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Abstract

Graph alliances are recently developed global prop-
erties of any symmetric graph. Our purpose in the
present paper is to design self-stabilizing fault tolerant
distributed algorithms for the global offensive and the
global defensive alliance in a given arbitrary graph. We
also provide complete analysis of the convergence time
of both the algorithms.

1. Introduction

A relatively new concept of alliances in arbitrary
network graphs has been recently studied in connection
with reliability of networks [1, 2, 3, 4, 5]. Intuitively,
a node in a graph is said to be a defender of a neigh-
boring node, if both the nodes are in the alliance, or
both the nodes are not in the alliance. Also, a node
is considered a defender of itself. A node is said to be
an attacker of an adjacent node, if one of them is in
the alliance but the other one is not. A node is called
defended, if the number of its defenders is greater or
equals to the number of attackers. And a node is called
to be attacked, if the number of its attackers is greater
or equals to the number of defenders. There are two
basic types of alliances: offensive alliance and defensive
alliance. In an offensive alliance, all the nodes that are
not in the alliance set are attacked. In a defensive al-
liance, all the nodes that are in the alliance set are
defended. An alliance set is global if it is also a domi-
nating set. We give the formal definitions of offensive
alliance and defensive alliance in the next section.

Most of the essential fundamental services for mo-
bile networked distributed systems (ad hoc, wireless
or sensor) involve maintaining a global predicate over
the entire network (defined by some invariance rela-
tion on the global state of the network) by using local
knowledge at each of the participating nodes. Graph
theoretic optimization problems remain popular and
useful for such dynamic networks; fault tolerant dis-
tributed protocols for such problems provide the key

resources for designing such wireless, sensor and ad hoc
networks and they offer new insight into the fundamen-
tal role of discrete distributed algorithms in developing
these real life applications. Self-stabilization is a rel-
atively new paradigm for designing such localized dis-
tributed algorithms for networks; it is an optimistic
way of looking at system fault tolerance and scalable
coordination, because it provides a built-in safeguard
against transient failures that might corrupt the data
in a distributed system. The concept was introduced
by Dijkstra in 1974 [6], and Lamport [7] showed its rele-
vance to fault tolerance in distributed systems in 1983;
a good survey of early self-stabilizing algorithms can
be found in [8] and Herman’s bibliography [9] also pro-
vides a fairly comprehensive listing of most papers in
this field. Self-stabilizing algorithms are fault tolerant.
Starting from any illegitimate states, the system will
converge to legitimate state. Several authors have con-
sidered self-stabilizing algorithms for graph problems.
For example, matchings are studied in [10, 11], maxi-
mal independent sets in [12], and domination in [13].
In some sense, the concept “graph problem” is not very
restrictive as it can apply to any problem where there
is some static global calculation in the network. In this
paper, our purpose is to present two self-stabilizing al-
gorithms for minimal global offensive alliance and 1-
minimal global defensive alliance.

A self-stabilizing algorithm is called uniform, if all
the vertices run the same set of rules. Both of our two
algorithms are uniform in that sense. A self-stabilizing
algorithm is anonymous, if the computation involved
in the algorithm does not require unique id for each
vertex; otherwise the algorithm is called id-based. Our
offensive alliance algorithm is anonymous, but our de-
fensive alliance algorithm is id-based. The defensive
alliance algorithm uses the technique developed in [14].

2. Alliances

For the purpose of this paper we define a graph G
to be a pair (V, E) where V denotes the set of vertices
(nodes) and E to be the set of undirected edges in
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the graph; we assume that the graph G is connected.
For any vertex v ∈ V we define N(v) to be the open
neighborhood of the vertex v, i.e., the set of vertices
that are adjacent to v in G and N [v] to be the closed
neighborhood of the vertex v, i.e., N [v] = N(v) ∩ {v}.

2.1. Global Offensive Alliance

Definition 1 Given a graph G = (V, E), a global of-
fensive alliance S is defined to be a subset of V , such
that ∀v ∈ V −S, we have |N [v]∩S| ≥ |N [v]∩ (V −S)|.

Remark 1 A global offensive alliance S is always a
dominating set for the graph G, since ∀v ∈ V −
S, |N [v] ∩ S| ≥ |N [v] ∩ (V − S)| → |N [v] ∩ S| ≥ 0,
i.e., any node of G not included in the set S is adja-
cent to at least one node in S.

A global offensive alliance S is called minimal when
no proper subset of S is a global offensive alliance of
the graph G. The following lemma provides an efficient
way to check the minimality of a global alliance of a
graph.

Lemma 1 If S is a global offensive alliance of a graph
G, but it is not minimal, then there exists a node i ∈ S,
such that |N(i) ∩ S| ≥ |N(i) ∩ (V − S)| + 1.

