
 

 

Speeding up NGB with Distributed File Streaming Framework 
 

Bingchen Li1, Kang Chen1, Zhiteng Huang1, Hrabri L. Rajic2, Robert H. Kuhn2 

 
1Intel China Research Center Ltd., 

Haidian District, Beijing 100080 China 

{bingchen.li, kang.chen, zhiteng.huang}@intel.com 

2KSL, Software Products Division, Intel, 

Champaign, IL 61820 USA 

{hrabri.rajic, bob.kuhn}@intel.com 
 

 

 

Abstract 

 
Grid computing provides a very rich environment for 

scientific calculations.  In addition to the challenges it 

provides, it also offers new opportunities for optimization.  

In this paper we have utilized DFS (Distributed File 

Streaming) framework to speed up NAS Grid Benchmark 

workflows.  By studying I/O patterns of NGB codes we 

have identified program locations where it is possible to 

overlap computation and data workflow phases. By 

integrating DFS into NGB, we demonstrate a useful 

method of improving overall workflow efficiency by 

streaming the output of the current process to make an 

input of the following stage, reducing a workflow to a 

series of distributed producer consumer stages. DFS 

framework eliminates file transfers and in the process 

makes process scheduling more efficient, leading to 

overall performance improvements in the turnaround time 

for HC (Helical Chain) data flow graph under Globus 

grid environment with the embedded DFS over the 

original version of the benchmark. 

 

 

1. Introduction 
 

As a data flow graph encapsulation of NPB [1] 

modules, NGB (NAS Grid Benchmark) [2] provides a 

paper-and-pencil specification of a benchmark suite for 

computational grids. The benchmark purpose is to rate 

performance of target Grid system via a set of data flow 

graphs of CFD (Computational Fluid Dynamics) problems. 

Through investigation of NGB I/O with Intel® Trace 

Analyzer and Collector (former Vampir tools) [3], we 

have identified substantial output and input file I/O 

activity to motivate data optimization code modification.  

Scaling the benchmarks improves the scheduling 

overheads, but increases the data size necessitating 

proportionally more time spent on file I/O and its 

movement making the savings very attractive. Our 

analysis results corroborate previous findings [4] that 

NGB suite spends some unnecessary time on scripts and 

task scheduling. The smaller the problem size is, the 

greater the scheduling overhead results from job 

management [5]. To obtain the overall speedups the total 

turnaround time is used as a benchmark metrics in our 

experiments. 

DFS (Distributed File Streaming) [6] is an I/O 

optimization framework, that streams file I/O output of a 

data producer program to a data consumer program.  The 

faster data transfer over the interconnect replaces the file 

I/O write and read stages and a file transfer. In a typical 

data dependent workflow, such as the HC workflow of 

NGB [2], computing tasks first generate one or many 

output files on the local storage and then these files are 

transferred by FTP-like utilities to the remote nodes.  Only 

after all the output files have been transferred, the next 

stage computing tasks on the remote node begin to 

commence.  DFS framework has the capability to deliver 

multiple files to multiple nodes concurrently in an 

asynchronous manner. It uses parallel TCP streams like 

GridFTP [7] to maximize the network bandwidth 

utilization.  It reuses TCP channels in a non-blocking 

mode to lessen the system load and reduce data transfer 

overhead.  More about DFS would be available soon [6]. 

 

Figure 1. Distributed I/O overlapping by DFS 

 

In Section 2 of this paper, we describe the overall 

structure and the important components of DFS. We focus 

Producer output Consumer input 

File transfer stage 

Overlapped by DFS 

1-4244-0054-6/06/$20.00  ©2006 IEEE



on the inter-process data exchange (shared-memory) and 

the file transfer mechanism to depict how DFS can 

optimize distributed application I/O. 

In Section 3, in addition to doing benchmarking of our 

hardware and software environment, we give 

comprehensive characterizations of the NGB I/O patterns..  

We also introduce DFS I/O speed-up model in this 

Section. 

We give the details of the optimizing and tuning work 

done in Section 4, where we describe our Grid 

environment.  The DFS integration steps into NGB and 

the experiment results are presented in Section 5. 

