
1

Towards Building a Highly-Available Cluster

Based Model for High Performance Computing

Azzedine Boukerche† Raed Al-Shaikh† and Mirela Sechi Moretti Notare††

PARADISE Research Laboratory

†SITE, University of Ottawa
††Barddal University , Brasil

Emails :{boukerch, rshaikh}@site.uottawa.ca, mnotare@ieee.org

Abstract
In recent years, we have witnessed a growing interest in high performance computing

(HPC) using a cluster of workstations. However, many challenges remain to be

resolved before these systems become dependable. One of the challenges in a

clustered environment is to keep system failure to the minimum level and while

achieving the highest possible level of system availability. High-Availability (HA)

computing attempts to avoid the problems of unexpected failures through active

redundancy and preemptive measures. In this paper, we propose to build HA-

clusters based model for high performance computing. Our model is based on

combination of both HPC and HA concepts, we also propose to investigate further

the hardware and the management layers of the HA-HPC cluster design, and the

parallel-applications layer (i.e. FT-MPI implementations). In this work, we focus

upon the latter layer. We discuss our model, and present our simulation experiments

we have carried out to evaluate our proposed model.

1. Introduction
Commodity-hardware clusters offer several

advantages over the traditional supercomputers. First,

High Performance Clusters are intended to be a

cheaper replacement for the more complex/expensive

supercomputers to run traditional technical

applications such as simulations, biotechnology,

financial market modeling, data mining and stream

processing [1]. Second, cluster computing can scale to

very large systems. Hundreds or even thousands of

machines can be networked to suit the application

needs. In fact, the entire Internet can be viewed as one

truly huge cluster [3]. The third advantage is

availability; replacing a "faulty node” within a cluster

is trivial compared to fixing a faulty SMP component,

resulting in a lower mean-time-to-repair (MTTR) for

carefully designed cluster configuration [18].

On the other hand, HPCs are not problems-free. First,

clusters have higher network latency with a lower

network bandwidth compared to SMP and

supercomputers. However, as we will see in section 3,

this network difference is becoming insignificant,

thanks to the advancements in the network

interconnects. The second potential problem is the

frequency of hardware failures (Mean-time-to-failure,

or MTTF). Because of many heterogeneous

commodity hardware involved to build an HPC

cluster, the probability of a hardware failure is higher

than an SMP machine. Therefore, most clusters are

unable to handle runtime system configuration

changes caused by transient failures and require a

complete restart of the entire machine [18].

2. Motivation
One of the challenges in an HPC clustered

environment is to keep system failure to the minimum

and to provide the highest possible level of system

availability. Due to the fact that very large and

complex applications are being run on increasingly

larger scale distributed computing environments,

High-Availability (HA) computing has become

critically important to the fundamental concept of

High Performance Computing (HPC). This is because

commodity hardware is employed to construct these

clusters, and to a certain extent, the application code’s

runtime exceeds the hardware’s mean-time-between-

failures (MTBF) rate for the entire cluster [15]. Thus,

in order to efficiently run these very large and

complex applications, HA computing techniques must

be employed in the HPC environment.

In this paper, we combine both HPC and HA models

and layout the design of a HA-HPC cluster,

considering all possible measures. In particular, we

explore the hardware and the management layers of

1-4244-0054-6/06/$20.00 ©2006 IEEE

2

the HA-HPC cluster design, as well as a more focused

study on the parallel-applications layer (i.e. FT-MPI

implementations).

The rest of the paper is organized as follows: In the

next section, we describe the general architecture of

the Beowulf cluster, which is becoming the standard

design of any HPC cluster. In section 4, we

demonstrate the modifications needed in the hardware

level, in order to make a large-scale Beowulf

architecture fault tolerant. In section 5, we discuss the

fault tolerant issues in the management level by

demonstrating the High Availability Open Source

Cluster Application Resource (HA-OSCAR) that aims

toward non-stop services in the HPC environment.

