
Broadcasting and routing in faulty mesh networks
Milos Stojmenovi , Amiya Nayak

 SITE, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
 {mstoj075, anayak }@site.uottawa.ca

Abstract— Broadcasting is a data communication task in

which one processor sends the same message to all other

processors. Routing is a task where a source processor sends a

message to a destination processor. A faulty node is in an error

state and cannot participate in the activities or the

communication in a given network. In this paper, we consider the

family of mesh networks, which include the mesh connected

computer (MCC), k-dimensional mesh, torus, and k-ary n-cube.

Our goal is to design routing and broadcasting algorithms which

will use local knowledge of faults, no additional resources, will

work for an arbitrary number and structure of faults, will

guarantee delivery to all nodes connected to the source, and will

remain optimal in a fault free mesh. We did not find any solution

in literature to satisfy these desirable properties. Our routing and

broadcasting schemes for MCCs and tori, and our broadcasting

algorithm for the all-port model on any faulty mesh network

satisfy all of these properties. For routing and broadcasting in a

one-port model in higher dimensions, a condition on fault

structure needs to be met. We propose a new broadcasting

algorithm which guarantees delivery to all processors connected

to the source in the all-port model of faulty meshes. We then

describe a routing algorithm that guarantees delivery in faulty

MCCs and tori, the connectivity of the source and destination

being the only obvious requirement. The algorithm can be

extended to faulty k-D meshes and k-ary n-cubes, where the

delivery will be guaranteed if healthy nodes in every 2-D submesh

(sub-tori) remain connected. We then describe broadcasting

algorithms for the one-port model, which again guarantee

delivery to all connected processors in two-dimensional cases, and

guarantee delivery in k-dimensional cases if healthy processors in

every 2-D submesh (sub-tori) remain connected.

Keywords: Mesh networks, fault tolerance, routing, broadcasting

I. INTRODUCTION

A mesh connected computer (MCC) is a set of processors
(nodes) arranged in a square grid. Each node in the grid has up
to 4 neighbors, which are nodes to the left, right, bottom and
top (if they exist, and are not faulty). A MCC of size k has k
rows and k columns, and therefore has k2 processors. A torus is
a mesh with additional edges such that all nodes have exactly 4
neighbors. This is achieved by connecting all nodes on the
border of the mesh (which have less than 4 neighbors) to their
corresponding node on the opposite border. A torus of size k
has k rows and k columns. An n-D mesh network (a
generalization of MCC) of size k has k nodes along each
dimension, and therefore has kn processors overall. Each node

has an address of the form (a1, a2, … , an), where 0≤ ai ≤ k-1.
Each such node has 2n neighbors, that is, two neighbors along
each dimension (if such a neighbor exists). The neighbors
along the ith coordinate share the n-1 coordinates, while the ith

coordinates are ai +1 and ai -1, respectively. That is, the
neighbors of node (a1, a2, … , an) are (a1, … , ai-1, ai+1, ai+1, …
, an)) and (a1,…, ai-1, ai -1, ai+1, … , an)).

A k-ary n-cube is a generalization of a torus network and an
extension of an n-D mesh by adding some edges. Each node

has an address of the form (a1, a2, … , an), where 0≤ ai ≤ k-1.
Each such node has 2n neighbors, that is, two neighbors along
each dimension. The neighbors along the ith dimension share
the n-1 coordinates, while the ith coordinates are ai +1 (mod k)
and ai -1 (mod k), respectively. That is, the neighbors of node
(a1, a2, … , an) are (a1, … , ai-1, ai+1 mod k, ai+1, … , an)) and
(a1,…, ai-1, ai -1 mod k, ai+1, … , an)). Therefore this is the n-D
mesh model with added wrap around edges. Note that a 2-ary
n-cube is an n-dimensional hypercube. We are interested in
mesh type networks, where k>n (that is, with low dimensions
but large size along each dimension).

In accordance with literature, we assume that each
processor can correctly receive messages from several
neighboring processors simultaneously. For broadcasting, we
consider both the one-port and all-port models. For routing, we
only consider the one-port model since the all-port model is
irrelevant on a path anyway. In a one-port model, a message
sent from one processor is received by only one of its
neighbors, while in an all-port model, it is simultaneously
received by all of its neighbors. In the rest of this text,
processors will also be known as nodes, and the links between
them as edges in the considered network.

Routing is a task where a source node A(u, v) sends a
message to a destination node B(w, z). Routing on a MCC can
be done by sending the message horizontally to node C(w,v). If
u<w, the message is sent right. If u>v, the message is sent left.
The second step of the simple algorithm involves sending the
message vertically along the mesh from C(w, v) to B(w, z). This
well known routing algorithm can be generalized for n-D
meshes and k-ary n-cubes in a straightforward manner. At each
step, the message can advance along any dimension where the
coordinates of the current node and destination node differ.
Broadcasting is a task of transmitting a message from one node
to all other nodes in the mesh network. Assume node X(u,v)
wants to broadcast a message. In a well known solution, the
message is first broadcasted horizontally across the mesh. This
means that all nodes with coordinates (w,v) receive it. The
second phase involves vertical transmission by all of the nodes
which currently have the message, in parallel. By forwarding
the message in both the up and down directions from node
(w,v), all nodes (w,z) in that column receive the message.