In the Section 6 we summarize the work explaining the 

impact DFS has on the distributed computing, especially 

on data-intensive applications.  
 

2. Distributed file streaming 
 

DFS is an application level framework providing data 

streaming capability to embed into distributed 

computational tasks. It provides an optimized transport 

layer to connect distributed nodes, a POSIX compliant I/O 

API, flexible data caching and buffering, and other 

mechanisms that guard against network congestion and 

network unavailability. The framework is split into 

producer and consumer parts. It includes a daemon 

program, file I/O API library, and auxiliary components 

on each side, Fig. 2. 

 

2.1. DFS daemons 
 

Depending on the source and destination of a data 

transfer process, DFS producer and consumer side 

daemons have different functionalities for data handling, 

including buffering and caching.   For every file I/O that is 

redirected via DFS a new connection is established. 

When the data is transferred from one machine to 

another via DFS, the data sender program needs to 

establish control communication with the local DFS 

daemon first and then start delivering data through 

application process space DFS API. DFS daemons 

establish shared memory buffers that are used to exchange 

data with the user application.  If the data size exceeds 

shared memory buffers capacity, the local disk space will 

be used as a cache to store overflow data.   That could 

impact the DFS I/O performance reducing it to the disk 

bandwidth rates.   That would also mean that the 

consumer could not keep up with the producer I/O rate, so 

not much would be lost.  For large problems virtual 

memory paging could evict pages from the shared 

memory buffers, producing impact on the DFS 

performance.    

 

 

 

Figure 2. DFS Daemons and data exchange channel 

 

The producer daemon manages shared memory buffers 

and controls the data flow from user applications.   It 

establishes a new TCP connection with the remote 

consumer daemon whenever there is a new file redirected 

data added into the data task queue. In the same way one 

producer daemon may connect to multiple consumers if 

data from a single file is delivered to multiple remote 

destinations.  

A similar, almost identical scenario happens on the 

consumer side except for the fact that streaming data 

flows in the opposite direction.  Data is buffered in the 

shared memory.  It can optionally be saved into the local 

file system if a permanent backup is required.  

DFS daemons maintain two kinds of communication 

control links, one between remote daemons, and the other 

between a local daemon and the application. Parallel TCP 

streams, reusable TCP channels, and non-blocking socket 

communication are used to maximize network bandwidth 

utilization and to minimize system overhead associated 

with the network communication layers. 

 

2.2. DFS file APIs 
 

Considering that the vast majority of scientific 

computing applications and legacy applications use 

standard POSIX file manipulation semantics, we have 

decided that DFS APIs be compliant with the POSIX file 

I/O semantics and the calling sequence. The set of APIs 

on both consumer and producer are summarized in Table 

1. 

 

Table 1. Comparison of DFS APIs with POSIX’s 

POSIX DFS Producer DFS Consumer 

open/create shm_pdh_open shm_cdh_open 

read  shm_cdh_read 

write shm_pdh_write  

close shm_pdh_close shm_cdh_close 

 

Shm stands for shared memory, pdh for the producer 

data handler, while cdh for the consumer data handler. 

Source host Target host 

Producer App/API Consumer App/API

Share 
Memory/Disk 

Producer Daemon Consumer Daemon

Share 
Memory/Disk 



To make the interface usable for codes written in 

FORTRAN language, DFS API has a wrapper interface 

available according to the FORTRAN function call 

conventions. 

 

2.3. DFS data streams 
 

We have defined message packets and communication 

semantics between daemons to support both parallel and 

striped file transfers.  To support the data streaming mode; 

we are using a ‘push’ mode, we have defined three size-

variable message types: ‘MSG_OPEN’, ‘MSG_CREAT’, 

and ‘MSG_STORE’ for transfers from the producer side 

to the consumer side. Also in the set is the fixed-size 

message type ‘MSG_CLOSE’. 

A typical data stream from producer daemon to 

consumer daemon has the message order as depicted in 

Figure 3. 

Figure 3. A typical data stream from producer 

daemon to consumer daemon 

 

3. Experiment environment and NGB code 

Evaluation 
 

We describe the performance of our computational 

environment in section 3.1 by presenting Iozone [8] and 

Iperf [9] benchmark run results.  We also give GridFTP 

performance numbers in section 3.2.   These numbers will 

be utilized in the following sections. 