Next and in Section 6, we explore and compare, in

more details, the fault tolerant techniques in the

application level, mainly the MPI layer. In section 7,

we report our performance and test results. The last

section states our conclusions and summary.

3. The Beowulf Cluster Architecture
Originally developed at NASA, Beowulf clusters are

developed worldwide to support scientific computing

[22]. Fundamentally, it is a design for HPC clusters on

inexpensive personal computer hardware. A typical

“large-scale” Beowulf cluster consists of the following

major system components (figure 1):

Figure-1: A general “large-scale” Beowulf cluster layout

1) A master (or control) server: a master server

is responsible for serving user requests and

distributing them to clients via

scheduling/queuing software, such as Portable

Batch System (PBS) or LSF [2]. To control

access to the cluster, users are only permitted

to access this node and are blocked from

accessing the other nodes. In a simple

Beowulf cluster, the master node is

considered to be a single point of failure. In

particular, a master node failure can render

the entire cluster unusable. Therefore,

redundancy should exist in order to provide

HA to the master node, as we will see in the

next section.

2) Multiple identical client (compute) nodes:

these clients or compute nodes are normally

dedicated to computation. Normally, users are

blocked from direct access to these compute

nodes. An HPC cluster may be as simple as

two networked identical compute nodes or as

complex as thousands of nodes connected

together via high speed network.

3) The management node: this node is used for

administrative purposes, such as installing,

configuring and administering all other client

nodes.

4) Network Interconnect: currently, there are

several network interconnects that provide

low latency (less than 5 Micro seconds) and

high bandwidth (multiple Gbps). The suitable

HPC interconnect is determined by the

application that is intended to run on the

cluster. Two of the leading products are

Myrinet [7] and Quadrics. More recently,

InfiniBand [7] has entered the high

performance computing market. Unlike

Myrinet and Quadrics, InfiniBand was

initially introduced as a generic interconnect

for inter-process communication and I/O.

Nevertheless, its high performance and

scalability make it also attractive as a

communication layer for high performance

computing. Tests [12,19] show that for small

MPI messages, InfiniBand outperform other

interconnects due to the higher bandwidth,

while Quadrics fits small MPI messages the

best due to the very low latency. Table 1

shows each interconnect option with its peak

latency and throughput measures.

Gbit
Ethernet

Myrinet
D-Cards

Quadrics
QsNet

InfiniBand

Throughput 120MB/s 473MB/s 308MB/s 841MB/s**

Latency* 12.1 6.8 4.6 6.7

Price Cheap Moderate Moderate-
to-
expensive

Expensive

* Measures are in Microseconds.
** limited by the PCI-X bus

Table-1: Network interconnects comparison

Master

Management

External
Storage

Myrinet

Switch

Compute

nodes

Compute

nodes

Myrinet

Network

Ethernet

Network
Public Network

Compute

nodes
Compute

nodes

3

In the next section, we start our proposed design by

introducing redundancy and failover components in

the lowest level of the HA-HPC clusters.

4. FT-HPC in the Hardware Layer
As we have seen from the standard Beowulf design,

there are certain components where they are

considered to be a single point of failure, such as the

master node and the network switches. In earlier

times, cost was a valid reason for systems designers to

emphasize on the application needs and minimize the

cost of building an HPC cluster by removing all the

costly redundant hardware components. However, as

the cost of commodity hardware is declining,

combining HPC and HA architectures is becoming

feasible to achieve HA cluster that is used for High

Performance Computing. For instance, various

techniques are currently available to have redundant

master nodes [18]. These implementations include

active/active, active/hot-standby, and active/cold-

standby nodes. In the active/active, both master nodes

simultaneously provide services to external requests

and once one node is down, the other will take over

total control. Whereas, a hot standby head node

monitors system health and only takes over control

when there is an outage at the primary node. The cold-

standby architecture is very similar to the hot-standby,

except that the backup head is activated from a cold

start.

