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Abstract 

Reconfigurable computing systems have already shown 
their abilities to accelerate embedded hardware/ software 

systems. Since standard processor-based embedded 

applications have come to their limits we need new 

concepts for controlling and managing embedded, 

possibly distributed, reconfigurable hardware/ software 

computing systems. Succeeding to previous papers which 
dealt with management aspects of run-time reconfigurable 

systems and related AI-approaches this contribution 

describes an approach and proof of concept of a 

transparent communication mechanism between the 

application layer and its possibly distributed and 

reconfigurable hardware/ software sub-function modules. 

Keywords: management of embedded reconfigurable 

systems, communication concepts 

1. Introduction 

During the last years the deployment of reconfigurable 

hardware has become a growing trend in the academic and 

commercial domains of electrical and computer 

engineering. Because of the increasing risks and cost of 

development ASIC prototypes are hardly affordable to 

many academic institutions and small and medium-sized 

enterprises. So despite of their higher device cost and 

inefficient area use, reconfigurable devices have become 

an interesting and competitive alternative for prototyping 

compared to ASIC prototype designs. For many tasks, 

ASICs are preferred over General Purpose Processors 

(GPP), since ASICs perform significantly better. 

However, they lack the possibility to adapt themselves to 

varying environments. In contrast to this, GPPs can cope 

with branched control flows including recursion etc. so 

they adapt easily to new requirements. As next 

evolutionary step reconfigurable computing can combine 

the performance of ASICs and the flexibility of GPPs. 

Many commercial vendors nowadays already include 

reconfigurable building blocks like Field-Programmable 

Gate Arrays (FPGAs) as core components in their 

products since post-production reconfigurability 

significantly reduces design risks and possible 

maintenance costs so that hardware with reconfigurable 

features is on its way to conquer the markets of tomorrow. 

Additionally this influences the traditional hardware 

design of circuits used in devices, like mobile phones or 

PDAs. Another aspect is that state-of-the-art 

microprocessor-based embedded solutions can no longer 

overcome the growing computational demands of future 

control and communications applications. Since modern 

FPGAs are higher integrated than their previous 

generations offering new features like partial run-time 

reconfiguration and powerful hard-wired on-chip 

processors (e.g. on Xilinx Virtex II pro FPGAs [26]) they 

are highly predestined for a wide range of applications 

making them attractive for a new class of future embedded 

applications. Reconfigurable computing systems have 

already shown the ability to greatly accelerate program 

execution, thereby providing a high-performance 

alternative to pure software-based implementations and a 

programmable alternative to expensive ASICs. The 

development of new architectural hardware/ software 

system concepts [3, 10, 13, 19, 24] by exploiting these 

powerful features of flexible and adaptive hardware-

accelerated coprocessors in combination with a design 

paradigm shift is an adequate approach to adapt to the 

market’s requirements. Nevertheless the availability of the 

best superior reconfigurable architectures will not 

guarantee their success, if no sophisticated control and 

management mechanisms are provided by the system 

developers dealing with fault tolerance aspects and 

application scenarios with dynamically changing 

power/performance constraints. While prior researchers 

have addressed architecture design, programming and 

compilation issues [7, 12], there is still not much 

consensus on what kind of operating system (OS) support 

should be provided for reconfigurable architectures. 

Recent academic approaches already implemented 

complete reconfigurable system-on-chip supporting run-

time reconfiguration of dedicated functions and their 

management at run-time [6, 10, 18, 22, 23, 24]. Some of 

these first approaches have already included low budget 
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embedded operating systems running on soft-core or hard-

wired on-chip processors on FPGA (e.g. uClinux on a 

Xilinx MicroBlaze, [4, 16, 25]). Combining these 

approaches using one or several low-cost reconfigurable 

devices plus dedicated hardware like ASICs or DSPs will 

create flexible and highly adaptive multi-purpose systems 

which can be applied in a variety of application domains 

(e.g. automotive infotainment, multimedia, control-

oriented applications etc.) [8, 10, 18]. 

