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Abstract— Broadcasting is a data communication task in 

which one processor sends the same message to all other 

processors. Routing is a task where a source processor sends a 

message to a destination processor. A faulty node is in an error 

state and cannot participate in the activities or the 

communication in a given network. In this paper, we consider the 

family of mesh networks, which include the mesh connected 

computer (MCC), k-dimensional mesh, torus, and k-ary n-cube. 

Our goal is to design routing and broadcasting algorithms which 

will use local knowledge of faults, no additional resources, will 

work for an arbitrary number and structure of faults, will 

guarantee delivery to all nodes connected to the source, and will 

remain optimal in a fault free mesh. We did not find any solution 

in literature to satisfy these desirable properties. Our routing and 

broadcasting schemes for MCCs and tori, and our broadcasting 

algorithm for the all-port model on any faulty mesh network 

satisfy all of these properties. For routing and broadcasting in a 

one-port model in higher dimensions, a condition on fault 

structure needs to be met. We propose a new broadcasting 

algorithm which guarantees delivery to all processors connected 

to the source in the all-port model of faulty meshes. We then 

describe a routing algorithm that guarantees delivery in faulty 

MCCs and tori, the connectivity of the source and destination 

being the only obvious requirement. The algorithm can be 

extended to faulty k-D meshes and k-ary n-cubes, where the 

delivery will be guaranteed if healthy nodes in every 2-D submesh 

(sub-tori) remain connected. We then describe broadcasting 

algorithms for the one-port model, which again guarantee 

delivery to all connected processors in two-dimensional cases, and 

guarantee delivery in k-dimensional cases if healthy processors in 

every 2-D submesh (sub-tori) remain connected.
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I. INTRODUCTION

A mesh connected computer (MCC) is a set of processors 
(nodes) arranged in a square grid. Each node in the grid has up 
to 4 neighbors, which are nodes to the left, right, bottom and 
top (if they exist, and are not faulty). A MCC of size k has k
rows and k columns, and therefore has k2 processors. A torus is 
a mesh with additional edges such that all nodes have exactly 4 
neighbors. This is achieved by connecting all nodes on the 
border of the mesh (which have less than 4 neighbors) to their 
corresponding node on the opposite border. A torus of size k
has k rows and k columns.  An n-D mesh network (a 
generalization of MCC) of size k has k nodes along each 
dimension, and therefore has kn processors overall. Each node 

has an address of the form (a1, a2, … , an), where 0≤ ai ≤ k-1.
Each such node has 2n neighbors, that is, two neighbors along 
each dimension (if such a neighbor exists). The neighbors 
along the ith coordinate share the n-1 coordinates, while the ith

coordinates are ai +1 and ai -1, respectively. That is, the 
neighbors of node (a1, a2, … , an) are (a1, … , ai-1, ai+1, ai+1, … 
, an)) and (a1,…, ai-1, ai -1, ai+1, … , an)). 

A k-ary n-cube is a generalization of a torus network and an 
extension of an n-D mesh by adding some edges. Each node 

has an address of the form (a1, a2, … , an), where 0≤ ai ≤ k-1.
Each such node has 2n neighbors, that is, two neighbors along 
each dimension. The neighbors along the ith dimension share 
the n-1 coordinates, while the ith coordinates are ai +1 (mod k)
and ai -1 (mod k), respectively. That is, the neighbors of node 
(a1, a2, … , an) are (a1, … , ai-1, ai+1 mod k, ai+1, … , an)) and 
(a1,…, ai-1, ai -1 mod k, ai+1, … , an)). Therefore this is the n-D 
mesh model with added wrap around edges. Note that a 2-ary 
n-cube is an n-dimensional hypercube. We are interested in 
mesh type networks, where k>n (that is, with low dimensions 
but large size along each dimension).  

In accordance with literature, we assume that each 
processor can correctly receive messages from several 
neighboring processors simultaneously. For broadcasting, we 
consider both the one-port and all-port models. For routing, we 
only consider the one-port model since the all-port model is 
irrelevant on a path anyway. In a one-port model, a message 
sent from one processor is received by only one of its 
neighbors, while in an all-port model, it is simultaneously 
received by all of its neighbors. In the rest of this text, 
processors will also be known as nodes, and the links between 
them as edges in the considered network. 