Before the integration of the DFS framework into the 

NGB suite, we did some pre-investigation work to 

determine the NGB codes I/O timelines to estimate 

possible impacts of DFS optimization on NGB execution 

times.  These data are presented in section 3.3. The 

original and DFS enabled NGB I/O performance models 

are presented in Section 3.4. 

 

3.1 Hardware benchmarking 
 

In addition to the CPU performance, disk throughput 

and network bandwidth are the other two important 

factors that have direct effect on NGB running times. 

Running the Iozone suite has shown that our Ultra SCSI 

320 disk can provide about 60MB/s read and write 

throughputs on EXT3 file system without data caching.  

The full scale Iozone benchmark results are shown in 

Figure 4 and Figure 5 for file system write and read rates. 

In the second set of experiments Iperf network 

bandwidth benchmark has obtained 119MB/s bandwidth 

rates on our 1 GbE network over the TCP protocol.   

 
Figure 4. File system write performance 

 

 
Figure 5. File system read performance 

 

3.2 GridFTP performance 
 

To evaluate GridFTP performance we used an internal 

test suite to measure the CPU loads and the network 

bandwidth utilization starting with a single TCP 

connection and all the way up to 10 TCP connections. File 

sizes ranged from 1MB to 1GB.  Since we were not able 

to get good parallel data transfers in our environment, due 

to being bounded by non RAID disk I/O throughput, 

Figures 8 and 9 only show network bandwidth utilization 

of a single TCP connection.    

 

CLOSESTORESTORECREATE/OPEN …



 
Figure 6. GridFTP bandwidth utilization (download) 

 

 
Figure 7. GridFTP bandwidth utilization (upload) 

 
We also measured the average RTT (round trip time) 

by measuring the time by sending thousands of 0-byte 

files. As expected, the DFS protocol overhead is much 

smaller than the overhead of the general purpose HTTP, 

FTP and GridFTP utilities (See Table 2.)     When large 

files are transferred, GridFTP overheads get dwarfed in 

comparison with the total running times, implying that the 

smaller size problems are not reliable indicators for 

performance improvement studies. 

 

Table 2. Round trip time 

Protocol RTT (second) 

HTTP 0.01263 

FTP 0.02360 

GridFTP 0.30452 

DFS 0.002163 

 
The call graph information from Vtune [10] has shown 

that GridFTP spends some time in the security related 

layers. We have measured the time distribution in each 

shared library when uploading 1KB size file by GridFTP. 

 

Table 3. Top 5 time-consuming GridFTP libraries 

Time (µs) Percentage Package Name 

231108 65.32% libcrypto_gcc64.so.0 

98297 27.78% libc.so.6.1 

7663 2.17% libglobus_common_gcc64.so.0 

3438 0.97% Libssl_gcc64.so.0 

3292 0.93% libglobus_xio_gcc64.so.0 

 
DFS overhead should be looked in the proper light.  It 

is not something that we advocate to remedy in GridFTP, 

since this overhead becomes negligible for larger file size 

transfers. 

 

3.3 I/O characterization of NGB benchmarks  

 
To estimate the improvement that can be expected 

from using the DFS framework, we needed to have I/O 

profiles of the NGB codes.  We have used Intel® Trace 

Collector and Analyzer instrumentation software to obtain 

such information. ITC API calls were inserted into NGB 

Fortran source code to generate time stamps of the I/O 

function calls during the execution. Figure 8 is a 

screenshot of an actual ITA run on our system.  By using 

the ITC trace output, we were able to calculate the I/O 

intervals and measure the I/O calls position of the each 

NGB task accurately. The continuous time fragments in 

Figure 8 illustrate the time spent in the read/write/open 

calls and in the whole application. 