In order to solve the problem of broadcasting and routing in
faulty mesh networks, we studied various properties of existing
solutions, and made a list of several desirable ones. We would
like to avoid placing restrictions on the number of faults or the
location of faults in the mesh. Certain algorithms only work in
cases where the number and/or positions of the faulty nodes
conform to certain specific standards. We will search for a
solution that does not rely on fault position or the occurrence of
too few faults. Such a solution is obviously more flexible and
applicable to any mesh. We managed to find such solutions for
2-D cases, while for k-D cases, we had to add a reasonable
condition which covers a wide range of scenarios.

1-4244-0054-6/06/$20.00 ©2006 IEEE

We also assume that there are no additional resources being
used such as virtual channels. The next goal is to have
protocols that remain optimal if there are no faults in the
network. The final goal in our research is to design routing and
broadcasting protocols that guarantee delivery of the message
to all non-faulty nodes connected to the source. We will search
for a solution in which processors only have local knowledge
of faults. Local knowledge of faults means that each node only
knows the fault status of its neighbors. Algorithms that require
global knowledge of faulty nodes (that is, full network
information at each node) require pre-processing steps to
spread such information throughout the network whenever a
fault occurs, and whenever a fault is repaired. Some protocols
even require grouping healthy nodes into rectangular boxes, or
enclosing faulty nodes into rectangular or convex boxes. The
latter boxes could include some healthy nodes as well, which
are disabled, and cannot participate in communication tasks. If
global knowledge is available, the source node can apply a
shortest paths scheme to find the route to each destination, and
this computation can be repeated at each intermediate node, or
the information could be included in the message itself. In
mesh networks with many nodes, faults can occur dynamically,
frequently and nodes may even be recovered or replaced, and
messages sent to the whole network informing it of its status
may cause considerable overhead. Moreover, these messages
may not reach all connected and healthy nodes if additional
faults occur dynamically in the network while the information
about the previous fault is still circulating. That is, this
broadcasting task itself, and the assumption of having global
knowledge may be impossible to provide when failures are
dynamic, frequent and occur almost simultaneously at several
nodes. This means that our goal of guaranteed delivery to all
connected nodes can only be achieved using local knowledge.

We are not aware of any existing method for either of the
two problems, while at the same time satisfying all of the listed
criteria. The papers that proved most relevant were [WCW] for
broadcasting and [ZK] for both routing and broadcasting in
faulty meshes. Out of these two, only [WCW] describes an
algorithm in which nodes have local knowledge of faults.
However, this algorithm does not always guarantee delivery.
[ZK] guarantees delivery, but involves global knowledge of
faults (as discussed above, the occurrence of dynamic faults
while routing or broadcasting is in progress may endanger the
guaranteed delivery property). Some of the remaining papers
require additional resources such as virtual channels:
[TKL,PSY,LH,SS,SW]. Other papers that require global
knowledge about faults include [AB,AC,CA,W1,W2]. There is
another set of papers which impose restrictions on the location
and number of faults in the mesh: [BC,GN,CC,W3].

This paper is organized in the following way. Section 2
gives a literature review on routing and broadcasting in faulty
meshes. In Section 3, we propose a new broadcasting algorithm
which has guaranteed delivery (to all processors connected to
the source) in the all-port model of faulty meshes. In Section 4,
we describe a routing algorithm that guarantees delivery in
faulty MCCs and tori, the connectivity of the source and
destination being the only obvious requirement. The algorithm
is extended in Section 5 to faulty k-D meshes and k-ary n-
cubes, where the delivery is guaranteed if healthy nodes in
every 2-D submesh (sub-tori) remain connected. In Sections 6,
7, we describe broadcasting algorithms for the one-port model,

which again guarantee delivery to all connected nodes in 2-
dimensional cases, and also in k-dimensional cases if healthy
nodes in every 2-D submesh (sub-tori) remain connected. The
conclusion section completes this article.

II. LITERATURE REVIEW

A. Broadcasting in faulty meshes

1) Local knowledge and no additional resources
Wu, Chen and Wu [WCW] describe a broadcasting