1.1. Reconfigurable Layered System Concept 

The development and proof of concept of such a 

versatile approach is a main research topic of our research 

group. In the following we want to give a short overview 

on our related previous work and the system concept. One 

of our previous successful approaches consisted in the 

development and implementation of a first run-time 

reconfigurable system-on-chip, supporting flexible on-

demand hardware-task switching and a sophisticated run-

time reconfiguration and task management mechanisms on 

Xilinx Virtex II FPGAs [9, 18, 19]. By exploiting the 

column-wise reconfiguration possibilities of Xilinx Virtex 

II FPGAs it offers at run-time a set of functionalities 

which are switched on demand during operation in a time-

multiplexed way, so that a larger set of functionalities 

appears to be available to the user [18, 19]. Furthermore 

the internal bus-system was modified, so that local 

bandwidth- and topology-adaptive Networks-on-Chip 

(NoC) [2] can be created at run-time, allowing optimized 

energy and resource saving communication and operation 

modes between the instantiated modules [9]. Although the 

tested application domain in our previous work targets 

currently at automotive control applications with soft time 

and security constraints we intend to extend our approach 

to other fields of application as well. Figure 1 

(middle/bottom section) above shows how this previous 

approach can be re-used as one of multiple-instances of 

run-time reconfigurable hardware/software sub-systems 

based on FPGA, DSP or standard processor technology. 

As can be seen from figure 1, the system is logically 

divided into different layers. On top at the application 

level different applications are executed depending on 

their location and mode of operation (as parallel hardware 

or sequential software tasks). Most applications are 

conceived to have major parts in software and some 

dedicated parts accelerated in reconfigurable hardware or 

DSP. An application programming interface layer is 

introduced separating the application level from lower 

sub-system levels [22, 23]. This API offers dedicated 

services for inter-layer communication and Quality of 

Service (QoS) negotiation mechanisms which can be used 

for sub-function calls. Another system level which can be 

settled in the middle of the system hierarchy is responsible 

for the proper allocation of sub-functions requested by the 

application layer. Depending on the QoS demands, given 

by a calling application an appropriate implementation of 

the desired sub-function has to be found from a run-time 

function repository. The retrieval of suitable 

implementation variants of a requested function type 

based on given QoS-parameters can be performed by 

applying a hardware-accelerated Case-Based-Reasoning 

(CBR) approach [1, 20]. Apart from the needed 

information about available function implementations and 

their QoS-features the system will need information about 

its current load and power consumption status, which are 

provided by the HW-Layer API one level below. This 

HW-Layer API is the responsible interface concerning all 

hardware relevant aspects like resource consumption, low-

level communication, fault tolerance aspects and 

reconfiguration of system parts. It connects the high level 

system layers to the local system controllers, which can be 

located on different devices (e.g. standard CPU, FPGA 

(soft-core CPU) or DSP) or on the same chip as well. The 

local sub-controllers are responsible for the management 

of local run-time reconfiguration and other sub-tasks like 

local task/ resource management and communication 

issues [18, 19]. It should be noted that the system as 

shown in figure 1 can be comprehended as distributed 

system built of discrete devices. Nevertheless the proposed 

concept can be realized as system-on-chip as well. Since 

we have already described detailed aspects of the proposed 

system’s resource-allocation- management strategies and 

CBR-approach in earlier papers [18, 19, 20] we will focus 

in this contribution on another important aspect, the 

system’s communications architecture providing 

transparent communication between applications and their 

allocated low-level sub-systems. 

Our contribution is structured as follows. In section 2 

we give an overview on the demonstrator's current 

implementation and its different components. Section 3 

outlines the internal hardware/software system structure 

Figure 1. Reconfigurable system layers 
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and operating system adaptations. In section 4 we 

introduce the Universal Multiplexing Multi-channel 

Message Transceiver (UM
3
T) concept and an example 

scenario. Current FPGA synthesis results are presented in 

section 5. The paper concludes with a summary and 

perspectives on our future work. 

2. System Platform Overview 

 In the following we want to give an overview on the 

system demonstrator and its used components. As figure 2 

shows, the complete demonstrator consists of three main 

components. The first bigger component is a Xilinx 

ML 310 board featuring a Xilinx Virtex II pro XC2VP30 

FPGA including two on-chip PowerPC processors (on-

board clock 100 MHz). The second main component is a 

low cost Digilent FPGA-board equipped with a Xilinx 

Spartan-3 XC3S400 low-power FPGA (on-board clock 50 

MHz). The third main component is a standard of-the-

shelf 2 GHz Pentium M laptop computer which is used for 

control and debugging purposes. As can be seen from 

figure 2 both boards are connected through a Controller 

Area Network-bus (CAN) [17] as shared communications 

medium. The CAN-bus protocol is known as a robust 

high-speed real-time capable serial-bus communication 

standard in the automotive domain where it is used to 

interconnect engine control units and other electronic 

automotive devices. The laptop computer is connected to 

the CAN-bus through a PCMCIA-CAN-connector card, 

which enables for communication and bus sniffing 

purposes. The laptop’s software functionalities for 

accessing the CAN-bus are provided by the CANoe 

software toolkit, which offers all needed means for 

programming interactive CAN-aware applications [21]. 