Routing is a task where a source node A(u, v) sends a 
message to a destination node B(w, z). Routing on a MCC can 
be done by sending the message horizontally to node C(w,v). If 
u<w, the message is sent right. If u>v, the message is sent left. 
The second step of the simple algorithm involves sending the 
message vertically along the mesh from C(w, v) to B(w, z). This 
well known routing algorithm can be generalized for n-D 
meshes and k-ary n-cubes in a straightforward manner. At each 
step, the message can advance along any dimension where the 
coordinates of the current node and destination node differ. 
Broadcasting is a task of transmitting a message from one node 
to all other nodes in the mesh network. Assume node X(u,v)
wants to broadcast a message. In a well known solution, the 
message is first broadcasted horizontally across the mesh. This 
means that all nodes with coordinates (w,v) receive it. The 
second phase involves vertical transmission by all of the nodes 
which currently have the message, in parallel. By forwarding 
the message in both the up and down directions from node 
(w,v), all nodes (w,z) in that column receive the message.

In order to solve the problem of broadcasting and routing in 
faulty mesh networks, we studied various properties of existing 
solutions, and made a list of several desirable ones. We would 
like to avoid placing restrictions on the number of faults or the 
location of faults in the mesh. Certain algorithms only work in 
cases where the number and/or positions of the faulty nodes 
conform to certain specific standards. We will search for a 
solution that does not rely on fault position or the occurrence of 
too few faults. Such a solution is obviously more flexible and 
applicable to any mesh. We managed to find such solutions for 
2-D cases, while for k-D cases, we had to add a reasonable 
condition which covers a wide range of scenarios. 

1-4244-0054-6/06/$20.00  ©2006 IEEE



We also assume that there are no additional resources being 
used such as virtual channels. The next goal is to have 
protocols that remain optimal if there are no faults in the 
network. The final goal in our research is to design routing and 
broadcasting protocols that guarantee delivery of the message 
to all non-faulty nodes connected to the source. We will search 
for a solution in which processors only have local knowledge 
of faults. Local knowledge of faults means that each node only 
knows the fault status of its neighbors. Algorithms that require 
global knowledge of faulty nodes (that is, full network 
information at each node) require pre-processing steps to 
spread such information throughout the network whenever a 
fault occurs, and whenever a fault is repaired. Some protocols 
even require grouping healthy nodes into rectangular boxes, or 
enclosing faulty nodes into rectangular or convex boxes. The 
latter boxes could include some healthy nodes as well, which 
are disabled, and cannot participate in communication tasks. If 
global knowledge is available, the source node can apply a 
shortest paths scheme to find the route to each destination, and 
this computation can be repeated at each intermediate node, or 
the information could be included in the message itself. In 
mesh networks with many nodes, faults can occur dynamically, 
frequently and nodes may even be recovered or replaced, and 
messages sent to the whole network informing it of its status 
may cause considerable overhead. Moreover, these messages 
may not reach all connected and healthy nodes if additional 
faults occur dynamically in the network while the information 
about the previous fault is still circulating. That is, this 
broadcasting task itself, and the assumption of having global 
knowledge may be impossible to provide when failures are 
dynamic, frequent and occur almost simultaneously at several 
nodes. This means that our goal of guaranteed delivery to all 
connected nodes can only be achieved using local knowledge. 

We are not aware of any existing method for either of the 
two problems, while at the same time satisfying all of the listed 
criteria. The papers that proved most relevant were [WCW] for 
broadcasting and [ZK] for both routing and broadcasting in 
faulty meshes. Out of these two, only [WCW] describes an 
algorithm in which nodes have local knowledge of faults. 
However, this algorithm does not always guarantee delivery. 
[ZK] guarantees delivery, but involves global knowledge of 
faults (as discussed above, the occurrence of dynamic faults 
while routing or broadcasting is in progress may endanger the 
guaranteed delivery property). Some of the remaining papers 
require additional resources such as virtual channels: 
[TKL,PSY,LH,SS,SW]. Other papers that require global 
knowledge about faults include [AB,AC,CA,W1,W2]. There is 
another set of papers which impose restrictions on the location 
and number of faults in the mesh: [BC,GN,CC,W3].  

This paper is organized in the following way. Section 2 
gives a literature review on routing and broadcasting in faulty 
meshes. In Section 3, we propose a new broadcasting algorithm 
which has guaranteed delivery (to all processors connected to 
the source) in the all-port model of faulty meshes. In Section 4, 
we describe a routing algorithm that guarantees delivery in 
faulty MCCs and tori, the connectivity of the source and 
destination being the only obvious requirement. The algorithm 
is extended in Section 5 to faulty k-D meshes and k-ary n-
cubes, where the delivery is guaranteed if healthy nodes in 
every 2-D submesh (sub-tori) remain connected. In Sections 6, 
7, we describe broadcasting algorithms for the one-port model, 

which again guarantee delivery to all connected nodes in 2-
dimensional cases, and also in k-dimensional cases if healthy 
nodes in every 2-D submesh (sub-tori) remain connected. The 
conclusion section completes this article. 