After merging the ITC outputs from all of the compute 

nodes, we were able to reconstruct the benchmark 

timelines.  From the results of I/O measurements we were 

able to calculate the I/O portion in each NGB data flow 

graph and how much improvement we can gain via using 

DFS framework. Within these 4 data flow graphs (ED, HC, 

VP and MB) of NGB, HC is the best suitable candidate 

for the DFS embedded optimization.  ED benchmark is 

embarrassingly parallel, without any dependencies, VP 

has unequal data paths leading to stages 5 and 8, limiting 

performance gains, while MB benchmark has multiple 

dependencies, with limited I/O in the first parallel stage. 

Figure 9 illustrates the timeline of the HC (Helical Chain) 

modules and shows overlapped I/O regions. 

 



 
Figure 8. I/O duration measurement by using ITA 

 

 
Figure 9. Time line of DFS enabled HC code 

 
For the class A of the HC benchmark the I/O timelines 

show that 10% of the total time could be eliminated by 

data streaming. 

 
3.4 DFS speed-up estimation of the HC workflow 

 
In the scientific benchmarks, where the computation 

steps are followed with data intensive I/O sections it is 

possible to fully utilize the network or the file I/O system.   

In this case the I/O stage durations could be easily 

determined by the amount of data that needs to be handled.   

Besides class W, that involves mesh filter due to 

different input and output matrix sizes, there are NGB 

class S, A, B, and C data sets that are of our interest.  For 

the HC program, floating point and I/O data sizes are 

listed in Table 4. 

 

 

 

 

 

 

Table  4. Problem size and data size of HC 

Class Tasks Double Float Data Size (bytes) 

S 9 10,140 * 8 648,960 

A 9 1,352,000 * 8 86,528,000 

B 18 5,410,590 * 17 735,840,240 

C 27 21,520,890 * 26 4,476,345,120 

 

 
Figure 10. Theoretical DFS speed-up model for two 

NGB I/O coupled modules. 

 
From Figure 10 we can see that the I/O activity 

between two modules includes file output, file input, 

GridFTP file transfer time, and the scheduling overhead. 

The scheduling overhead is the time between the end of 

file transfer and the beginning of the computation phase 

and involves waiting for the file to arrive:    

 
While [$NUM_INPUTS_RECEIVED lt $NUM_INPUTS] 
do  
Sleep 1 
……. 

 
From the above code section it could be seen that the 

maximum scheduling overhead between two tasks is less 

than one second.   

Based on above measurements and data sizes, the I/O 

duration of the HC class C benchmark can be expressed as: 

,s
grw

O
S

D

S

D

S

D
+++  

Where D is data size, Sr,w,g stands for read, write, and 

GridFTP data transfer speed. Os is the scheduling 

overhead.  Upon substitution the I/O duration comes to: 

ss
sMB

GB

sMB

GB

sMB

GB
27626

/45

5.4

/60

5.4

/60

5.4
=+++  

Actually, after considering I/O caching, the real I/O 

duration is shorter than 276 seconds.     

After DFS integration the HC I/O duration can be 

calculated as: 

bt.C

sp.C

Output

InputGridFTP 

Scheduling Overhead

bt.C

sp.C

DFS

Node2

Node3

Node4

Node5

Node6

Node7

Node8

Node9

sp.A

bt.A

lu.A

sp.A

bt.A

lu.A

sp.A

bt.A

lu.A

Overlapped 

I/O 

0 9850

Node1



,38
/119

5.4
s

sMB

GB

S

D

d

==  

where Sd stands for data transfer speed of DFS. Based on 

above formulae and the calculations, DFS could 

theoretically save, at the best, 238 seconds of the total I/O 

time for the class C problem. 

It should be noted that this is not a fully realistic 

situation, just a useful model.  If the producer and 

consumer are pretty well matched in I/O write and read 

operations respectively or there is enough buffer space to 

offset that, as this is true in our case there is no need to 

cache data on the consumer disk which could degrade the 

bandwidth from 119 MB/s to 60MB/s.  Also not 

investigated is an impact of virtual memory paging when 

evicting shared memory DFS buffers. 

 

4. Computational Environment and DFS 

Optimizing and Tuning  

 
We have done runs on an IA64 cluster. All machines 

were connected with 1 gigabit Ethernet. Every node was a 

2-way SMP machine, equipped with two 1.5GHz 

Itanium2 processors and 2GB physical memory. Each 

node had one 36GB Ultra SCSI 320 hard disk which was 

used as a local storage. 