The laptop can be alternately connected to both boards 

through a JTAG-interface for configuration programming 

and run-time debugging purposes. Additionally the laptop 

is connected via a hyper-terminal on its COM RS-232 

ports to both boards enabling for text I/O and ASCII-data 

streaming. The ML 310 board features an attached LCD-

display for text output and a simple self-made audio 

output device. As mentioned above both boards are 

connected to CAN-bus through special CAN-transceiver 

cards which provide an analog-digital interface between 

CAN-bus and digital on-chip CAN-IP-core functionalities. 

The used Verilog CAN-IP-core originates from an open-

source hardware project where it was developed on the 

basis of the original CAN-bus system’s specifications [17] 

for providing a free licensed CAN-IP-core to the 

community. The interconnecting CAN-bus main cable and 

the described CAN-transceiver cards are because of cost 

reasons self-designed based on the given CAN-bus 

system’s specifications. Unfortunately the deployed cable 

has a lower performance compared to commercial 

expensive high-quality CAN-connector bus-cables. The 

main problem was to correct the cable’s wave impedance 

adjustment to a value of 120 Ohms which was not such 

successful so that our best efforts resulted in a 280 kbit/s 

error free peak performance compared to a specified 

theoretical value of 1 Mbit/s. Although it is possible to 

operate the bus in the range of 1 Mbit/s the transmission 

error rate was much too high for being tolerated. 

3. Hardware/Software System Structure 

As mentioned above the ML 310 features a 

Virtex II pro FPGA with two hard-wired on-chip PowerPC 

processors. These processors are used to set up an on-chip 

multi processor system which is driven by a real-time 

operating system in a master/slave fashion on both 

processor cores. Figure 3 gives an overview on the internal 

on-chip system structure. On every processor we 

implemented an instance of the µC/OS-II real-time 

operating system [11, 14]. On top of each OS 

implementation a set of several dedicated system-service 

and application tasks is provided. The service tasks are 

responsible for the local resource management, peripheral 

driver support and communications handling (UM
3
T, 

section 4). A superordinate centralized function is inherent 

in the allocation management function which is located on 

Figure 2. Hardware system-setup 
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the master-processor (PPC0). As mentioned in section 1 it 

is responsible for handling function requests from local 

(and possibly non-local) application tasks [20]. 

The used operating system offers various advantages. It 

is highly scalable and can be run from read-only memory 

if needed. It features a preemptive and deterministic 

multitasking kernel for microprocessors and micro-

controllers. Up to 63 application tasks ( +1 kernel task) 

can be handled and most common OS services like 

semaphores, message queues and time/task management 

are supported. The execution time for most of the provided 

kernel services is constant and deterministic and does not 

depend on the number of running application tasks. The 

source code is completely available as ANSI C code and is 

very well documented [11]. Furthermore it is completely 

royalty free for non-commercial use. It can be ported to 

various processor-based target architectures and only some 

minor assembler level adaptations have to be done for 

porting the operating system to a new hardware platform. 

µC/OS-II is certified by FAA [5] and MISRA [15] for 

compliance showing that µC/OS-II is a very robust and 

reliable piece oft software. Since the actual on-chip 

structure on the Virtex II pro FPGA is rather complex, 

figure 3 shows only a simplified view of the modular 

hardware/software on-chip interdependencies. Even 

though it was possible to interconnect both processors via 

a common On-chip-Peripheral Bus (OPB), we decided to 

implement both processors with their own separate buses, 

since we wanted to realize two more or less independent 

subsystems. Nevertheless we had to provide a fast 

communication channel between both processors. 

Although there possibly exist better solutions we 

implemented a shared-memory by using on-chip dual-

ported Block-RAM (BRAM) resources enabling both 

processors to access the RAM-block via their own 

Processor-Local-Bus (PLB) interconnections. The 

available on-chip RAM resources where not sufficient for 

providing enough program-memory for both operating 

systems and their application executables, since we needed 

the BRAM resources for other hardware functions (like 

the CAN-IP core and CBR-unit) also. So we used the 

plentiful available on-board 256 MB DDR RAM for 

storing there all operating system and application 

executables in disjoint memory regions. The Xilinx 

Embedded Development Kit (EDK 6.3) [26] which was 

used for the development, synthesis and testing did not 

allow common memory areas for both processors. So we 

used a little trick by mapping a block of 16 KB dual-

ported BRAMs as shared memory into both memory 

areas. The shared-memory communication channel is set 

up by low-level driver threads which synchronize by a 

simple handshake protocol. Apart from the shared-

memory the on-chip implementation features some 

peripherals like UART/COM, CAN-IP, LCD-Display and 

a simple DAC for sound output. Since these peripherals 

are connected separately to their local processor’s OPB 

they are treated by their processors as private peripherals, 

which is important for the resource management approach 

as it will be briefly outlined in section 4. 