Figure 2 shows a completely hardware-modified FT-

Beowulf architecture. Each master node has two

network interfaces connected to two separate virtual

networks (VLANs); one is connected to the Internet

by a public VLAN, and the other NIC is connected to

the private LAN. In this setup, the standby server

monitors the primary server and waits for taking over

when a failure in the primary server is detected. Note

that the Local LAN Switches and the management

nodes are completely redundant and the cluster may be

operational even if one switch fails.

Figure2: A general fault-tolerant HPC cluster architecture

5. FT-HPC in the Management Layer
Systems that have the ability to hot-swap hardware

components need a management software layer that

understands the concept of dynamic system

configuration, in order to keep the system alive. One

of these management applications is the High

Availability Open Source Cluster Application

Resource (HA-OSCAR). HA-OSCAR is an Open

Source project that aims toward non-stop services in

the HPC environment through a combined power of

High Availability and Performance Computing

solutions [2].

5.1 HA-OSCAR
The OSCAR project is built by a mixture of academic

and research members including: Bald Guy Software

(BGS), DELL, IBM, Intel, MSC.Software, Indiana

University, the National Center for Supercomputing

Applications (NCSA), Oak Ridge National Laboratory

(ORNL), and University of Sherbrooke [4]. The HA-

OSCAR project’s primary goal is to enhance a

Beowulf cluster system for mission-critical

applications and sensitive HPC infrastructures. Its

basic package includes a set of “core” toolkits needed

to build and maintain a cluster [4]. Other included

tools cover most, if not all, commonly used HPC

applications, such as: LAM/MPI, PVM and MPICH

for running parallel applications, Maui Portable Batch

System (PBS) for batch job scheduling, OpenSSH for

secure remote login, and System Installation Suite

(SIS).

HA-OSCAR addresses service level faults via the

Adaptive Self Healing technique (ASH) [4]. ASH

MON daemon monitors service(s) availability at every

interval (default is 5 seconds) and triggers alerts upon

failure detection. When a failure is triggered, a hot-

standby node takes over. This hot-standby node is a

clone of the active node that contains the entire HA-

OSCAR software bundle and will process user

requests when the active master node fails.

To see how the master node’s hot-swapping process

works with HA-OSCAR, consider the following

example that is illustrated in figure 3: HA-OSCAR

assigns a primary server public IP address to be used

for external accesses and a private IP address to

connect to the compute nodes (a private VLAN as

users are not allowed to access the compute nodes).

For the standby server, the public IP address is

initially unassigned and its private IP address is

configured as shown in the figure:

4

Figure -3: HA-OSCAR failover process to the master node

When a primary server failure occurs, all its network

interfaces will go down. HA-OSCAR will trigger the

network disconnection and the standby server takes

over and clones the primary server network

configuration. The standby server will automatically

mimic its both public and private network interfaces to

be the same as the original IP addresses for the

primary master node. This IP cloning process only

takes 3 to 5 seconds [4].

6. FT-HPC in the Application Layer
Up to this point, we have considered the hardware and

management elements in designing a FT-HPC cluster.

Now we present, in more details, the HA issues in the

application level. Although other implementation

exists such as PVM (Parallel Virtual Machine), we

focus our study on the Message Passing Interface

(MPI) implementations, mainly because it is becoming

the de facto standard communication protocol for

parallel processing and HPC, especially when

performance is the main concern [6].

6.1 Introduction to MPI
MPI is a library of routines that can be called from any

programming language (mainly C or FORTRAN), on

a distributed memory system. It is designed to allow a

network of heterogeneous machines to be used as a

single distributed parallel processor. MPI’s advantage

over older message passing libraries is that it is both

portable and fast (because each MPI implementation is

optimized for the hardware it runs on) [6].

The need for a fault tolerant MPI standard arises from

the growing concern with the reliability of processors,

communication and systems’ structure. As current

HPC systems increase in size, fault tolerance in MPI

becomes a very important concern for critical high

performance applications using the MPI library. W.