II. LITERATURE REVIEW

A. Broadcasting in faulty meshes 

1) Local knowledge and no additional resources 
Wu, Chen and Wu [WCW] describe a broadcasting 

algorithm for MCC that does not require global knowledge in 
order to broadcast messages.  They assume an all-port model of 
communication. They claim that the problem is very difficult 
and only give a solution for a special case of an m-subMCC. 
The algorithm takes a kxk mesh as input. The mesh is 
partitioned into mxm submeshes where m<k. Each of these 
submeshes acts as a node in the sense that it is assumed to be 
non faulty and can receive and transmit messages to its 
neighboring ‘nodes’. These pseudo nodes are deemed more 
likely to transmit messages to their neighboring nodes since 
they have more connecting lines for neighbor-to-neighbor 
communication. When less than m/2 nodes on each border of 
each submesh are faulty, communication between two pseudo-
nodes would be successful.  The following two steps alternate. 
The first step involves broadcasting the message locally 
through the pseudo node. This is done using a breadth first 
search administered locally within the pseudo node. Breadth 
first search uses only local submesh knowledge to find a 
routing path to each node within the pseudo node. Once every 
node in the pseudo-node has received the message, it is passed 
on to neighboring pseudo-nodes in the second step, that is 
equivalent to broadcasting in a network of pseudo-nodes 
(submeshes). This process is repeated until the message is 
successfully broadcasted throughout the mesh. Note that a 
synchronization step may be needed for communication 
between submeshes. The authors assume that each of the m-
submeshes remains connected internally, after removing the 
faulty nodes. They claim that their algorithm guarantees 
delivery 99% of the time if faulty nodes occur less than 12% of 
the time. The protocol however does not guarantee delivery of 
messages to all non-faulty nodes if the percentage of node 
failures is high enough. Faults within a submesh may 
disconnect it internally, but the nodes may remain connected 
via other nodes in the mesh. The protocol can be generalized to 
n-D meshes and k-ary n-cubes with similar properties.  

2) Broadcasting with global knowledge or additional 

resources 
Jiang and Wu [JW] described a broadcasting algorithm 

which has two phases. In the pre-broadcasting phase, faulty 
nodes are grouped into rectangular blocks, which may include 
some healthy nodes which are disabled. The rest of the mesh is 
then divided into rectilinearly convex polygonal regions (that 
is, convex in both horizontal and vertical directions). In the 
broadcasting phase, the message is sent from the source to an 
‘eye’ node in each convex region reachable from it (faulty 
blocks being excluded for communication). These ‘eye’ nodes 
then broadcast the message within their own region using a 
recursive algorithm. In this recursive algorithm, the current 
region is subdivided into smaller ones, and message is sent to 
one ‘eye’ in each sub region. The process continues until each 



reachable node receives the message. The algorithm [JW] 
therefore requires global faulty information, and also does not 
guarantee delivery to each node reachable from the source. 
Disabled nodes by the design do not receive the message. Also, 
rectangular faulty blocks, which are expanded by disabling 
some nodes, may disconnect the mesh, with one region being 
unreachable from the other, although in reality they could be 
linked via disabled, but healthy nodes.  

 [TKL] describe a multicasting algorithm that can broadcast 
in arbitrary topology but requires up to two virtual channels. 
[PSY] describe a fault tolerant broadcasting algorithm for torus 
network which uses only local knowledge of faulty nodes and 
can tolerate up to k-1 faults in a k-ary n-cube. The algorithm 
needs two virtual channels at each physical channel if faulty 
nodes appear, and is too restrictive on the number of faults it 
can tolerate. When applied on a mesh with k rows and k
columns, it can tolerate up to k-1 faults. Virtual channels 
involve adding buffer space and complex control logic. 

[AB] describe a fault tolerant one-to-all broadcasting 
algorithm for k-ary n-cubes, which requires global knowledge 
of faults, and can tolerate up to 2n-2 node failures provided that 
k>2n-2 and k>3. Therefore it does not apply to k=2 which is a 
2-dimensional torus, and does not follow the local knowledge 
assumption. The solution [AC] requires more than local fault 
information, since certain unsafe nodes are defined recursively 
and propagated from a faulty node. The algorithm requires a 
fault free row and fault free column, and therefore tolerates up 
to k faults on a mesh of size k.   

