p). Also, the jobs are ordered consecutively meaning
that τa,b(p) is activated in ((p − 1)Ta, p Ta].

For each scenario ν we obtain the completion time of
each job τa,b(p) in the busy period. This time, labelled
wν

a,b(p), is obtained by considering the execution time of
the jobs of τa,b together with the interference from all the
higher priority tasks, plus the blocking time of the task and
the platform delay ∆. It can be calculated by the following
iterative formula:

w
ν,(n+1)
a,b (p) = ∆ + Ba,b + (p − pν

0,a,b + 1)
Ca,b

α
+∑

i

Wiν(i)(τa,b, w
ν,(n)
a,b (p)) (13)

where pν
0,a,b = 1 −

⌊
Ja,b+ϕ

ν(a)
a,b

Ta

⌋
.

Equation (13) can be solved by starting from a value of
w

ν,(0)
ab (p) = 0, and iterating until two consecutive iterations

produce the same value. The maximum value of p that we
need to check is

pν
L,a,b =

⌈
Lν

a,b − ϕ
ν(a)
a,b

Ta

⌉
(14)

where Lν
a,b is the length of the busy period, which may be

obtained with the following iterative expression:

L
ν,(n+1)
a,b =

(
∆ +Ba,b +

⌈
L

ν,(n)
a,b − ϕ

ν(a)
a,b

Ta

⌉
− pν

0,a,b + 1

)
Ca,b

α

+
∑

i

W
ν(i)
i (τa,b, L

ν,(n)
a,b )

The response time of the job τa,b(p) is obtained subtract-
ing the instant at which the event activated the transaction
from the obtained completion time. Therefore the activation
of the pth job occurs at ϕ

ν(a)
a,b + (p − 1)Ta − φa,b. Conse-

quently the response time for job τa,b(p) is:

Rν
a,b(p) = wν

a,b(p) − (ϕ
ν(a)
a,b + ((p − 1)Ta − φa,b)

To calculate the response time Ra,b of the task τa,b we



must determine the maximum among all the possible sce-
narios. Then we have:

Ra,b = max
ν

max
p∈{pν

0,a,b
,...,pν

L,a,b
}
Rν

a,b(p)

Unfortunately, this approach is very complex because it
considers all the possible scenarios ν. For this reason we
apply the same approximation technique used in the litera-
ture [15, 10] to our case of abstract computing platform.

3.1.2 Reducing the number of scenarios

Tindell [15] observed that the interference of the trans-
action Γi on the task τa,b can be maximized with respect to
all the tasks in hpi(τa,b). This means that the interference
can be certainly upper bounded by

W ∗
i (τa,b, t) = max τi,k∈hp(τa,b)W

k
i (τa,b, t) (15)

In order to reduce the pessimism, we don’t use the upper
bound of Eq. (15) for the transaction Γa to which the task
under analysis belongs. Instead we use the original Eq. (11)
for Γa. Consequently, for this simpler analysis we have to
consider only the scenarios created by the tasks in the set
hpa(τa,b)∪ τab. Assuming that the busy period is started by
τa,c ∈ hpa(τab)∪τa,b, then the response time is determined
by the following iterative equation

w
c(n+1)
a,b (p) = ∆ + Ba,b + (p − pc

0,a,b + 1)
Ca,b

α
+∑

i�=a

W ∗
i (τa,b, w

c(n)
a,b (p)) + W c

a(τa,b, w
c(n)
a,b (p)) (16)

The length of the busy period is then calculated itera-
tively by

L
c(n+1)
a,b =∆ + Ba,b +

(⌈
L

(n)
a,b − ϕc

a,b

Ta

⌉
− pc

0,a,b + 1

)
Ca,b

α

+
∑
i�=a

W ∗
i (τa,b, L

c(n)
a,b ) + W c

a (τa,b, L
c(n)
a,b )

and from it we can compute pc
L,a,b using Eq. 14, which is

the last job of τa,b within the busy period.
As done previously, we compute the response time of job

τa,b(p), when τa,c is released at t = 0

Rc
a,b(p) = wc

a,b(p) − (ϕc
a,b + ((p − 1)Ta − φa,b)

and then the upper bound of the response time is
Ra,b = max

τa,c∈hpa(τa,b)∪τa,b

max
p∈{pc

0,a,b
,...,pc

L,a,b
}
(Rc

a,b(p))

The possibles scenarios examined in this case are rep-
resented by the set hpa(τa,b) ∪ τa,b. The number of this
scenarios now is Na(τa,b) + 1, which is significantly less
than the number of scenarios of the exact analysis, reported
in Eq. (12).

3.2 Analysis onto Abstract Computing Platforms

In this sections we extend the analysis presented previ-
ously to the abstract computing platform. Since the task τa,b

under analysis runs on a specific computing platform Πsa,b
,

only the tasks allocated on the same platform can interfere
with it. For this reason we redefine the set of interfering
tasks as follows:

hpi(τa,b) = {τi,j ∈ Γi : pi,j ≥ pa,b ∧ si,j = sa,b} (17)

Also, we must replace the rate α and the delay ∆ with αsa,b

and ∆sa,b
, in order to consider the platform where the task

is allocated.
In the transaction model the first task τi,1 is released ev-

ery period Ti. Every other task τi,j is released when the
previous task τi,j−1 is completed. Due to this observation,
a relationship between the task response times, offsets and
jitters can be established as follows

φi,j = Rbest
i,j−1

Ji,j = Ri,j−1 − Rbest
i,j−1

(18)

where Rbest
i,j−1 and Ri,j−1 are respectively a lower bound

to the best-case response time and a upper bound for the
worst-case response time of the task τi,j−1.