algorithm for MCC that does not require global knowledge in
order to broadcast messages. They assume an all-port model of
communication. They claim that the problem is very difficult
and only give a solution for a special case of an m-subMCC.
The algorithm takes a kxk mesh as input. The mesh is
partitioned into mxm submeshes where m<k. Each of these
submeshes acts as a node in the sense that it is assumed to be
non faulty and can receive and transmit messages to its
neighboring ‘nodes’. These pseudo nodes are deemed more
likely to transmit messages to their neighboring nodes since
they have more connecting lines for neighbor-to-neighbor
communication. When less than m/2 nodes on each border of
each submesh are faulty, communication between two pseudo-
nodes would be successful. The following two steps alternate.
The first step involves broadcasting the message locally
through the pseudo node. This is done using a breadth first
search administered locally within the pseudo node. Breadth
first search uses only local submesh knowledge to find a
routing path to each node within the pseudo node. Once every
node in the pseudo-node has received the message, it is passed
on to neighboring pseudo-nodes in the second step, that is
equivalent to broadcasting in a network of pseudo-nodes
(submeshes). This process is repeated until the message is
successfully broadcasted throughout the mesh. Note that a
synchronization step may be needed for communication
between submeshes. The authors assume that each of the m-
submeshes remains connected internally, after removing the
faulty nodes. They claim that their algorithm guarantees
delivery 99% of the time if faulty nodes occur less than 12% of
the time. The protocol however does not guarantee delivery of
messages to all non-faulty nodes if the percentage of node
failures is high enough. Faults within a submesh may
disconnect it internally, but the nodes may remain connected
via other nodes in the mesh. The protocol can be generalized to
n-D meshes and k-ary n-cubes with similar properties.

2) Broadcasting with global knowledge or additional

resources
Jiang and Wu [JW] described a broadcasting algorithm

which has two phases. In the pre-broadcasting phase, faulty
nodes are grouped into rectangular blocks, which may include
some healthy nodes which are disabled. The rest of the mesh is
then divided into rectilinearly convex polygonal regions (that
is, convex in both horizontal and vertical directions). In the
broadcasting phase, the message is sent from the source to an
‘eye’ node in each convex region reachable from it (faulty
blocks being excluded for communication). These ‘eye’ nodes
then broadcast the message within their own region using a
recursive algorithm. In this recursive algorithm, the current
region is subdivided into smaller ones, and message is sent to
one ‘eye’ in each sub region. The process continues until each

reachable node receives the message. The algorithm [JW]
therefore requires global faulty information, and also does not
guarantee delivery to each node reachable from the source.
Disabled nodes by the design do not receive the message. Also,
rectangular faulty blocks, which are expanded by disabling
some nodes, may disconnect the mesh, with one region being
unreachable from the other, although in reality they could be
linked via disabled, but healthy nodes.

 [TKL] describe a multicasting algorithm that can broadcast
in arbitrary topology but requires up to two virtual channels.
[PSY] describe a fault tolerant broadcasting algorithm for torus
network which uses only local knowledge of faulty nodes and
can tolerate up to k-1 faults in a k-ary n-cube. The algorithm
needs two virtual channels at each physical channel if faulty
nodes appear, and is too restrictive on the number of faults it
can tolerate. When applied on a mesh with k rows and k
columns, it can tolerate up to k-1 faults. Virtual channels
involve adding buffer space and complex control logic.

[AB] describe a fault tolerant one-to-all broadcasting
algorithm for k-ary n-cubes, which requires global knowledge
of faults, and can tolerate up to 2n-2 node failures provided that
k>2n-2 and k>3. Therefore it does not apply to k=2 which is a
2-dimensional torus, and does not follow the local knowledge
assumption. The solution [AC] requires more than local fault
information, since certain unsafe nodes are defined recursively
and propagated from a faulty node. The algorithm requires a
fault free row and fault free column, and therefore tolerates up
to k faults on a mesh of size k.

B. Routing in faulty meshes

1) Routing with guaranteed delivery
The paper by Zakrevski and Karpovsky [ZK] described an

interesting algorithm that guarantees delivery of messages in all
connected meshes, but requires global knowledge of faults to
achieve this. Their algorithm involves pre-routing, and routing
phases. The pre-routing phase is the pre-processing step and
involves constructing the largest possible non-faulty rectangles
out of the mesh. This means that all non-faulty nodes must be
located in at least one non-faulty rectangle. The second step of
their algorithm involves connecting these rectangles in a graph.
Each rectangle is represented by a node in this new graph. Two
nodes in the new graph are connected if they partially overlap
each other. This means that they share at least one actual node
in the mesh. The pre-routing phase is performed every time
there is a new faulty node in the mesh, or every time a node
becomes non faulty. The routing phase uses the rectangle graph
to find the shortest path between rectangles containing the
source and destination nodes. Within each rectangle, a simple
routing connects common nodes with previous and next
rectangles on the route. Broadcasting a message can be done as
follows. The message is first routed from the source rectangle
to all other rectangles using Dijkstra’s shortest path algorithm.
Each rectangle then distributes the message amongst its nodes
using the standard broadcasting algorithm for non-faulty
meshes. This local broadcasting will work because each of the
rectangles only contains non-faulty nodes. Their method
guarantees delivery at the cost of global knowledge of faults.

2) Routing with restricted fault structure for guaranteed

delivery

Another recent algorithm by Boppana and Chalasani [BC]
uses the concept of faulty rings to route around faulty nodes. Its
main drawback is severe restrictions on fault locations - it is
prohibited to have faulty nodes both to the South and North, or
to the East and West, from a fault-free node. The main idea was
then expanded in [CB] by creating faulty rings for routing
around H-shaped, T-shaped, U-shaped, and +-shaped regions.
Therefore the types of local knowledge faults the algorithm can
handle are very restricted. It is restricted to the cases where
route segments containing faulty nodes can be locally replaced
by route segments with all nodes being healthy.