B. Routing in faulty meshes 

1) Routing with guaranteed delivery 
The paper by Zakrevski and Karpovsky [ZK] described an 

interesting algorithm that guarantees delivery of messages in all 
connected meshes, but requires global knowledge of faults to 
achieve this. Their algorithm involves pre-routing, and routing 
phases. The pre-routing phase is the pre-processing step and 
involves constructing the largest possible non-faulty rectangles 
out of the mesh. This means that all non-faulty nodes must be 
located in at least one non-faulty rectangle. The second step of 
their algorithm involves connecting these rectangles in a graph. 
Each rectangle is represented by a node in this new graph. Two 
nodes in the new graph are connected if they partially overlap 
each other. This means that they share at least one actual node 
in the mesh. The pre-routing phase is performed every time 
there is a new faulty node in the mesh, or every time a node 
becomes non faulty. The routing phase uses the rectangle graph 
to find the shortest path between rectangles containing the 
source and destination nodes. Within each rectangle, a simple 
routing connects common nodes with previous and next 
rectangles on the route. Broadcasting a message can be done as 
follows. The message is first routed from the source rectangle 
to all other rectangles using Dijkstra’s shortest path algorithm. 
Each rectangle then distributes the message amongst its nodes 
using the standard broadcasting algorithm for non-faulty 
meshes. This local broadcasting will work because each of the 
rectangles only contains non-faulty nodes. Their method 
guarantees delivery at the cost of global knowledge of faults.  

2) Routing with restricted fault structure for guaranteed 

delivery 

Another recent algorithm by Boppana and Chalasani [BC] 
uses the concept of faulty rings to route around faulty nodes. Its 
main drawback is severe restrictions on fault locations - it is 
prohibited to have faulty nodes both to the South and North, or 
to the East and West, from a fault-free node. The main idea was 
then expanded in [CB] by creating faulty rings for routing 
around H-shaped, T-shaped, U-shaped, and +-shaped regions. 
Therefore the types of local knowledge faults the algorithm can 
handle are very restricted. It is restricted to the cases where 
route segments containing faulty nodes can be locally replaced 
by route segments with all nodes being healthy. 

An example of the deadlock-free routing algorithm is 
NAFTA by Cunningham and Avresky [CA]. This algorithm is 
based on the combination of North-Last and South-Last 
strategies and allows deadlock-free routing without global 
knowledge. However, it introduces some unsafe nodes. The 
number of these nodes can grow as O(k2) on a mesh with k
rows and k columns, for the worst configuration of faulty 
nodes. The solution [CA] actually requires more than local 
fault information and a pre-processing step, since certain 
unsafe nodes are defined recursively and propagated from a 
faulty node. It also requires fault free row or fault free column. 

Glass and Ni [GN] propose a fault-tolerant routing scheme 
for n-D meshes without virtual channels, but the scheme can 
tolerate up to n-1 faults. The algorithm by Chen and Chiu [CC] 
can only tolerate a limited number of faults, proportional to the 
dimension of the mesh torus. To tolerate more faults, they 
propose to deactivate some healthy nodes (i.e. regard them as 
faulty) so that faults are in rectangular shapes. However, this 
process can disconnect the network and routing may fail. 

Algorithms described by Wu [W1, W2] require global 
knowledge of faults to derive optimal paths. The attempt is 
made to reduce the amount of fault information needed while 
maintaining minimal length paths. The author does not discuss 
whether or not any of the proposed schemes guarantee 
delivery. In fact, the source does not even start routing if the 
existence of a minimal path is not guaranteed.   

The rectangular faulty model is the most commonly used 
fault model in designing a fault tolerant and deadlock free 
routing algorithm in mesh-connected computers.  Although 
some efforts have been made either to enhance the faulty block 
[S] or to activate some boundary non-faulty nodes in a faulty 
block [BD, SS]), the major problem is that a faulty block may 
include many non-faulty nodes. In [W3], Wu minimized the 
size of faulty blocks by defining special convex polygons from 
a given set of rectangular faulty blocks. An additional problem 
in all faulty block based solutions is that routes from non-faulty 
nodes which are inside faulty blocks to other nodes are not 
given in any of solutions proposed with faulty block model, 
although connectivity may exist.  

3) Routing that requires virtual channels 
The algorithm [VUM] tolerates multiple faults but requires 

two virtual channels. They assume only local knowledge about 
faults, but the message is not allowed to backtrack. Thus, there 
should not be any concave faulty regions in the network where 
the message may get trapped [VUM]. The solution is described 
via a pseudo-code and is difficult to understand. The scheme 
[LH] requires additional virtual channels for each physical 
channel, and is therefore costly for implementation. 



Faulty blocks can be easily established and maintained 
through message exchanges among neighboring nodes. The 
convexity of each faulty block facilitates a simple fault-tolerant 
and deadlock free routing using relatively few virtual channels 
[SS, SW]). This feature is also a necessary condition for 
progressive routing, where the routing process never 
backtracks. The absence of backtracking in turn is a necessary 
condition for minimal routing, where the destination is reached 
through a minimal path from the source. Therefore the schemes 
[SS, SW] require convexity of each faulty block. 