Figure 4 gives a simplified overview on the Spartan-3 

FPGA secondary slave system. Compared to the previous 

PowerPC platform the Spartan-3 does not come with a 

hard-wired CPU so we mapped the Xilinx MicroBlaze 32-

bit soft-core RISC processor [26] together with its OPB-

connected UART, CAN-IP and some small test-IP 

peripherals on FPGA. Like on the Virtex II pro platform 

the available on-chip memory resources were not 

sufficient for the executables so that we moved all 

executables on the 1M-byte fast asynchronous on-board 

SRAM which offered enough resources for our purposes. 

The Spartan-slave platform uses nearly the same µC/OS-II 

implementation like on PowerPC. Apart from some minor 

low-level modifications concerning timer & interrupt 

handling we could migrate the OS-kernel and management 

source codes without any extensive adaptations, which is 

one of the great benefits of µC/OS-II. Since we had to use 

on-board memory in both cases for storing the run-time 

Figure 3. Virtex II pro platform 
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executables it was not possible to embed the opcodes 

inside the FPGAs’ bitstreams. So we had to upload 

subsequently all executables after FPGA configuration 

through the processors’ JTAG-debugger interface. Albeit 

we intend to replace in near future the resource limited 

Spartan-board by a modified µC/OS-II adapted run-time 

reconfigurable FPGA-sub-system, we wanted to get some 

first motivating results on the feasibility of our sub-system 

spanning concept. 

4. Universal Multiplexing Multi-channel 

Message Transceiver Concept (UM
3
T) 

As previously mentioned in section 1 the resource and 

allocation management mechanism is responsible for 

handling the application’s reservation requests on sub-

functions calls. The central allocation manager’s main 

tasks are the retrieval of suitable function-implementation 

variants and a feasibility check of the found functions in 

the context of the callers priority by considering the 

resource consumption and assignment. At run-time the 

manager stores administrative data on the current set of 

active instantiated functions in a function resource 

allocation table (FRAT) (figure 6 bottom). It contains 

relevant allocation and reference informations like the 

application handler (Alloc ID) and on which hardware-

unit the function was instantiated. The table contains as 

many entries as functions implementations can be 

provided by the sub-systems. Each implementation variant 

offered by a sub-system is identified by its unique 

identifier (UID). Furthermore the table stores the calling 

application’s priority and its reservation status. Other 

table-fields store information on each implementation’s 

power consumption (PC) and required bandwidth (BWR) 

which have been pre-estimated by previous simulation and 

testing of the functions’ models. These information can be 

evaluated in future versions for run-time optimizations. It 

should be noted that each table is characterized by a 

realization identifier (RID). This RID is provided by the 

CBR-retrieval unit [20] which checks a function-database 

for suitable function realization variants which match best 

to the application’s request description. Figure 5 and 6 

give a brief overview on the needed steps that occur 

during a function allocation. Figure 5 shows the decision 

steps to be taken if a requested (and unique) resource is 

already in use by an other application. Depending on its 

priority the calling application may preempt the 

application of lower priority. In that case the FRAT gets 

updated and the preempted application either may request 

another resource providing the same function type with 

lower quality or it can try to request the resource until it 

gets a new grant. Figure 6 gives a different view on the 

allocation steps. An example application (UID 68) 

demands an FIR-filter function (1). The allocation 

manager forwards the relevant parts of the request to the 

CBR-retrieval unit (2) which attempts to find a set of best 

matching realizations and their related RIDs (3).

Depending on the found RIDs the FRAT is checked for 

matching non-used table entries (4). Allocated resources 

get only de-allocated if no free resources were found and 

the requesting application’s priority overrides the allocated 

resource’s application priority. In the next step the 

allocation manager will allocate the function module by 

Figure 5. Preemptive priority controlled  
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sending an allocation command through UM
3
T to the local 

sub-system manager where the resource gets configured 

and prepared to run (5)(6). The local sub-system manager 

responds by sending a positive acknowledge via UM
3
T to 

the allocation manager (7) who updates its FRAT (8).