An example of the deadlock-free routing algorithm is
NAFTA by Cunningham and Avresky [CA]. This algorithm is
based on the combination of North-Last and South-Last
strategies and allows deadlock-free routing without global
knowledge. However, it introduces some unsafe nodes. The
number of these nodes can grow as O(k2) on a mesh with k
rows and k columns, for the worst configuration of faulty
nodes. The solution [CA] actually requires more than local
fault information and a pre-processing step, since certain
unsafe nodes are defined recursively and propagated from a
faulty node. It also requires fault free row or fault free column.

Glass and Ni [GN] propose a fault-tolerant routing scheme
for n-D meshes without virtual channels, but the scheme can
tolerate up to n-1 faults. The algorithm by Chen and Chiu [CC]
can only tolerate a limited number of faults, proportional to the
dimension of the mesh torus. To tolerate more faults, they
propose to deactivate some healthy nodes (i.e. regard them as
faulty) so that faults are in rectangular shapes. However, this
process can disconnect the network and routing may fail.

Algorithms described by Wu [W1, W2] require global
knowledge of faults to derive optimal paths. The attempt is
made to reduce the amount of fault information needed while
maintaining minimal length paths. The author does not discuss
whether or not any of the proposed schemes guarantee
delivery. In fact, the source does not even start routing if the
existence of a minimal path is not guaranteed.

The rectangular faulty model is the most commonly used
fault model in designing a fault tolerant and deadlock free
routing algorithm in mesh-connected computers. Although
some efforts have been made either to enhance the faulty block
[S] or to activate some boundary non-faulty nodes in a faulty
block [BD, SS]), the major problem is that a faulty block may
include many non-faulty nodes. In [W3], Wu minimized the
size of faulty blocks by defining special convex polygons from
a given set of rectangular faulty blocks. An additional problem
in all faulty block based solutions is that routes from non-faulty
nodes which are inside faulty blocks to other nodes are not
given in any of solutions proposed with faulty block model,
although connectivity may exist.

3) Routing that requires virtual channels
The algorithm [VUM] tolerates multiple faults but requires

two virtual channels. They assume only local knowledge about
faults, but the message is not allowed to backtrack. Thus, there
should not be any concave faulty regions in the network where
the message may get trapped [VUM]. The solution is described
via a pseudo-code and is difficult to understand. The scheme
[LH] requires additional virtual channels for each physical
channel, and is therefore costly for implementation.

Faulty blocks can be easily established and maintained
through message exchanges among neighboring nodes. The
convexity of each faulty block facilitates a simple fault-tolerant
and deadlock free routing using relatively few virtual channels
[SS, SW]). This feature is also a necessary condition for
progressive routing, where the routing process never
backtracks. The absence of backtracking in turn is a necessary
condition for minimal routing, where the destination is reached
through a minimal path from the source. Therefore the schemes
[SS, SW] require convexity of each faulty block.

Boppana and Chalasani [BC] introduce the solid fault
model. It is a model where any cross section of a faulty region
has contiguous faulty components. The proposed method
handles solid faults in meshes, which includes all convex faults
and many practical nonconvex faults, for example, faults in the
shape of L or T. As examples of the proposed method, adaptive
and non-adaptive fault-tolerant routing algorithms using four
virtual channels per physical channel are described.
C. Routing in planar graphs

Most of our contributions in this paper arise from the idea
of routing in planar graphs. These connections will be further
explained in Section 4. A planar graph is a graph where no two
edges intersect. Planar graphs consist of faces. Three
algorithms for routing in planar graphs will be applied here:
Greedy routing, face routing and a combination of the two,
called GFG routing [BMSU]. The greedy algorithm can be
applied to all meshes considered in this article. The face and
GFG algorithms can only be applied to 2D meshes.

In the greedy routing algorithm by Finn (see [BMSU]),
each node currently holding the message forwards it to the
neighbor that is physically closest to the destination node. Only
nodes that are closer to the destination are considered. This is a
localized optimization strategy that leads to delivery, or in
many cases failure. If delivered, the message normally has a
route length close to the shortest path scheme. However, in
sparse or faulty graphs, the greedy approach may lead to a local
maxima (a node which has no closer node to the destination
than itself), and the message may not be delivered since it
becomes trapped in situations where all nodes that are closer to
the destination node are faulty. The message can then no longer
be propagated through the graph by the greedy method.

The face routing algorithm [BMSU] is described as follows.
The source draws an imaginary straight line l from the source S
to the destination D. This line will be important in determining
in which face the message is to be routed. The routing process
begins with the source node sending the message to its non-
faulty neighbor B such that angle BSl in minimal. Illustrations
can be found in Section 4. Since we are dealing with a planar
graph, each message can be sent along one face in the graph.
The message is repeatedly forwarded to the next neighbor in
the same face as the node currently holding the message. The
message will jump to an adjacent face if during the
transmission of the message from one node to another, the
communications line intersects line l, between the previous
intersection and the destination. This algorithm guarantees
delivery of messages if there exists a path from source to
destination. The messages contain source and destination
information, and the last intersection of the imaginary
intersection line. This is a memoryless procedure.