Boppana and Chalasani [BC] introduce the solid fault 
model. It is a model where any cross section of a faulty region 
has contiguous faulty components. The proposed method 
handles solid faults in meshes, which includes all convex faults 
and many practical nonconvex faults, for example, faults in the 
shape of L or T. As examples of the proposed method, adaptive 
and non-adaptive fault-tolerant routing algorithms using four 
virtual channels per physical channel are described. 
C. Routing in planar graphs 

Most of our contributions in this paper arise from the idea 
of routing in planar graphs. These connections will be further 
explained in Section 4. A planar graph is a graph where no two 
edges intersect. Planar graphs consist of faces. Three 
algorithms for routing in planar graphs will be applied here: 
Greedy routing, face routing and a combination of the two, 
called GFG routing [BMSU]. The greedy algorithm can be 
applied to all meshes considered in this article. The face and 
GFG algorithms can only be applied to 2D meshes.  

In the greedy routing algorithm by Finn (see [BMSU]), 
each node currently holding the message forwards it to the 
neighbor that is physically closest to the destination node. Only 
nodes that are closer to the destination are considered. This is a 
localized optimization strategy that leads to delivery, or in 
many cases failure. If delivered, the message normally has a 
route length close to the shortest path scheme. However, in 
sparse or faulty graphs, the greedy approach may lead to a local 
maxima (a node which has no closer node to the destination 
than itself), and the message may not be delivered since it 
becomes trapped in situations where all nodes that are closer to 
the destination node are faulty. The message can then no longer 
be propagated through the graph by the greedy method.  

The face routing algorithm [BMSU] is described as follows. 
The source draws an imaginary straight line l from the source S
to the destination D. This line will be important in determining 
in which face the message is to be routed. The routing process 
begins with the source node sending the message to its non-
faulty neighbor B such that angle BSl in minimal. Illustrations 
can be found in Section 4. Since we are dealing with a planar 
graph, each message can be sent along one face in the graph. 
The message is repeatedly forwarded to the next neighbor in 
the same face as the node currently holding the message. The 
message will jump to an adjacent face if during the 
transmission of the message from one node to another, the 
communications line intersects line l, between the previous 
intersection and the destination. This algorithm guarantees 
delivery of messages if there exists a path from source to 
destination. The messages contain source and destination 
information, and the last intersection of the imaginary 
intersection line. This is a memoryless procedure.  

The GFG algorithm [BMSU], combines the above two 
approaches. Messages are routed using the greedy algorithm 

until it becomes stuck in a local maxima. Face routing takes 
over until at some point the node currently holding the message 
is physically closer to the destination than the node at which 
the local maximum occurred. At this point, the greedy 
algorithm takes over, and that node becomes the new source. 
The greedy and face modes may alternate a few times until the 
message is delivered. See illustration in Section 4. 

III. BROADCASTING WITH GUARANTEED DELIVERY IN ALL 

PORT FAULTY MESHES 

We will first consider the case of the all-port 
communication model for faulty meshes. The WCW algorithm 
[WCW] has some drawbacks. It does not go into details 
regarding the breadth first search that is used within each 
pseudo-node. There must also exist a synchronization step 
when the message is broadcasted vertically along the pseudo 
nodes. We will demonstrate that it does not always guarantee 
delivery to all nodes. Figure 1 is an example of failed 
broadcasting where not all healthy nodes receive the message. 
The three faulty nodes in the lower left pseudo node make it 
impossible for the message to travel vertically from that pseudo 
node. The effect is that no messages reach the upper left pseudo 
node. In fact, simple blind flooding is faster, and there is no 
need for a synchronization step. The WCW algorithm is 
designed to provide amelioration over a simple blind flooding 
approach by reducing the number of messages that need to be 
exchanged for broadcasting to be successful. It is also intended 
to reduce the time needed to accomplish broadcasting.  

Figure 1. Broadcasting failure in WCW algorithm 

We will now describe a new solution to this problem. Our 
solution does not have the drawbacks mentioned for the WCW 
algorithm. Namely, it has no need for a synchronization step, 
and guarantees delivery to all nodes connected to the source. 
The algorithm is a simple blind flooding algorithm. Blind 
flooding is actually equivalent to breadth first search. In the all 
port model, each node that receives the message for the first 
time transmits it to all of its healthy neighbors in the next step. 
Subsequent copies of the same message are ignored. The 
algorithm apparently has no time synchronization problems, 
and all nodes connected to the source will receive the message. 
The number of messages passed within the entire mesh is in 
fact greater in WCW, since it has blind flooding within each 
submesh, and some messages need to be sent twice by border 
submesh nodes; because once pseudo node blind flooding is 
complete, the message is sent to the next pseudo node.   

The proposed solution (illustrated in Figure 2) easily 
generalizes to arbitrary types of faulty mesh networks 
described in the introduction. Guaranteed delivery and other 
properties are preserved on all such faulty meshes. 