One of the nodes was used as launcher while the other 

nodes were used as computing nodes. We installed Globus 

toolkit version 4.0 [11] as our Grid middleware. The 

installed OS was RedHat Enterprise Linux 4.0 (with 2.6 

kernel).  We have used updated Intel® C/Fortran compiler 

9.0, with “-O3” optimization level to build NGB programs 

and the DFS framework [12]. Table 5 compares GNU 

gcc/g77; the original makefiles have specified “-O3” 

compilation optimization levels, and Intel® icc/ifort 

compiled HC runs. 

 
Table 5. ICC and GCC compilation impact on HC 

turnaround times 

Class GCC 3.4.3 ICC 9.0 

S 20 20 

W 21 20 

A 446 98 

B 2008 475 

 
It is expected that Intel compilers would have a better 

performance.   For consistency, we prefer to have all of 

the stages of the workflow fully optimized.   The side 

benefit was faster computations and a higher percentage 

of the I/O in the turnaround times.   That produced higher 

DFS performance improvements, a fact that underscores 

the impact and importance of DFS framework on the 

workflow running times. 

 

4.1 Optimization work on the Globus job 

manager 

 
We have changed the polling frequency of Globus job 

manager from 10 seconds to 1 second in order to reduce 

the scheduling overhead, which was dominating the 

execution time for the small size benchmarks.  The polling 

frequency was tested by submitting a command ‘globus-

job-run hostname /bin/sleep time’. Table 6 summarizes 

the impact of the changed polling interval. 

 

Table 6. Response time for 10 and 1 second polling 

intervals 

 
4.2 DFS framework tuning work 

 
To maximize the network bandwidth utilization, we 

have tuned several network parameters. Figure 11 

illustrates the relationship of the internal buffer size and 

network bandwidth utilization for the DFS framework. 

 
Figure 11. Network bandwidth vs. buffer size 

 

The network bandwidth peak values are between 

64KBs and 256KBs; small buffers do not use the TCP 

protocols efficiently, while large buffer sizes tend to 

increase DFS overheads for shared memory management 

and data traffic between the user applications and DFS 

daemons,  so 128 KB buffer size works best. 

 

 

 

10 sec (before) 1 sec (after) 

Sleep Time Real Time Sleep Time Real Time 

0 0.800 0 0.725 

1 10.895 1 1.774 

2 10.870 2 2.888 

5 10.915 5 6.216 

11 21.053 11 11.754 



 

5. Integrating DFS into NGB 

 
The HC data graph flow has 3 computational modules: 

BT, SP and LU. We have located all the I/O API calls and 

have replaced them with the DFS API calls. The code 

section below is the data output part of the LU module 

after the DFS calls substitution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have also modified some points in ‘sparam.c’ file 

to make NGB runs support the largest data set, i.e. class C. 

‘INHOST’ and ‘OUTHOST’ environment variables were 

added into ‘HC’ script to indicate file source and 

destination.  

We have run the original and the modified HC code ten 

times to obtain reliable average turnaround times for each 

problem class.   The results are presented in Table 7. 

 

Table 7. Turnaround times for HC code 

Class Type Time(seconds) Improvement 

GridFTP 20.1 
S 

DFS 15.8 
21.39% 

GridFTP 98 
A 

DFS 87.8 
10.41% 

GridFTP 474.6 
B 

DFS 427.9 
9.84% 

GridFTP 2053.8 
C 

DFS 1853.9 
9.73% 

 

The benchmark results match our previous 

performance improvement estimates.  It is worth noting 

that a modified version of the benchmark with 

proportionally more I/O would lead to a better DFS 

speedup and that the 10% comes from inherent code I/O 

limits and not DFS limitations.   Looking at Figure 1., it is 

obvious that the longer the I/O intervals; i.e. larger 

patterned areas, the more I/O overlap there is, resulting in 

more better producer and consumer overlap and better 

DFS speedups. 21% speed-up for the class S is not very 

reliable indicator of the DFS impact because of the small 

problem size and the proportionally large scheduling and 

other overheads; see Table 3 for the unmodified code run 

profile. 