Gropp and E. Lusk [11] define the requirements of a

fault-tolerance MPI as:

- Failure can be detected

- Information needed to continue the

computation is available

Moreover, they see that the highest level of MPI

“survival” is that when MPI implementation

automatically recovers from faults while the MPI

program continues without significant change to its

behavior. Their definition to the second level of

survival is when the applications are notified of the

problem and are prepared to handle it. In each of two

cases, the application may proceed without restarting

because the program has enough information about the

failing process and can assign another running process

to pick up the work from there. A different level of

survival is that an application aborts and restarts from

a checkpoint. Here, the states of all processes are

saved outside the processes themselves, in a stable

storage for example.

In the next section, we analyze some of the techniques

that are used to build such fault tolerant MPI

packages, namely: Checkpointing, Message Logging

and the Worker/Manager algorithm. We compare

these concepts and propose minor modifications to

make them suit our complete HA-HPC design. Later,

we review some of the existing fault tolerant MPI

packages that are based on the mentioned techniques.

Finally, we conclude our work by benchmarking a

small-scale cluster and stating our findings and

comments.

6.2 MPI Error Handlers
Before moving to the various fault tolerant MPI

techniques, we first present the pre-defined MPI error-

handlers and describe their routines.

MPI error-handlers specify the action to be taken

when the MPI program runs through a failure. The

specified error handling routine is used for any MPI

exception that occurs during an MPI call for a

communication with the communicator. The set of

errors calls that are handled by MPI is

implementation-dependent. Therefore, a stable MPI

implementation will attempt to handle as many errors

as possible. Errors that are not handled by MPI will be

either handled by the error handling mechanisms of

the language run-time or the operating system.

The MPI error-handlers do not necessarily allow the

user to continue to use MPI. Instead, they allow a user

to issue user-defined error messages and to take

actions unrelated to MPI (such as flushing I/O buffers,

having a memory dump or calling other outside

routines) before a program exits. However, it is not

required from a non-fault tolerant MPI implementation

to use error handlers.

5

MPI error-handlers can be either built in or user

defined [17]. The built- in error-handlers are

MPI_ERRORS_ARE_FATAL (The default error-

handler) and MPI_ERRORS_RETURN. The first

error-handler indicates that if an MPI function returns

unsuccessfully then all the processes in the

communicator will abort. The latter handler indicates

that MPI functions will attempt to return an error code.

User defined error-handlers are attached to the MPI

communicators. The ability to support user-defined

error-handlers is important for developers when

building their own MPI interfaces.

6.3 Fault Tolerant MPI Techniques
In this section, we cover the commonly used

techniques for implementing fault tolerant MPI. In

particular, we study checkpointing (Global,

independent and coordinated checkpointing), Massage

Logging, and Manager/Worker techniques.

6.3.1 MPI Checkpointing

Checkpointing is a technique where the status of the

computation is saved in different stages of running,

allowing the application to be restarted from that point

in the event of a failure. The primary advantage of

checkpointing is that it is easy to implement.

However, it is often considered expensive because the

time taken to do a checkpoint can rapidly grow.

Therefore, fast I/O media is usually used to connect

the cluster’s nodes to the shared storage (e.g. fiber

links), and checkpointed data are saved in a reliable

storage that should not be affected by the application

failure. Normally, a parallel file system, such as GPFS

or SNFS [13], is used for checkpointing, since more

than one process will be writing to the same storage.

Checkpointing can be classified as user-directed and

system-directed. In user-directed checkpointing, the

programmer manually writes out any data that will be

needed to restart the application. The user has to

ensure that all needed data is saved, which might not

be an easy task. Moreover, the checkpoints must be

taken at particular points in the program, typically

when there is no interaction between processes, which

again can be difficult, especially for programs that are

not well-structured. Certain tools and APIs exist to

assist programmers to determine where and when to

checkpoint [8]. Although user-directed checkpointing

seems complicated, system-directed checkpointing is

much harder to implement because the processes

states might be scattered throughout the cluster [2].