Proof : If S is not minimal, there exists a S′ ⊂ S
which is a global offensive alliance. For any node i ∈
S − S′, by definition of global alliance, |N [i] ∩ S′| ≥
|N [i]∩(V −S′)|, or in other words, |N(i)∩S′| ≥ |N(i)∩
(V − S′)| + 1. Since S′ ⊂ S, we have |N(i) ∩ S| ≥
|N(i) ∩ S′|, |N(i) ∩ (V − S)| ≤ |N(i) ∩ (V − S′)|. So
|N(i) ∩ S| ≥ |N(i) ∩ (V − S)| + 1. �

An example of global offensive alliance in a graph of
size 9 is given in figure 1. The black nodes represent
the global offensive alliance.

Figure 1. Example: global offensive alliance

2.2. Global Offensive Alliance Algorithm

Each node i maintains a boolean flag Fi to denote
whether the node is in the offensive alliance S. When
the algorithm terminates, the set of nodes with Fi =
true gives the minimal global offensive alliance set S.
The algorithm is shown in Figure 2.

The algorithm consists of two rules. A node exe-
cutes Rule 1 to decide locally if it should enter into the
alliance set. Node i goes in the set (by setting flag Fi),
if it is not in the set yet and the number of its current
attackers is less than the number of its defenders. A
node executes Rule 2 to decide if should leave the al-
liance set. Node i leaves the set (by reseting the flag
Fi), if it is currently in the set and the number of its
current defenders is greater than or equals to the num-
ber of its attackers plus 1, i.e., after i goes out of the
set, number of nodes in N [i] belonging to S (i.e., nodes
with their flag F set) will be equal to or greater than
the others.

2.3. Correctness

Lemma 2 If the algorithm converges, the set S
marked by boolean flag F is a global offensive alliance.

Proof : When the algorithm converges, for any node
i that have Fi = false, there must have |{j|j ∈ N [i] ∧
Fj = true}| ≥ |{j|j ∈ N [i] ∧ Fj = false)}|, otherwise
node i will be privileged to move by rule R1. So by
definition, S is a global offensive alliance, �

Theorem 1 When the algorithm converges, the set S
marked by boolean flag F is a minimal global offensive
alliance.

Proof : By Lemma 2, S is a global offensive alliance.
If S is not minimal, by lemma 1, there exists a node
i ∈ S, s.t. |N(i)∩S| ≥ |N(i)∩ (V −S)|+ 1. Thus this
node i will be privileged by rule R2. �

2.4. Complexity

Theorem 2 The algorithm converges in 2m+n steps,
where n = |V | and m = |E|.

Proof : In a given system state, call an edge to be
an “x-edge” if exactly one of its two ending nodes is in
the set S and define an integer X as X = |{(u, v)|Fu =
true ∧ Fv = false}|, i.e., X denotes the number of
x-edges.



R1:
{

if Fi = false ∧ |{j|j ∈ N [i] ∧ Fj = true}| < |{j|j ∈ N [i] ∧ Fj = false)}|
then Fi := true

R2:
{

if Fi = true ∧ |{j|j ∈ N(i) ∧ Fj = true}| ≥ |{j|j ∈ N(i) ∧ Fj = false)}|+ 1
then Fi := false

Figure 2. Minimal Global Offensive Alliance Algorithm

Consider the scenario when node i executes rule
R1: before the move there are |N(i) ∩ S| many x-
edges incident on node i, and after the move, there
are |N(i) ∩ (V − S)| many x-edges incident on node
i. Since |N [i] ∩ S| < |N [i] ∩ (V − S)|, |N(i) ∩ S| ≤
|N(i) ∩ (V − S)|. So execution of rule R1 does not de-
crease X . Similarly, when a node i executes rule R2,
there are |N(i)∩(V −S)| many x-edges incident at node
i before the move, and there are |N(i)∩S| many x-edges
after the move. Since |N(i)∩S| ≥ |N(i)∩ (V −S)|+1,
execution of rule R2 always increases X . If m denotes
the number of edges in the graph G, there can be at
most m executions of rule R2. Also note that each ex-
ecution of R2 decreases |S| by 1 and each execution of
R1 increases |S| by 1. Since |S| ≤ n, so there can be at
most m + n number of R1 executions. Consequently,
total number of moves made by the algorithm in the
worst case is 2m + n. �

3. Global Defensive Alliance

Definition 2 Given a graph G = (V, E), a global de-
fensive alliance S is a dominating subset of V , s.t.
∀v ∈ S, |N [v] ∩ S| ≥ |N [v] ∩ (V − S)|.

A global defensive alliance S is 1-minimal when for
any v ∈ S the set S − {v} is not a global defensive
alliance. A global defensive alliance S is called mini-
mal when no proper subset of S is a global defensive
alliance.