 

6. Conclusion 

 
It was shown that DFS provides a convenient 

framework for optimizing distributed computing tasks 

with data dependencies between the computational stages. 

10% speedups have been obtained on the DFS enabled 

NGB code Helical Chain on class A, B, and C problems.  

In addition to I/O overlapping, additional DFS framework 

advantage, albeit small was the elimination of the job 

scheduling overheads between the remote tasks.  From the 

result of HC class S we could see that the scheduling cost 

became a significant factor because of a small problem 

size leading to somewhat inflated performance advantages. 

In the ideal situation, DFS can make a chain of tasks fully 

overlapped if their inputs and outputs are closely coupled 

as in Figure 1.  The more and/or the larger overlap of the 

I/O sections between the producer and the consumer the 

more effective the DFS framework becomes. 

 

Acknowledgements 

 
The authors would like to thank Eric Huang and 

Wenguang Chen for their comments during the early 

stages of this study. 

 

 

References 

 
[1] D. H. Bailey, E. Barszez, J. T. Barton, D. S. Browning, R. 

L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederiekson, T. 

A. Lasinski, R. S. Schreiber, H. D. Simon, V. 

Venkatakrishnan, and S. K. Weeratunga, "The NAS 

Parallel Benchmarks", Intl. Journal of Supercomputer 

Applications, v. 5, no. 3 (Fall 1991), pp. 63- 73.  

[2] R. F. Van der Wijngaart and M. A. Frumkin. “NAS Grid 

Benchmarks Version 1.0”. Technical Report NAS-02-005, 

NASA Advanced Supercomputing (NAS), NASA Ames 

Research Center, Mo_ett Field, CA, 2002.  

[3] Intel® Trace Analyzer & Collector 

http://www.intel.com/cd/software/products/asmo-

na/eng/cluster/tanalyzer/index.htm 

[4] M.A. Frumkin, Rob F. Van der Wijngaart. “NAS Grid 

Benchmarks: A Tool for Grid Space Exploration.” Cluster 

Computing 5, pp. 247-255, 2002.  

[5] Peng, L.; See, S.; Song, J.; Stoelwinder, A.; Neo, H.K. 

“Benchmark performance on cluster grid with NGB”; 

Proceedings of the 18th International Parallel and 

Distributed Processing Symposium, 2004. 26-30 April 

2004, Page: 275a.  

call dfs_phd_add_file_dest(outfile, 
'OUTHOST1', retval) 

if ( retval .ne. 0 ) then 
  print *, 'Failure: ……' 
else 
  call dfs_pdh_open(dfs_handle,outfile, 

retval) 
if ( retval .ne. 0 ) then 

   print *, 'Failure: ……' 
else 
   writelen = 5*(isiz1+1)*(isiz2+1)*isiz3 
   call dfs_phd_write_double 

(dfs_handle,u,writelen,retval) 
if ( retval .ne. writelen ) then 
   print *, 'EOF reached' 
endif 
endif 
call dfs_pdh_close(dfs_handle) 
endif 



[6] K. Chen, Z. Huang, B. Li, E. Huang, H. L. Rajic, R. H. 

Kuhn, W. Chen  “Distributed File Streamer: A Framework 

for Distributed Application Data Coupling”, manuscript in 

preparation 

[7] “GridFTP Universal Data Transfer for the Grid”, White 

paper, http://www-

fp.globus.org/datagrid/deliverables/C2WPdraft3.pdf 

[8] Iozone file system benchmark, http://www.iozone.org 

[9] Iperf, TCP/UDP Bandwidth Measurement Tool, 

http://dast.nlanr.net/Projects/Iperf 

[10] Intel® VTune™ Performance Analyzer 

http://www.intel.com/cd/software/products/asmo-

na/eng/vtune/index.htm 

[11] Globus Toolkit 4.0 http://www.globus.org/toolkit/ 

[12] Optimizing Applications with the Intel ® C++ and Fortran 

Compilers for Windows* and Linux* Updated for Intel ® 

Compilers 9.0 WHITE PAPER July 19, 2005 http://cache-

www.intel.com/cd/00/00/21/92/219281_compiler_optimiza

tion.pdf 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