IV. ROUTING WITH GUARANTEED DELIVERY IN MCCS

Since we only consider routing that constructs a single 
path, only the one port communication model is relevant to 
routing solutions in this article. We observe that faulty MCCs 
and tori are in fact planar graphs, and therefore the face and 
GFG algorithms [BMSU] can be applied. The application 
guarantees delivery of the message, and works in all cases 
where there exists a path between source and destination. All 
of the previously reviewed papers had limitations and 
restrictions concerning faulty node occurrence frequency, 
position, etc, but our solution has no such restrictions. 
Therefore, our main contribution is the application of the GFG 
algorithm [BMSU] to meshes and tori.  

Figure 2. Blind flooding algorithm (all port model) 

In order to better understand the GFG algorithm, it is 
worth illustrating its two components: the greedy algorithm, 
and the face algorithm. We begin with an example of how the 
greedy algorithm works in Figure 3. We see that if S1 is the 
source and D is the destination, the algorithm fails. If 
however, S2 is the source and D the destination, the greedy 
algorithm succeeds. This demonstrates that the greedy 
algorithm alone does not guarantee delivery. 

Figure 3. Greedy algorithm on a 6x6 mesh 

We will now demonstrate the face algorithm on a 10x10 
faulty mesh. The faulty nodes are represented in red, and their 
communication links are severed, as shown in Figure 4, to get a 
clearer picture of the algorithm. The green arrows show the 
progression of the face algorithm. The light blue line represents 
the imaginary line which contains crossover points of the face 
algorithm. Note that when an imaginary line passes though a 
healthy node and a message arrives at it, this node is treated as 
a new source and the face routing restarts from this node. This 
case is frequent in regular topologies like meshes, and is not 
likely in random graphs, which is the reason why it was not 
discussed in [BMSU]. 

The process of routing using the GFG algorithm was 
described in Section 2. It will be illustrated here using an 
example. In Figure 5, we see the same faulty 10x10 mesh as 

the one above, but this time we will apply the GFG algorithm 
to it in order to route a message from source S to destination D.
The green arrows show the progression of the face mode of the 
algorithm, and the orange arrows show the progression of the 
greedy part of the algorithm. The light blue lines are the 
imaginary lines of the face algorithm. There is more than one 
light blue line since a new one is created every time the face
algorithm is initiated. The origin of each blue line in Figure 5 is 
treated as a source node by the face algorithm, and routing is 
treated as if it had started from that node. At node S, the greedy 
mode of GFG already fails since all nodes that are closer to the 
source are faulty. The face algorithm is initiated, and the first 
light blue line is drawn. The algorithm is continued until the 
destination is reached.  

Figure 4. Face algorithm on a 10x10 faulty mesh 

Figure 5. GFG algorithm on a fault 10x10 mesh 

V. ROUTING WITH K-D MESHES AND K-ARY N-CUBES 

In this paper, we also introduce an algorithm for routing 
messaged through k-D meshes and k-ary n-cubes. It is based on  
the GFG approach, with slight modifications. Namely, we have 
to consider the higher dimensions involved in such a routing 
process. In order for our algorithm to be successful, a condition 
must be met (other than working with planar structures). Every 
2-dimensional subspace of the k-dimensional mesh must be 
connected. Our procedure for routing in k-dimensional meshes 
is based on routing in consecutive 2-D subspaces, each time 
coming one dimension closer to the destination, until the 
destination is reached.  Figures 6 and 7 illustrate the algorithm 
on a 3-D mesh. 



Figure 6. Route from source to a helper node 

Figure 7. Route from helper node to destination 

Two 2-D subspaces of the 3-D mesh are shown Figures 6 
and 7. It is along these two subspaces that the message is 
routed. The grey nodes in both figures show the intersection of 
the two subspaces. Fig. 6 shows a GFG route from the source 
to the purple helper node, which is located in the same 
horizontal plane as S. The GFG route is performed in the 
horizontal subspace, where S is located. This node is placed 
behind the line of intersection with the vertical subspace, and is 
used to force the route path to cross this line. Once the message 
reaches one of the grey nodes, it switches routing dimensions, 
as seen in Fig. 7. Here, a simple GFG route is performed to D.  

 We now present the pseudo-code for our proposed 
algorithm. The first pseudo-code presented deals with routing 
in 3-D faulty meshes from source S=(s1, s2, s3) to destination 
D=(d1, d2, d3).  