Remark 2 A global defensive alliance can be 1-
minimal but not minimal.

For example, consider C3×P5 (Figure 3). The set of
nodes {1, 4, 7, 8, 9, 10, 13} is a 1-minimal global defen-
sive alliance; however, this set is not minimal, because
its subset {1, 4, 7, 10, 13} is also a global defensive al-
liance.

Our objective is to develop a self-stabilizing algo-
rithm for a 1-minimal global defensive algorithm. Even
when we do not require the set to be minimal, there
seems to be no simple way to design a self-stabilizing
algorithm where the nodes take action based on local

knowledge of its immediate neighbors. By definition,
a global defensive alliance needs to be dominating and
defended; thus, a node cannot enter into a locally legit-
imate state by changing its own state alone. Consider a
node where the nodes in its closed neighborhood is not
in the global defensive alliance set. If this node stays
out of set, it is not dominated. If this node moves into
the set, it is not defended. Hence the node cannot make
decision by only the distance one information. We use
the interesting lock/unlock protocol proposed in [14]
to design our algorithm for 1-minimal global defensive
alliance.

3.1. Algorithm

Each node i maintains following variables:

• A boolean flag Fi; Fi = 1 indicates that node i
belongs to the defensive alliance S [When the al-
gorithm terminates, nodes with Fi = true gives
the 1-minimal global defensive alliance set S.

• A pointer variable Pi that serves as an exclusive
lock. A node i gets the lock iff all nodes in its
neighborhood is pointing to it.

• An integer variable ai that stores the number of
defensive alliance nodes in the neighborhood of
node i, i.e., the number of nodes j ∈ N(i) with
Fj = 1. We use b(i) to denote |{j|j ∈ N(i)∧Fj =
true}|. At any system state, the stored variable
ai at node i may not be equal to b(i); thus, when
node i makes a move, it updates ai to b(i) to reflect
the most recent changes.

Definition 3 For any node i, the function minn(i) is
defined to be the minimum node in the open neighbor-
hood of node i that points to itself, i.e., minn(i) =
min{j|j ∈ N(i) ∧ Pj = j}. Also, min φ = null.

Definition 4 A Boolean function h(i) is defined to be



the anticipated value of Fi as

h(i) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (Fi = 0 )
∧

((∀j ∈ N(i)|Fj = 0)
∨ (∃j ∈ N(i)|Fj = 1 ∧ aj + 1

< deg(j) − aj))
0 if (Fi = 1 ) ∧ (∃j ∈ N(i)|Fj = 1 )

∧ (∀j ∈ N(i)|Fj = 1 ∧ aj

≥ deg(j) − aj + 1)
Fi otherwise

Remark 3 Consider the example shown in Figure 4,
where the black nodes are those with flag F = 1 and
the white nodes are those with flag F = 0. Assume
that for each node i, ai has been updated to b(i), the
correct number of black nodes in the neighborhood N(i)
of node i.

• If Fi = 0, and none of the nodes in the close neigh-
borhood of node i is in the global defensive alliance,
i is anticipated to enter the alliance (since global
defensive alliance is a dominating set). Node 6 in
Figure 4 is an example.

• If Fi = 0, and some neighbors of node i are already
in the alliance but do not have sufficient nodes to
protect them, i is also anticipated to enter the al-
liance; node 3 is an example (note that node 2 is
the neighboring node that is not defended).

• f Fi = 1, and i is adjacent to some other nodes in
the alliance, and removing i from the alliance set
will not leave its neighboring alliance node unpro-
tected, then i is anticipated to leave the alliance (to
strive for minimality). In the example, if node 4
is switched to white color, its black neighbor, node
7, is still defended, hence h(4) = 0

Definition 5 We define a Boolean function ψ(i) as
follows:

Figure 3. Example: 1-minimal global defen-
sive alliance

ψ(i) def=

⎧⎪⎪⎨
⎪⎪⎩

|{j|j ∈ N(i) ∧ Fj = 1}| ≥ 1 if Fi = 0
|{j|j ∈ N(i) ∧ Fj = 1}| + 1
≥ deg(i) − |{j|j ∈ N(i)
∧ Fj = 1}| if Fi = 1

Remark 4 When node i is not in the alliance set, i.e.,
Fi = 0, ψ(i) is defined as whether i is dominated by
some nodes in the alliance set; similarly, when i is in
the alliance set, i.e., Fi = 1, ψ(i) is defined as whether
i is protected by its alliance node neighbors and itself.

Definition 6 The global legitimate system state is de-
fined to be a system state when ψ(i) = true for all
nodes in the graph, i.e., the set of nodes with Fi = 1
defines the global defensive alliance set of the graph.