Finally the successful allocation will be reported back to 

the calling application (9) which in return can 

communicate directly with its allocated function (10)(11).

The universal multiplexing multi-channel message 

transceiver (UM
3
T) concept is basically a node-bridging 

packet oriented routing protocol mechanism. It is a central 

system layer which multiplexes the inter-module and 

application⇔system⇔module communication (see figure 

7). The used data frame format was derived from the CAN 

message data payload format, since CAN is a central bus 

of the demonstrator so that data-frame transformations 

between different physical ports can be simplified due to 

this fact. An UM
3
T-data-frame consists of a target UID, 

source UID, data length and up to 8 data bytes. Since 

CAN furnishes this UM
3
T-frame with its own headers, 

and provides low-level error-detection and retransmit-

services this does not need to be handled by UM
3
T, 

although corresponding high-level services are 

conceivable for future versions. UM
3
T performs the 

conversion and forwarding of incoming buffered data 

packets to other communication ports (e.g. shared 

memory, UART and other peripherals) which are 

connected to the same local device node. The packet 

forwarding is performed by the corresponding low-level 

port drivers, bypassing communication without involving 

the application layer (see figure 7). Local UM
3
T port 

tables are used containing UID-ranges and their 

corresponding output ports (see figure 8 top). The UID-

range identifies all function-modules and sub-system 

managers which can be (in)-directly reached through the 

given output port. This way, devices which don’t have a 

direct connection to a central system bus, get the 

possibility for sending their data to their destinations 

without having to know about the route to be taken. This is 

an interesting aspects for integrated systems 

communicating through bridged networks-on-chip [2]. 

Another benefit of UM
3
T that we figured out is its 

potential use for bus-diagnosis purposes. Instead of buying 

expensive CAN-diagnosis hardware we can use for 

example the cheap Spartan-board and its UART/ UM
3
T

connection for diagnostic measurements on the connected 

CAN-bus. The use of UID ranges offers potentials 

concerning an optimization of the port mapping tables’ 

size and access speed by organizing the heterogeneous 

network as a hierarchical spanning tree. This way every 

sub-tree gets its own unique UID-range. Additionally it is 

possible to subdivide the UID into a node-ID and a sub-ID 

for addressing the local node’s manager and sub-modules. 

The UM
3
T port table mapping and forwarding procedure 

is rather simple and can be potentially moved from 

software implementation into a dedicated interface IP-

block if the network node does not provide processor 

resources. Every legal packet which arrives at its final 

destination node will be forwarded to the node’s local 

message distributor, a sub-unit of UM
3
T. There a local 

table is used for assigning the packet to its destination 

function-module (see figure 8). 

It should be noted here that the CAN-bus protocol does 

a one-to-many communication where the sender and not 

its destination is identified in the CAN-packet header, so 

Figure 7. System view - UM
3
T-layer 
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each node connected to CAN-bus has to accept all arriving 

packets from the bus. This overhead can be easily handled 

by UM
3
T which checks only the UM

3
T-headers target 

UID on its local port map. If input port and output port are 

equal the incoming packet can be dropped for preventing 

from packet duplication. Broadcast communication is 

currently not supported by UM
3
T since most data 

dependencies between applications and their sub-functions 

are simple single layered trees than complex hierarchic 

structures. Nevertheless we conceive as a future extension 

sub-modules that may allocate other sub-functions by 

themselves, creating this way chains and trees. As shown 

in figures 2, 3, 4 we implemented the demonstrator as a 

heterogeneous network. The system was tested by 

applying different application request scenarios. We used 

the laptop computer for inserting text (1) and audio (2) 

data streams into the connected RS232-COM (1) (via 

Spartan-board) and CAN channels (2). Both PowerPC 

processor’s provided the handling applications that 

reserved the needed peripheral output and display 

resources by using the allocation management service. 

After their reservation the incoming streaming data were 

directly sent via UM
3
T to their output destinations (LCD-

display, low-rate 16 kHz WAV-out). We programmed on 

the laptop a high priority CANoe-based application that 

could alternately request and release the already allocated 

resources for its own data streams. Each time we claimed 

through that application one or both output peripherals we 

could observe the immediate switching of the output 

streams. As soon as we released the seized resources the 

previous owners regained the output devices and 

continued their job. A buffering of interrupted streams, 

although possible, was not implemented in this version. 