If (d1<s1) then d’=d1-1;
If (d1>s1) then d’=d1+1;
If (d1=s1) then X=S

Else { Follow the GFG algorithm from S to D’=(d’, 
s2, s3) until a healthy node X=(d, s2’, s3) is reached }; 

Follow the GFG routing algorithm from X to D.
Now, for the k-D case, a similar approach is taken. Routing 

from source S=(s1, s2, …, sk) to destination D=(d1, d2,…, dk) is 
done in one 2-D subspace at a time, and the message gets one 
dimension closer to the D after routing through each subspace.  
For (i=1 to k-2) do { 
   If (di<si) then d’=di-1;

If (di>si) then d’=di+1;
If (di si) then { Follow the GFG algorithm from X=(d1

… di-1, xi, xi+1, si+2, … , sk) to D’=(d1 … di-1, d’i, xi+1, si+2, … , sk)
until a healthy node Y=(d1 … di-1, di, yi+1, si+2, … , sk) is 
reached; X=Y } }; 

Follow the GFG algorithm from X=(d1, d2 … dk-2, xk-1, xk) to 
D=(d, d2, …, dk). 

VI. BROADCASTING WITH GUARANTEED DELIVERY IN ONE-
PORT FAULTY MCCS AND TORI

We have developed an algorithm that can broadcast 
messages through k-dimensional meshes or tori. In the case of 
2D MCCs and tori, it guarantees delivery to all nodes 
connected to the source. Our method is a combination of the 
classical broadcasting algorithm described earlier, and the face 
routing algorithm which was also previously discussed. In case 
our algorithm is applied to a completely healthy MCC, it 
reduces to the classical solution for the one-port model. The 
idea from the classic algorithm stayed the same: the message is 
transmitted horizontally across the network, and then all 
receiving nodes retransmit the message vertically. This method 
fails if a faulty node is reached. In such a case, all healthy 
nodes behind the faulty one are skipped, and in essence are 
treated as faulty. To bypass this, we propose a scheme that 
literally bypasses all faulty nodes using the face routing 
algorithm. In Figure 8, we see a 2-dimensional MCC, where 
node S is broadcasting a message to all other nodes. The 
message is transmitted horizontally and simultaneously in both 
directions by node S. The following discussion will focus on 
broadcasting in 2D faulty MCCs, and will be generalized in the 
next section. The method easily extends to a 2D tori, since they 
are also planar graphs, which is the only requirement (in 
addition to connectivity), for face routing to work.  

Figure 8. The next healthy node on a horizontal line 

Figure 8 illustrates how the message eventually encounters 
a faulty node, B, when traveling left towards node A. In such 
situations, the face routing algorithm would be activated, and 
the next healthy node in the horizontal line from S would be 
found, if such a node exists. In this case such a node does exist, 
and in figure 8 it is labeled A. As seen in Figure 8, all of the 
nodes that were visited by the face algorithm were activated, 
and all of these nodes will be sending messages vertically in 
the next phase of the algorithm. All of the activated nodes in 
Figure 8 are shown in blue. If, however, all other nodes left of 
C were faulty, the face algorithm would return to C. In that 
case, the algorithm would proceed to the vertical transmission 
phase, seen in Figure 10. The face routing is applied here in the 
simple form that guarantees delivery with simple observation. 
It does not produce the message optimal solution and various 
optimizations are possible. The reason for following the full 



face perimeter is to activate all nodes on the perimeter, and to 
find the closest healthy node in the given row, and in the given 
direction. It is possible that the first encountered node is not the 
closest, and this may complicate programming if such a node 
continues the horizontal advance immediately.  In Figure 9, we 
see that the first encountered node in line with S is A. It 
however is not the closest healthy node to S. The face route 
encounters B, and finally C, which is the closest healthy node 
to S. The message returns to S, having discovered that C is the 
closest healthy node in the same row. The message is 
forwarded from S to C by face routing, where the horizontal 
advance continues.  

Node E was chosen to illustrate the vertical transmission 
phase in Figure 10. It transmits the message vertically and 
simultaneously, both up and down. Once the message reaches 
node F, it must perform another face route to get to node G. At 
this point it continues on to node H. Note again that the vertical 
phase of the algorithm performs the same type of vertical 
transmission of the message from every activated node. Using 
this methodology, all nodes connected to the source will 
receive the message. Note also that the procedure for vertical 
transmission is the same as for horizontal transmission.  

Figure 9. Search for the closest healthy node in the same row 

Figure 10. The vertical transmission phase from node E

The following section will present and explain the pseudo- 
code for the proposed algorithm. The first procedure in the 
algorithm is called send_to_row. It has the following 

arguments: X: the source node; dim_to_send: dimension the 
message is transmitted; and dim_to_help: determines the 
dimension in which face routing will operate in case a faulty 
node is detected. In this section, for 2D MCCs, one can fix 
dim_to_send=1 and dim_to_help=2. This procedure 
implements the first phase of the proposed algorithm: the 
horizontal transmission of the message. The direction variable 
is set to either 1 or -1, and specifies whether the message is 
traveling left or right along dimension dim_to_send. Advance 
is a Boolean variable, and specifies whether a node has reached 
the farthest healthy node in dimension dim_to_send.