The self-stabilizing algorithm is shown in figure 5.
We make the following observations.

• The rule R1 updates the variable ai so that i re-
veals the most recent changes of the status of its
neighboring nodes. This update is performed ev-
ery time a node makes a move.

• A node executing rule R2 asks for the lock and
gets it only when all its neighbors are pointing to
null.

• When a node i is not holding the lock (i.e., not
pointing to itself, it executes rule R3 to point to
the minimum possible node in its neighborhood
that is holding the lock, if any.

• If a node i holds the lock (i.e., Pi = i) but there
exists a lower neighbor with a lock, node i releases
the lock and points to that neighbor by executing
rule R4.

Figure 4. Example: Anticipated value of Fi



R1:
{

if ai �= b(i)
then ai := b(i)

R2:
{

if Fi �= h(i) ∧ Pi = null ∧ ∀j ∈ N(i) → Pj = null
then Pi := i, ai := b(i)

R3:
{

if Pi �= i ∧ Pi �= minn(i)
then Pi := minn(i), ai := b(i)

R4:
{

if Pi = i ∧ ∃j ∈ N(i) → Pj = � < i
then Pi := minn(i), ai := b(i)

R5:
{

if Pi = i ∧ ∀j ∈ N(i) → Pj = i
then Fi := h(i), Pi := null, ai := b(i)

Figure 5. 1-Minimal Global Defensive Alliance Algorithm

• By executing rule R5, node i changes its Fi only
when i has the lock, i.e. Pi = i ∧ ∀j ∈ N(i) →
Pj = i.

• If node i makes a move by R3 or R4 and changes
its pointer Pi to j, then j = minn(i) = min{k|k ∈
N(i) ∧ Pk = k}. Therefore, only the nodes that
point to themselves can get the lock.

• After i executes R5, Pi = null and ∀j ∈ N(i), we
have Pj = i. So for Pi to change again, either (1)
all j’s make move and set Pj = null, or (2) some
j’s make move and set Pj = j, so that minn(i) is
no longer null. In the first case, since minn(j) �=
null, j has to make move by R5 to set Pj = null.
In the second case, j has to first make move by
R5, then make move by R2 to set Pj = j. In
both cases, after i moves by R5, node i cannot
make the next execution of rule R5 until all its
neighbors have executed R5 at least once.

3.2. Correctness

We use similar arguments as used in [14], to prove
the correctness of the proposed defensive alliance algo-
rithm.

Lemma 3 When the protocol terminates, ψ(i) is true
at each node, i.e., the system is in a legitimate state.

Proof : The flag variable Fi and consequently ψ(i)
at any node can be changed only by execution of rule
R5. If ψ(i) is true on all the nodes, h(i) = Fi is also
true on all the nodes. So no node will change Fi by
R5, hence ψ(i) will not be changed. �

Theorem 3 When the protocol terminates, the set
S = {j|Fj = 1} is a 1-minimal global defensive al-
liance.

Proof : By Lemma 3, S is a global defensive alliance.
If S is not 1-minimal, there exists a node i ∈ S, such
that setting Fi = false still gives a global defensive
alliance. i.e. i is adjacent to some nodes in S and
for any j ∈ S adjacent to i, |N(j) ∩ (S − {i})| + 1 ≥
|N(j)∩ (V −S + {i})|. Since every move updates ai to
b(i), this can be rewritten as aj ≥ deg(j)−aj +1. Thus
ψ(i) = false on this node i, system is not converged.
�

3.3. Complexity

Lemma 4 Starting from any illegitimate state, rule
R5 will be executed at most 2n times.

Proof : Only R5 will change Fi. For a given node i,
if it sets Fi to false, all its adjacent nodes j that have
Fj = false will not change Fj to true again. Hence
each node can make R5 move at most twice. G contains
n nodes, therefore at most 2n R5 moves. �

Theorem 4 The algorithm converges in O(n3) time
steps.

Proof : Between two consecutive R5 moves, a node i
need to point to it self to get the lock. However, if some
neighbor is pointing to smaller id node, i will change
its pointer to minn(i). Hence, i can change its point to
different minn(i) at most n times. Therefore between
two consecutive R5 moves, there can be at most 2n
moves on any node i. Since all the rules update ai, R1
will only be executed at the very first time, hence at
most once. Therefore the complexity of the algorithm
is O(2n × 2n × n) = O(n3). �



4. Conclusion

We have proposed two self-stabilizing algorithms
for global defensive and offensive alliances in a net-
work graph. Graph theoretic optimization problems
are useful for such dynamic networks; fault tolerant
distributed protocols for such problems provide the key
resources for designing wireless, sensor and ad hoc net-
works and they offer new insight into the fundamen-
tal role of discrete distributed algorithms in developing
these real life applications [15].
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