The GFG algorithm [BMSU], combines the above two
approaches. Messages are routed using the greedy algorithm

until it becomes stuck in a local maxima. Face routing takes
over until at some point the node currently holding the message
is physically closer to the destination than the node at which
the local maximum occurred. At this point, the greedy
algorithm takes over, and that node becomes the new source.
The greedy and face modes may alternate a few times until the
message is delivered. See illustration in Section 4.

III. BROADCASTING WITH GUARANTEED DELIVERY IN ALL

PORT FAULTY MESHES

We will first consider the case of the all-port
communication model for faulty meshes. The WCW algorithm
[WCW] has some drawbacks. It does not go into details
regarding the breadth first search that is used within each
pseudo-node. There must also exist a synchronization step
when the message is broadcasted vertically along the pseudo
nodes. We will demonstrate that it does not always guarantee
delivery to all nodes. Figure 1 is an example of failed
broadcasting where not all healthy nodes receive the message.
The three faulty nodes in the lower left pseudo node make it
impossible for the message to travel vertically from that pseudo
node. The effect is that no messages reach the upper left pseudo
node. In fact, simple blind flooding is faster, and there is no
need for a synchronization step. The WCW algorithm is
designed to provide amelioration over a simple blind flooding
approach by reducing the number of messages that need to be
exchanged for broadcasting to be successful. It is also intended
to reduce the time needed to accomplish broadcasting.

Figure 1. Broadcasting failure in WCW algorithm

We will now describe a new solution to this problem. Our
solution does not have the drawbacks mentioned for the WCW
algorithm. Namely, it has no need for a synchronization step,
and guarantees delivery to all nodes connected to the source.
The algorithm is a simple blind flooding algorithm. Blind
flooding is actually equivalent to breadth first search. In the all
port model, each node that receives the message for the first
time transmits it to all of its healthy neighbors in the next step.
Subsequent copies of the same message are ignored. The
algorithm apparently has no time synchronization problems,
and all nodes connected to the source will receive the message.
The number of messages passed within the entire mesh is in
fact greater in WCW, since it has blind flooding within each
submesh, and some messages need to be sent twice by border
submesh nodes; because once pseudo node blind flooding is
complete, the message is sent to the next pseudo node.

The proposed solution (illustrated in Figure 2) easily
generalizes to arbitrary types of faulty mesh networks
described in the introduction. Guaranteed delivery and other
properties are preserved on all such faulty meshes.

IV. ROUTING WITH GUARANTEED DELIVERY IN MCCS

Since we only consider routing that constructs a single
path, only the one port communication model is relevant to
routing solutions in this article. We observe that faulty MCCs
and tori are in fact planar graphs, and therefore the face and
GFG algorithms [BMSU] can be applied. The application
guarantees delivery of the message, and works in all cases
where there exists a path between source and destination. All
of the previously reviewed papers had limitations and
restrictions concerning faulty node occurrence frequency,
position, etc, but our solution has no such restrictions.
Therefore, our main contribution is the application of the GFG
algorithm [BMSU] to meshes and tori.

Figure 2. Blind flooding algorithm (all port model)

In order to better understand the GFG algorithm, it is
worth illustrating its two components: the greedy algorithm,
and the face algorithm. We begin with an example of how the
greedy algorithm works in Figure 3. We see that if S1 is the
source and D is the destination, the algorithm fails. If
however, S2 is the source and D the destination, the greedy
algorithm succeeds. This demonstrates that the greedy
algorithm alone does not guarantee delivery.

Figure 3. Greedy algorithm on a 6x6 mesh

We will now demonstrate the face algorithm on a 10x10
faulty mesh. The faulty nodes are represented in red, and their
communication links are severed, as shown in Figure 4, to get a
clearer picture of the algorithm. The green arrows show the
progression of the face algorithm. The light blue line represents
the imaginary line which contains crossover points of the face
algorithm. Note that when an imaginary line passes though a
healthy node and a message arrives at it, this node is treated as
a new source and the face routing restarts from this node. This
case is frequent in regular topologies like meshes, and is not
likely in random graphs, which is the reason why it was not
discussed in [BMSU].

The process of routing using the GFG algorithm was
described in Section 2. It will be illustrated here using an
example. In Figure 5, we see the same faulty 10x10 mesh as

the one above, but this time we will apply the GFG algorithm
to it in order to route a message from source S to destination D.
The green arrows show the progression of the face mode of the
algorithm, and the orange arrows show the progression of the
greedy part of the algorithm. The light blue lines are the
imaginary lines of the face algorithm. There is more than one
light blue line since a new one is created every time the face
algorithm is initiated. The origin of each blue line in Figure 5 is
treated as a source node by the face algorithm, and routing is
treated as if it had started from that node. At node S, the greedy
mode of GFG already fails since all nodes that are closer to the
source are faulty. The face algorithm is initiated, and the first
light blue line is drawn. The algorithm is continued until the
destination is reached.