Just to test and show that communication of third party 

applications is not interfered an additional application (on 

PPC1) performed distributed calculations by using a 

reserved hardware-IP on the Spartan-board. The results 

were sent back to their calling application and their 

sequential order and correctness were verified. Exclusive 

measurements of the shared memory channel between 

PPC0 and PPC1 showed a possible peak data rate of 195 

kB/s. Although table 3 shows that much faster CAN-data 

rates are possible in principle we had to reduce the bus-

speed to 280 kBit/s (35 kB/s), since during our tests we 

identified our self-designed CAN-bus connector-cable as 

bottleneck, which prevented us from doing other stress 

tests on the system. Apart from this problem we could 

prove the operativeness and feasibility of our concept. 

5. Implementation Results 

The tables 1-4 give an overview on the needed FPGA 

resources on Virtex II pro and Spartan-3. Because of the 

larger size of Virtex II pro we still have plenty of free 

CLB resources left (approx. 67 %), that we can use for 

other purposes. On the other hand the reached maximum 

frequency of 101 MHz is very close to the on-board clock. 

Table 2 shows that the resources of Spartan-3 are 

completely exhausted. Since we mapped a MicroBlaze 

processor, CAN-IP and small test-peripherals on that chip 

we had to spend some efforts until synthesis and place & 

route were successful. The standalone synthesis of our 

adapted CAN-IP cores (see also table 3) showed that they 

can be operated at even higher frequencies. Table 4 shows 

the size of the different executables on PowerPC and 

MicroBlaze. Although PPC0 and PPC1 are configured with 

different applications and system services the code sizes 

are only slightly different, since both use the same OS- 

and UM
3
T-implementation. Compared to that results the 

MicroBlaze-implementation consumes only the half size 

of code which might be caused by other compiler settings. 

6. Conclusions and Outlook 

This contribution presented a system concept of 

interconnected heterogeneous hardware/ software 

components that can dynamically allocate and release 

system resources depending on priorities and QoS 

demands. We introduced and demonstrated a first version 

of the UM
3
T-protocol which allows indirect 

Table 1. XC2VP30 synthesis results 

External IOBs 94 out of 556 16% 
PPC405s 2 out of 2 100% 

RAMB16s 91 out of 136 66% 

SLICEs 4532 out of 13696 33% 
BUFGMUXs 7 out of 16 43% 

DCMs 2 out of 8 25% 

JTAGPPCs 1 out of 1 100% 
TBUFs 8 out of 6848 1% 

Max frequency 101 MHz 

Table 2. Spartan-3-400 synthesis results 

External IOBs 85 out of 173 49% 
RAMB16s 9 out of 16 56% 

SLICEs 3300 out of 3584 92% 

   SLICEMs 356 out of 1792 19% 
BUFGMUXs 2 out of 8 25% 

MULT18X18s 3 out of 16 18% 

Max frequency 52 MHz 

Table 3. CAN IP resource usage  

SLICEs (XC2VP30) 1000 out of 13696 7% 

SLICEs (Spartan 3-400) 855 out of 3584 23% 

External IOBs 3 on both FPGA types 
RAMB16s 3 “ 

BUFGMUXs 2 “ 

Max frequency (XC2VP30) 124 MHz (standalone) 
Max frequency (Spartan 3-400) 89 MHz (standalone) 

Table 4. Overall size of executables (KB) 

ML 310 Virtex II pro PPC0 295 kb (Kernel approx. 60 %) 

ML 310 Virtex II pro PPC1 294 kb “ 
Spartan-3 MicroBlaze 150 kb “ 



communication between the system’s functional 

components regardless of location and local physical layer 

properties. It should be noted that UM
3
T can be flexibly 

extended by other bridge modules supporting other 

standards like LIN, USB or Ethernet. Additionally it is 

conceivable to move later the UM
3
T functionality into 

HW-accelerated IP-blocks, including message buffering, 

translation and forwarding. We plan to extend the current 

resource reservation process in a way that sub-module 

chains and trees can be created, which implies changes to 

the allocation/ de-allocation mechanism concerning 

aspects like locality/ neighborhood relations of resources 

and garbage collection issues. To get closer to our goals it 

is furthermore intended to include partial run-time 

reconfigurable hardware modules on our Virtex II pro 

platform which are interconnected by a packet oriented 

local network on-chip as a part of UM
3
T. Finally the 

project shall be driven into the direction of the highly 

topical organic computing paradigm providing new 

features like self-adaptation, self-healing and self-

optimization. 
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