Locally-stored
Global
Checkpointing

Independent
Checkpointing

Coordinated
Checkpointing

Checkpoint All at once Independent of
each other

All at once

Restart All at once All at once Subset of

processes

Storage Local to each

process

Centralized Centralized

Complexity Easy to
checkpoint,
difficult to
restart

Difficult to
checkpoint and
restart

Easy to
checkpoint and
restart

Tabele-2 checkpointing techniques comparison

6.3.2 Message Logging

As checkpointing can grow rapidly and become very

expensive, message logging is developed in order to

reduce the checkpointing cost, but still enable

recovery. The basic idea underly ing message logging

is to log all the operations of message transmissions,

and replay them in case of failures to reach a globally

consistent state, without having to restore that state

from stable storage. In initial checkpoint state is

needed as a starting point, and then all messages that

have been sent since are simply replayed from the log

and retransmitted accordingly.

Message logging technique has the advantage of

avoiding to checkpoint the whole application, and

therefore save storage space. However, it is clear that

message logging technique has to coexist with

checkpointing. That is, a starting checkpoint should be

available to implement message logging. Therefore,

checkpointing performance affects the overall

message logging performance as well.

6.3.3 The Manager/Worker Technique
In the generic architecture, the MPI process does not

connect directly to the other ones. Instead, it uses a

communication daemon that handles sending,

receiving, recording messages, and establishing

connections with all components of the system. In the

standard MPI, the failure of any one MPI process

affects all processes in the communicator, even those

that are not in direct communication with the failed

process. In contrast, in non-MPI client-server

programs, the failure of a client does not effect on the

server, because each peer is aware about the status of

the other peer. For example, the client can easily

recognize that the server has failed and stop

communicating with it. W. Gropp and E. Lusk [11]

tried to mimic this scheme and apply it in the MPI

context. In this algorithm, a manager process use

MPI_Comm_spawn to create the workers and submits

small tasks to them, while keeping track of them.

6

Then, workers return their results to the manager,

simultaneously requesting a new task. This sort of

communication makes it easy to recover after faults

because the manager keeps a copy of the task

specification and can simply re-assign it to another

worker if one dies. In particular, the manager marks

the failing communicator as invalid and does not use it

again. When a worker dies, the MPI_Comm_spawn

routine is used to replace the worker and continue

processing with no fewer workers. According to [11],

this program may not work on every implementation

of MPI, because the MPI implementation must be able

to return a non-success return code in the case of a

communication failure such as an aborted process or

failed network link.

A simple modification to the worker/manager

technique in order to make it work is to add a timeout

period in which the manager assumes the death of the

worker process. This way, the manager process is

notified about the dieing process (or worker) and

assigns the task again to another worker. Moreover,

we may reduce the amount of messages exchanged by

having the manager and all the workers write their

status into a single shared storage, using a reliable

parallel file system [2,3]. This way, when a worker

fails and is assigned as a bad node, the manager

allocates a new stand-by node, which reads the last

status of the failing node and picks up the work from

there.

6.4 Related Work on Fault Tolerant MPI
Many fault tolerant MPI implementations exist, such

as LAM/MPI, Open MPI, WMPI (Windows

implementation), and FT-MPI …etc. The main

difference between these implementations is the way

they react to process or nodes failures in a way beyond

that of the standard MPI interface. In particular,

several implementations direct their fault tolerant

techniques to the application level, while other

techniques target their implementation to the transport

and data-link levels [21]. Now we study one of these

implementations in more detail:

6.4.1 StarFish MPI
The initial implementation of StarFish runs on Linux

and supports both Myrinet and Ethernet

communication links [19]. Each node in a Starfish

cluster runs a daemon, and all Starfish daemons form a

process group. Starfish daemons maintain some data

for each application process running on the machine,

as well as some shared state that defines the current

cluster configuration and settings. These daemons are

responsible for interacting with clients, spawning the

application processes, tracking and recovering from

failures, and maintaining the system configuration [2].