Figure 4. Face algorithm on a 10x10 faulty mesh

Figure 5. GFG algorithm on a fault 10x10 mesh

V. ROUTING WITH K-D MESHES AND K-ARY N-CUBES

In this paper, we also introduce an algorithm for routing
messaged through k-D meshes and k-ary n-cubes. It is based on
the GFG approach, with slight modifications. Namely, we have
to consider the higher dimensions involved in such a routing
process. In order for our algorithm to be successful, a condition
must be met (other than working with planar structures). Every
2-dimensional subspace of the k-dimensional mesh must be
connected. Our procedure for routing in k-dimensional meshes
is based on routing in consecutive 2-D subspaces, each time
coming one dimension closer to the destination, until the
destination is reached. Figures 6 and 7 illustrate the algorithm
on a 3-D mesh.

Figure 6. Route from source to a helper node

Figure 7. Route from helper node to destination

Two 2-D subspaces of the 3-D mesh are shown Figures 6
and 7. It is along these two subspaces that the message is
routed. The grey nodes in both figures show the intersection of
the two subspaces. Fig. 6 shows a GFG route from the source
to the purple helper node, which is located in the same
horizontal plane as S. The GFG route is performed in the
horizontal subspace, where S is located. This node is placed
behind the line of intersection with the vertical subspace, and is
used to force the route path to cross this line. Once the message
reaches one of the grey nodes, it switches routing dimensions,
as seen in Fig. 7. Here, a simple GFG route is performed to D.

 We now present the pseudo-code for our proposed
algorithm. The first pseudo-code presented deals with routing
in 3-D faulty meshes from source S=(s1, s2, s3) to destination
D=(d1, d2, d3).

If (d1<s1) then d’=d1-1;
If (d1>s1) then d’=d1+1;
If (d1=s1) then X=S

Else { Follow the GFG algorithm from S to D’=(d’,
s2, s3) until a healthy node X=(d, s2’, s3) is reached };

Follow the GFG routing algorithm from X to D.
Now, for the k-D case, a similar approach is taken. Routing

from source S=(s1, s2, …, sk) to destination D=(d1, d2,…, dk) is
done in one 2-D subspace at a time, and the message gets one
dimension closer to the D after routing through each subspace.
For (i=1 to k-2) do {
 If (di<si) then d’=di-1;

If (di>si) then d’=di+1;
If (di si) then { Follow the GFG algorithm from X=(d1

… di-1, xi, xi+1, si+2, … , sk) to D’=(d1 … di-1, d’i, xi+1, si+2, … , sk)
until a healthy node Y=(d1 … di-1, di, yi+1, si+2, … , sk) is
reached; X=Y } };

Follow the GFG algorithm from X=(d1, d2 … dk-2, xk-1, xk) to
D=(d, d2, …, dk).

VI. BROADCASTING WITH GUARANTEED DELIVERY IN ONE-
PORT FAULTY MCCS AND TORI

We have developed an algorithm that can broadcast
messages through k-dimensional meshes or tori. In the case of
2D MCCs and tori, it guarantees delivery to all nodes
connected to the source. Our method is a combination of the
classical broadcasting algorithm described earlier, and the face
routing algorithm which was also previously discussed. In case
our algorithm is applied to a completely healthy MCC, it
reduces to the classical solution for the one-port model. The
idea from the classic algorithm stayed the same: the message is
transmitted horizontally across the network, and then all
receiving nodes retransmit the message vertically. This method
fails if a faulty node is reached. In such a case, all healthy
nodes behind the faulty one are skipped, and in essence are
treated as faulty. To bypass this, we propose a scheme that
literally bypasses all faulty nodes using the face routing
algorithm. In Figure 8, we see a 2-dimensional MCC, where
node S is broadcasting a message to all other nodes. The
message is transmitted horizontally and simultaneously in both
directions by node S. The following discussion will focus on
broadcasting in 2D faulty MCCs, and will be generalized in the
next section. The method easily extends to a 2D tori, since they
are also planar graphs, which is the only requirement (in
addition to connectivity), for face routing to work.

Figure 8. The next healthy node on a horizontal line

Figure 8 illustrates how the message eventually encounters
a faulty node, B, when traveling left towards node A. In such
situations, the face routing algorithm would be activated, and
the next healthy node in the horizontal line from S would be
found, if such a node exists. In this case such a node does exist,
and in figure 8 it is labeled A. As seen in Figure 8, all of the
nodes that were visited by the face algorithm were activated,
and all of these nodes will be sending messages vertically in
the next phase of the algorithm. All of the activated nodes in
Figure 8 are shown in blue. If, however, all other nodes left of
C were faulty, the face algorithm would return to C. In that
case, the algorithm would proceed to the vertical transmission
phase, seen in Figure 10. The face routing is applied here in the
simple form that guarantees delivery with simple observation.
It does not produce the message optimal solution and various
optimizations are possible. The reason for following the full

face perimeter is to activate all nodes on the perimeter, and to
find the closest healthy node in the given row, and in the given
direction. It is possible that the first encountered node is not the
closest, and this may complicate programming if such a node
continues the horizontal advance immediately. In Figure 9, we
see that the first encountered node in line with S is A. It
however is not the closest healthy node to S. The face route
encounters B, and finally C, which is the closest healthy node
to S. The message returns to S, having discovered that C is the
closest healthy node in the same row. The message is
forwarded from S to C by face routing, where the horizontal
advance continues.