Using the offset and jitter terms defined in Eq. (18) and
the set of interfering tasks as in Eq. (17), we can use the
same iterative method that was presented in Section 3.1 for
the case of static offsets.

The “static offset” iterative algorithm can be iterated at
a higher level in order to find the response times of all the
tasks, similarly as done in [10]. The initial values of jitters
and offsets are Ji,j = 0 and φi,j = Rbest

i,j for each task. The
convergence of the “dynamic offset” iterative algorithm is
guaranteed by the monotonic dependency of the response
times and the jitter terms.

Now we address the problem of calculating the best-case
response time, which can provably speed up the whole iter-
ative process. There are several techniques to calculate the
best-case response time, Rbest

i,j . The simplest one consists of
considering only the shortest execution time of the preced-
ing jobs of its transactions, which are {τi,1, . . . , τi,j−1}. It
follows that the best-case response time of each task is

Rbest
i,j =

j−1∑
k=1

max

{
0,

Cbest
i,k

αsi,k

− βsi,k

}

where the term max

{
0,

Cbest
i,k

αsi,k

− βsi,k

}
is the best-case

computation time of task τi,k, when it runs onto an abstract
computing platform. Notice that if the platform has a high
value of burstiness, we experience a shorter best-case com-
putation time, as expected.

Ola Redell at al. [11] proposed a method to calculate the
exact best-case response time. Their method can be applied
to our algorithm with no major changes.

Finally, by means of our analysis we can obtain the re-
sponse time of every transaction. We assert that the system
is schedulable if the last task of every transactions meets the
deadline, meaning that Ri,ni

≤ Di.



4 Example

In order to better understand the analysis presented, we
illustrate it on the example of Section 2.2. Consider the sys-
tem of Figure 5. Platform Π1 contains tasks {τ1,2, τ2,1},
platform Π2 contains tasks {τ1,3, τ3,1} and platform Π3

contains tasks {τ1,1, τ1,4} (we remind that in this example
we do not model messages, and therefore we assume 0 de-
lay between tasks of the same transactions). The values of
the platforms’ and tasks’ parameters are reported in the Ta-
bles 1 and 2.

Task Platform Cbest
i,j Ci,j Ti Di pi,j φmin

i,j

τ1,1 Π3 0.8 1 50 50 2 0

τ1,2 Π1 0.8 1 50 50 1 3

τ1,3 Π2 0.8 1 50 50 1 4

τ1,4 Π3 0.8 1 50 50 3 5

τ2,1 Π1 0.25 1 15 15 3 0

τ3,1 Π2 0.25 1 15 15 3 0

τ4,1 Π3 5 7 70 70 1 0

Table 1. Parameters of the example.

Platform αi ∆i βi

Π1(Sensor 1) 0.4 1 1
Π2(Sensor 2) 0.4 1 1

Π3(Integrator 3) 0.2 2 1

Table 2. Parameters for the platforms.

Task J
(0)
i,j R

(0)
i,j J

(1)
i,j R

(1)
i,j J

(2)
i,j R

(2)
i,j J

(3)
i,j R

(3)
i,j J

(4)
i,j R

(4)
i,j

τ1,1 0 12 0 12

τ1,2 0 9 9 18 9 18

τ1,3 0 10 5 15 14 24 14 24

τ1,4 0 12 5 17 10 22 19 39 19 39

Table 3. Results for transaction Γ1

In Table 3 we report the results of the successive iter-
ations of the analysis on the tasks of transaction Γ1. The
transaction is schedulable as the response time of τ1,4 is
less than the transaction deadline (50 msec).

5 Conclusions and future works

In this paper, we presented a component-based de-
sign methodology for real-time embedded systems. Our
methodology extends the concept of hierarchical scheduling
[12, 4, 1, 7] to the case of components that interact through
remote procedure calls. We further defined the concept of
abstract computing platform, and proposed a schedulability
analysis.

Many open problems need to be solved before the
methodology can be considered for actual use. In this paper,
we assumed that the parameters of the abstract computing
platform are known. However, they could be computed de-
pending on the actual requirement of a component. This
requires an optimization method to assign the parameters
(α, β, ∆) to each abstract platform. The search for the opti-
mal platform parameters would allow a better utilization of

the resources, and it will be the subject of our future work.
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analysis for tasks with static and dynamic offsets. In Pro-
ceedings of the 19

th IEEE Real-Time Systems Symposium,
pages 26–37, Madrid, Spain, Dec. 1998.

[11] O. Redell and M. Sanfridson. Exact best-case response time
analysis of fi xed priority scheduled tasks. In Proceeding
of 14th Euromicro Conference on Real-Time Systems, pages
165–172, Vienna, June 2002.

[12] I. Shih and I. Lee. Periodic resource model for compo-
sitional real-time guarantees. In Proceedings of the 24

th

Real-Time Systems Symposium, pages 2–13, Cancun, Mex-
ico, Dec. 2003.

[13] A. Srinivasan and J. H. Anderson. Optimal rate-based
scheduling on multiprocessors. In Proceedings of the 34

th

ACM Symposium on Theory of Computing, pages 189–198,
Montreal, Canada, 2002.

[14] K. Tindell, A. Burns, and A. Wellings. An extendible
approach for analysing fi xed priority hard real-time tasks.
Journal of Real Time Systems, 6(2):133–151, Mar 1994.

[15] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing & Mi-
croprogramming, 50(2–3):117–134, Apr. 1994.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