Further, each application process is composed of 5

major components. These are: a group handler, which

is responsible for communicating with the daemon, an

application part, which includes the user supplied MPI

code, a checkpoint/restart module, an MPI module,

and a virtual network interface. These components

communicate using an object bus based listener model

[14]. To guarantee low latency and minimal impact on

performance, the application part has a separate fast

data path to and from the MPI module.

Starfish offers two forms of fault-tolerance for

applications: The main fault-tolerant mechanism

employed by Starfish is checkpoint/restart. The

checkpoint/restart module of Starfish is capable of

performing both coordinated and uncoordinated

checkpoint, which is either system driven or

application driven. Thus, when a node failure occurs,

Starfish can automatically restart the application from

the last checkpoint. The other form of fault tolerance

offered by Starfish is more application dependent, and

is suitable mostly to applications that can be trivially

parallelized. For such applications, whenever a node

that runs one of the application processes crashes, the

event is delivered to all surviving application

processes. Once the surviving members find out about

the failure of a node, they repartition the data sets on

which each process computes, and continue to run

without interruption.

When an application is submitted to Starfish, the client

determines the fault tolerant policy that should be

applied to this application, i.e., should automatic

restart or process notifications be used, and some rules

regarding how to choose the node on which a process

will be started after a partial failure.

6.4.3 Other Fault Tolerant Message Passing

Implementations
As mentioned previously, MPI has a rich set of

communication functions, which makes MPI favored

over other implementations [2]. However, there are

other popular parallel interfaces, such as PVM

(Parallel Virtual Machine), and its various fault

tolerant implementations, such as DynamicPVM and

MPVM that provide the same MPI functionality. PVM

is different than MPI in a way that it is built around

the concept of a virtual machine, so it has the

advantage when the application is going to run over a

networked collection of hosts, especially if the hosts

are heterogeneous. Moreover, PVM contains resource

7

management and process control functions that are

important for creating portable applications that run on

clusters of workstations. G. Geist and J. A. Kohl P. M.

Papadopoulos in [22] explore more on the differences

between PVM and MPI. For completeness, we view

one of PVM implementations and study how it

handles fault tolerant in parallel applications.

6.4.3.1 DynamicPVM

In general, PVM transmit communication messages

using daemons, i.e. a message is first transferred to the

sender’s daemon, then forwarded to the daemon of the

receiver and then delivered to the receiver [6].

While standard PVM offers only a static process

assignment to the application, DynamicPVM provides

dynamic process assignment and task scheduling, so

that processes are migrated during runtime during

failures. In particular, when a process failure is

triggered in DynamicPVM, the local daemon on a new

node prepares itself to receive the messages from the

failing node, and sets its message buffer. The routing

information of the local daemon on the old node gets

updated so that messages which are still being sent to

the old node are forwarded to the daemon on the new

node. The sender daemon is informed about the new

location of the process so that, in future, it sends

directly to this process. One limitation in the current

DynamicPVM implementation is that it is only

possible to migrate one process at a time.

7. Experimental Results
In this section, we analyze our small-scale HA-HPC

functionality and evaluate its performance. In our

evaluation, we used eight-clustered nodes, each

equipped with a Pentium-4 3.2GHz processor, 1.0

GHz memory and run Linux RedHat 9.0. Two of these

nodes are set as the master nodes, a primary and a hot-

standby, and are managed by HA-Oscar. The other six

nodes are configured as the compute nodes and are

interconnected by a 100MB/s network. We used

DynamicPVM and FT-MPI interfaces to handle our

parallel jobs, with POV-Ray package [1] on top. POV-

Ray is a 3D ray-tracing engine that takes users’ input

and simulates the way light interacts with the defined

objects to create 3D pictures and animation. POV-Ray

has the ability to distribute a rendering across multiple

systems, in the form of one-master and many-slave

task. The master node has the responsibility of

dividing the image up into small blocks, which are

assigned to the slaves. When the slaves finish

rendering the blocks, they are sent back to the master,

which combines them to form the final image. In our

experiment, we used a 2600 bytes script file to render

a 1024x768 picture with an output size of 2.3MB.