Node E was chosen to illustrate the vertical transmission
phase in Figure 10. It transmits the message vertically and
simultaneously, both up and down. Once the message reaches
node F, it must perform another face route to get to node G. At
this point it continues on to node H. Note again that the vertical
phase of the algorithm performs the same type of vertical
transmission of the message from every activated node. Using
this methodology, all nodes connected to the source will
receive the message. Note also that the procedure for vertical
transmission is the same as for horizontal transmission.

Figure 9. Search for the closest healthy node in the same row

Figure 10. The vertical transmission phase from node E

The following section will present and explain the pseudo-
code for the proposed algorithm. The first procedure in the
algorithm is called send_to_row. It has the following

arguments: X: the source node; dim_to_send: dimension the
message is transmitted; and dim_to_help: determines the
dimension in which face routing will operate in case a faulty
node is detected. In this section, for 2D MCCs, one can fix
dim_to_send=1 and dim_to_help=2. This procedure
implements the first phase of the proposed algorithm: the
horizontal transmission of the message. The direction variable
is set to either 1 or -1, and specifies whether the message is
traveling left or right along dimension dim_to_send. Advance
is a Boolean variable, and specifies whether a node has reached
the farthest healthy node in dimension dim_to_send.

Procedure send_to_row(X, dim_to_send, dim_to_help) {
XL=X; XR=X;
Do the following two while loops in parallel {

While ((XL is not the leftmost node in row dim_to_send)
or (advance=false)){ Advance=true; Direction= -1;

Route (XL, direction, dim_to_send, dim_to_help, advance);}
While ((XR is not the rightmost in row dim_to_send) or
(advance=false)){Direction= 1; Advance=true;

Route(XR, direction, dim_to_send, dim_to_help, advance);}}}

The two while loops in procedure dim_to_send call
procedure route. It has the following arguments X: the source
node; direction: integer which specifies the direction of the
transmission; dim_to_send: dimension the message is
transmitted; dim_to_help: determines the dimension in which
face routing will operate in case a faulty node is detected; and
advance: the Boolean variable responsible for determining the
last healthy node in dim_to_send. The route procedure routes
messages from healthy neighbour to healthy neighbour in
dim_to_send. It is the procedure that calls the face routing
algorithm if the next node in dimension dim_to_send is faulty.

Procedure route(X, direction, dim_to_send, dim_to_help,
advance) {D= X + direction (in dim_to_send); /* if X=(X1, X2)
and direction = -1, then D=(X1-1, X2) */

If (D is healthy) then { Route message to D; X=D; } else {
Face route the message to D along dim_to_help;
Memorize the closest node D’ along the desired direction

in the desired row until the message returns to X;
If (any such node D’ found) then { Face route the

message to D’; X=D’; }else { Advance=false;} }}

To broadcast in a 2D mesh, procedure Broadcast_2D is
called. It invokes the two previously discussed procedures.

Procedure Broadcasting_2D (X) {
Send_to_row(X, 1, 2);
For (each healthy node Y that received the message from X)
{ Send_to_row(Y, 2, 1); } }.
The algorithm guarantees delivery to all nodes connected to

the source since it activates at least one in every column in the
first phase, and these nodes then send the message to all other
nodes in their column. Note that some redundancy may occur,
but it can be reduced by some simple programming extensions.

VII. BROADCASTING IN ONE-PORT FAULTY K-D MESHES AND

K-ARY N-CUBES

To broadcast in a k-D MCC, a series of successive
broadcasts are done in the same 2-D subspaces of the k-D
MCC. The following pseudo code underlines this. The
condition is that each 2-D subspace of the k-D MCC must be

connected. Otherwise, one such plane with disconnected
healthy nodes may not forward the message from one
component to another, even if they could be connected via
other nodes in other dimensions.

Broadcasting_in_a_k-D mesh(X) {
Send_to_row(X, 1, 2) // with other coordinates same as in X

For (dimensions j=2 to k) {
For (each healthy node Y that received the message
from X) { Send_to_row(Y, j, j-1); } } }

VIII. CONCLUSIONS

In this paper, we proposed some routing and broadcasting
algorithms for faulty meshes which use local knowledge of
faults, no additional resources, work for an arbitrary number
and structure of faults, guarantee delivery to all nodes
connected to the source, and remain optimal in a fault free
mesh. These are the first known solutions with such properties.
We propose a new broadcasting algorithm which guarantees
the delivery (to all processors connected to the source) in the
all port model of faulty meshes. We then describe routing and
broadcasting algorithms that guarantee delivery in faulty MCCs
and tori, the connectivity of the source and destination(s) being
the only obvious requirement. The algorithms are then
extended to faulty k-D meshes and k-ary n-cubes, where the
delivery will be guaranteed if healthy nodes in every 2-D
submesh (sub-tori) remain connected.