Procedure send_to_row( X, dim_to_send, dim_to_help) { 
XL=X; XR=X; 
Do the following two while loops in parallel { 

While ((XL is not the leftmost node in row dim_to_send)
or (advance=false)){ Advance=true; Direction= -1; 

Route (XL, direction, dim_to_send, dim_to_help, advance);}
While ((XR is not the rightmost in row dim_to_send) or 
(advance=false)){Direction= 1; Advance=true; 

Route(XR, direction, dim_to_send, dim_to_help, advance);}}} 

The two while loops in procedure dim_to_send call 
procedure route. It has the following arguments X: the source 
node; direction: integer which specifies the direction of the 
transmission; dim_to_send: dimension the message is 
transmitted; dim_to_help: determines the dimension in which 
face routing will operate in case a faulty node is detected; and 
advance: the Boolean variable responsible for determining the 
last healthy node in dim_to_send. The route procedure routes 
messages from healthy neighbour to healthy neighbour in 
dim_to_send. It is the procedure that calls the face routing 
algorithm if the next node in dimension dim_to_send is faulty. 

Procedure route( X, direction, dim_to_send, dim_to_help, 
advance) {D= X + direction (in dim_to_send); /* if X=(X1, X2)
and direction = -1, then D=(X1-1, X2) */ 

If (D is healthy) then { Route message to D; X=D; } else { 
Face route the message to D along dim_to_help;
Memorize the closest node D’ along the desired direction 

in the desired row until the message returns to X;
If (any such node D’ found) then { Face route the 

message to D’; X=D’; }else { Advance=false;} }} 

To broadcast in a 2D mesh, procedure Broadcast_2D is 
called. It invokes the two previously discussed procedures.  

Procedure Broadcasting_2D (X) { 
Send_to_row( X, 1, 2); 
For (each healthy node Y that received the message from X)
{ Send_to_row( Y, 2, 1); } }. 
The algorithm guarantees delivery to all nodes connected to 

the source since it activates at least one in every column in the 
first phase, and these nodes then send the message to all other 
nodes in their column. Note that some redundancy may occur, 
but it can be reduced by some simple programming extensions. 

VII. BROADCASTING IN ONE-PORT FAULTY K-D MESHES AND 

K-ARY N-CUBES 

To broadcast in a k-D MCC, a series of successive 
broadcasts are done in the same 2-D subspaces of the k-D 
MCC. The following pseudo code underlines this. The 
condition is that each 2-D subspace of the k-D MCC must be 



connected. Otherwise, one such plane with disconnected 
healthy nodes may not forward the message from one 
component to another, even if they could be connected via 
other nodes in other dimensions.  

Broadcasting_in_a_k-D mesh(X) { 
Send_to_row( X, 1, 2) // with other coordinates same as in X

For (dimensions j=2 to k) { 
For (each healthy node Y that received the message 
from X) { Send_to_row( Y, j, j-1);  } } } 

VIII. CONCLUSIONS

In this paper, we proposed some routing and broadcasting 
algorithms for faulty meshes which use local knowledge of 
faults, no additional resources, work for an arbitrary number 
and structure of faults, guarantee delivery to all nodes 
connected to the source, and remain optimal in a fault free 
mesh. These are the first known solutions with such properties. 
We propose a new broadcasting algorithm which guarantees 
the delivery (to all processors connected to the source) in the 
all port model of faulty meshes. We then describe routing and 
broadcasting algorithms that guarantee delivery in faulty MCCs 
and tori, the connectivity of the source and destination(s) being 
the only obvious requirement. The algorithms are then 
extended to faulty k-D meshes and k-ary n-cubes, where the 
delivery will be guaranteed if healthy nodes in every 2-D 
submesh (sub-tori) remain connected.  

The routing and broadcasting problems for the one-port 
model of higher dimensional faulty meshes and tori was solved 
only with the mentioned condition. The open problem that 
remains for further study is the design of algorithms with 
weaker or hopefully no conditions attached. 

This paper did not study deadlock-free, livelock-free and 
some other additional important properties for protocols in 
interconnection networks. It is possible to construct examples 
where our algorithms cause deadlocks. Therefore, it is an open 
problem to modify proposed algorithms to become deadlock-
free. Next, our algorithms are proposed with variants that can 
be easily expressed and understood, and a number of 
optimizations are possible. It is also of interest to study the 
upper bounds on the number of unicast steps, and to 
experimentally compare existing and new algorithms. 
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