First, we ran our benchmarks with varying number of

nodes, while keeping the number of processes in each

node fixed, as shown in figure-4a. Clearly, the best

performance/nodes was obtained while rendering on

four nodes. This performance increase rate has

dropped as we increased the nodes to eight. We expect

that this performance gain would be flattened with 12

nodes.

Next, we ran other benchmarks while varying the

number of nodes and the running processes at the

same time, as in figure-4b. The best run cases were

when the number of processes matched the number of

nodes that are running (i.e. one process on each node).

By increasing the number of processes beyond the

number of nodes, the inter-process communication

overhead became noticeable, causing the image to take

more time to render.

Figure-4c shows how much TCP traffic is generated

on the master node. Obviously, the traffic increases as

we increase the number of nodes, due to the further

processes’ distribution among nodes. In Figure-4d, we

show how image resolution affects the rendering time.

While the dashed curve demonstrates the rendering

time when we enforce POV-Ray to evenly distribute

the processes among the nodes, the continuous curve

shows the rendering time when we let the program

freely distribute the processes among nodes.

Figure-4e shows the performance comparison between

FT-MPI and DynamicPVM when rendering the same

image on both message passing interfaces, using 200

processes in each node. FT-MPI showed a

performance increase compared to DynamicPVM,

especially with low number of nodes, but they

performed comparatively with 8 nodes. Finally, we

tested FT-MPI and DynamicPVM performance with a

single node fault. Figure-4f shows the time taken to

render the image while dropping one node during the

process (for example, 2-1 in the figure means

dropping from 2 nodes to one). Both interfaces

showed approximately the same performance, even

though they use different recovery schemes, as we

discussed in section-2.

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8
Number of nodes (200 traces)

T
im

e
 (

 i
n

 s
e

c
o

n
d

s
)

0

10

20

30

40

50

1 2 10 50 70 100
Number of processes

T
im

e
 (

 i
n

 s
e

c
o

n
d

s
)

1 node

2 nodes

3 nodes

4 nodes

8 nodes

a) b)

8

0

20

40

60

80

100

120

2-1 3-2 4-3 5-4 6-5 7-6 8-7
Number of nodes

T
im

e
(

in
 s

e
c
o
n
d
s
)

PVM

MPI

0

4

8

12

16

20

1 2 3 4 5 6 7 8
Number of nodes (200 traces)

C
o
m

m
u
n
ic

a
tio

n
 b

e
tw

e
e
n
 n

o
d
e
s

(M
e
g
a
B

yt
e
s)

c) d)

e) f)

Figure-4: a) Number of nodes vs. rendering time b) number of

processes vs. rendering time c) Communication traffic node on the
master d) Image resolution vs. rendering time e) DynamicPVM vs.
FT-MPI f) DynamicPVM vs. FT -MPI (with faults).

8. Conclusions
In this paper, we have presented an architecture model

that can be used to build a FT-HPC cluster. These

include maintaining high availability at the hardware

layer, cluster manageability and fault tolerance in the

application level. In particular, we explored the

hardware and the management layers of the HA-HPC

cluster design, as well as a more focused study on the

parallel-applications layer (i.e. fault tolerant MPI

implementations). We also showed that the

Manager/worker algorithm that was proposed by [1]

can be improved to suit most of the FT-MPI

implementations. Finally, we have presented a small-

scale fault tolerant HPC cluster using HA-OSCAR and

different MPI implementations, to study the behavior

of such a system. Our results show that combining

HPC and HA architectures is feasible, in order achieve

HA cluster that is used for High Performance

Computing.

REFERENCES
[1] F. Pister, L. Hess and V. Lindenstruth, Fault Tolerant

Grid and Cluster Systems, Kirchhoff Institute of Physics

(KIP), University Heidelberg, Germany.