The routing and broadcasting problems for the one-port
model of higher dimensional faulty meshes and tori was solved
only with the mentioned condition. The open problem that
remains for further study is the design of algorithms with
weaker or hopefully no conditions attached.

This paper did not study deadlock-free, livelock-free and
some other additional important properties for protocols in
interconnection networks. It is possible to construct examples
where our algorithms cause deadlocks. Therefore, it is an open
problem to modify proposed algorithms to become deadlock-
free. Next, our algorithms are proposed with variants that can
be easily expressed and understood, and a number of
optimizations are possible. It is also of interest to study the
upper bounds on the number of unicast steps, and to
experimentally compare existing and new algorithms.

 REFERENCES

[AB] B.F.A. AlMohammad, B. Bose, Fault-tolerant
communication algorithms in toroidal networks, IEEE
Trans. Par. Distrib. Systems, 10, 10, 1999, 976-983.

[AC] D.R. Avresky, C.M. Cunningham, Single-source fault-
tolerant broadcasting for two-dimensional meshes without
virtual channels, Proc. European Dependable Computing
Conference, LNCS 1150, 1996, 178-189.

[BC] R. V. Boppana and S. Chalasani. Fault-tolerant
wormhole routing algorithms for mesh networks. IEEE
Trans. on Computers, 44(7):848--864, July 1995.

[BD] Y. M. Boura and C. R. Das. Fault-tolerant routing in
mesh networks. In Proc. 1995 Int. Conf. on Parallel
Processing, I.106--109, Aug. 1995.

[BMSU] P. Bose, P. Morin. I. Stojmenovic, J. Urrutia,
Routing with guaranteed delivery in ad hoc wireless
networks, Wireless Networks, 7, 6, 2001, 609-616.

[CA] C. Cunningham and D. Avresky, Fault-Tolerant
Adaptive Routing for Two-Dimensional Meshes, Int.
Symp. High Performance Computing Architecture,
Raleigh, 1995.

[CB] S. Chalasani and R V. Boppana, Communication in
Multicomputers with Nonconvex Faults. IEEE Trans. on
Computers, vol. 46, pp. 616-622, May 1997.

[CC] K.-H. Chen and G.-M. Chiu. Fault-tolerant routing
algorithm for meshes without using virtual channels.
Technical report, Nat'l Taiwan Inst. of Tech., 1997.

[GN] C. Glass and L. Ni. Fault-Tolerant Wormhole Routing in
Meshes without Virtual Channels. IEEE Trans. Par.
Distributed Systems vol. 7, no. 6, 620-636, June 1996.

[JW] Z. Jiang and J. Wu, A fault-tolerant broadcasting in 2-D
wormhole-routed meshes, Int. J. Computers and Their
Applications, to appear.

[LH] D.H. Linder and J,.C. Harden, An adaptive and fault-
tolerant wormhole routing strategy for k-ary n-cubes, IEEE
Trans. Computers, 40, 2-12, Jan. 1991.

[PSY] S. Park, S. Seidel, J.H. Youn, Fault-tolerance
broadcasting in wormwhole-routed torus networks, IEEE
Int. Parallel Processing Symp. IPDPS, 2002.

[S] J. D. Shih. Adaptive fault-tolerant wormhole routing
algorithms for hypercube and mesh interconnection
networks. Proc. of the 11th International Parallel
Processing Symposium. April 1997, 333-340.

[SS] C. C. Su and K. G. Shin. Adaptive fault-tolerant deadlock
free routing in meshes and hypercubes. IEEE Transactions
on Computers. 45, (6), 1996, 672-683.

[SW] P.H. Sui and S.D. Wang, An improved algorithm for
fault-tolerant wormhole routing in meshes, IEEE Trans.
Computers, 46, 9, 1997, 1040-1042.

[TKL] Y.C. Tseng, D. Kpanda, T.H. Lai, A trip-based
multicasting model in wormwhole-routed networks with
virtual channels, IEEE TPDS, 7, 2, 1996, 138-150.

[VUM] V. Varavithya, J. Upadhyay, P. Mohapatra, An
efficient fault-tolerant routing scheme for two-dimensional
meshes, Int. Conf. High-Perf. Comp., 1995, 773-778.

[W1] J. Wu. A fault-tolerant adaptive and minimal routing
approach in 3-D meshes. Proc. of the 7th Int'l Conf. on
Parallel and Distributed Systems (ICPADS). July 2000.

[W2] J. Wu. Fault-tolerant adaptive and minimal routing in
mesh-connected multicomputers using extended safety
levels, IEEE Transactions on Parallel and Distributed
Systems, 11, (2), Feb. 2000, 149-159.

[W3] J. Wu, A distributed formation of orthogonal convex
polygons in mesh-connected multicomputers, Proc. IEEE
Int. Parallel Processing Symp. IPPS, 2001.

[WCW] G.C. Wang, J. Chen, G.J. Wang, A probabilistic
approach to fault tolerant broadcast routing algorithms on
mesh networks, IEEE IPDPS, 2003.

[ZK] L. Zakrevski, M. Karpovsky, Fault-tolerant message
routing for multiprocessors, IEEE IPPS/SPDP Work.,
1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