[2] Fagg, G., Dongarra, J., Building and using a Fault

Tolerant MPI implementation, In’t Journal of High

Performance Applications and Supercomputing, 2004.

[3] I. Haddad, C. Leangsuksun, R. Libby, T. Liu, Y. Liu,

S. Scott, Highly Reliable Linux HPC Clusters: Self-

awareness Approach, Proc. of the 2nd International

Symposium on Parallel and Distributed Processing and

Applications, 2004.

[4] J. Mugler, T. Naugthon, S. Scott, … C. Leangsuksun,

“OSCAR Clusters”, Proceeding of The Linux

Symposium 2003, July 23rd-26th, 200

[5] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik,

F. Cappello., Improved Message Logging versus

Improved Coordinated Checkpointing for fault tolerant

MPI, in: "Proceedings of the 6th international conference

on Cluster Computing, 2004.

[6] Fagg, G. and Dongarra, J., Fault-tolerant MPI:

Supporting dynamic applications in a dynamic world, 7th

European PVM/MPI Users’ Group Meeting No 1908 in

Springer LNCS, pp. 346-353 , 2000

[7] Fagg, G.E. and Dongarra, J.J. Building and using a

fault tolerant MPI implementation, Int’l J. of High Perf.

Computer Appl and Supercomputing, 2004

[8] Stellner, G. 1996. CoCheck: checkpointing and

process migration for MPI, in Proceedings of IPPS ’96.

pp. 526-531.

[9] Snir, M., Otto, S.W., Huss-Lederman, S., Walker,

D.W., and Dongarra, J. 1998. MPI—The Complete

Reference: V. 1, The MPI Core, MIT Press.

[10] Li, K., Naughton, J.F., and Plank, J.S. 1994. Low-

latency, Concurrent Checkpointing for Parallel Programs.

IEEE TPDS, 5(8): 874-879

[11] W. Gropp, E. Lusk. Fault Tolerant in MPI Programs.

Argonne National Laboratory.

[12] A. Gidenstam et. al., Dynamic and Fault Tolerant

Cluster Management.

[13] A. Hasegawa, Hiroshi Matsouka, K. Nakanishi.

Clustering Software for Linux-Based HPC.

[14] B. Polgar. Designing the Reconfiguration Strategies

of Fault Tolerant Servers. Technical University of

Budapest.

[15] P. Sobe. Fault Tolerant Web Services on a

Computing Cluster. Institute of Computer Engineering.

Medical University of Luebeck.

[16] Sultan, F. Bohra, A. Smaldone, S. Pan, Y. Gallard,

P. Neamtiu, I. Iftode, L. Recovering Internet service

sessions from operating system failures. Internet

Computing, IEEE. 2005. ((2) . pages: 17- 27.

[17] Rob T. Aulwes, et. al., . Architecture of LA -MPI, a

network-fault-tolerant MPI. Proc. 18th Int’l Parallel and.

Distributed Processing Symposium, pages 26-30.

[18] A. Azagury, D. Dolev, G. Goft, John M. Marberg, J.

Satran: Highly Available Cluster: A Case Study. FTCS

1994: 404-413.

[19] A. Agbaria, R. Friedman. Starfish: Fault-Tolerant

Dynamic NIP1 Programs on Clusters of Workstations.

[20] S. Rao, L. Alvisi, and H.M. Vin. “Egida: An

Extensible Toolkit for Low-overhead Fault-tolerance,”

Int’l Fault-Tolerant Computing Symp. 48-55, 1999.

0

5

10

15

20

25

640x480 1024x768 1600x1200 2048x1600
Image Resolution

T
im

e
(i
n

s
e
c
o
n
d
s
)

Fixed

Free

0

10

20

30

40

50

60

2 3 4 5 6 7 8
Number of nodes

T
im

e
(

in
 s

e
c
o

n
d

s
)

PVM

MPI

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

