More on JACE: New Functionalities, New Experiments

Jacques M. Bahi, Stéphane Domas and Kamel Mazouzi

Laboratoire d’informatique de I'université de Franche-Comté (LIFC)
IUT de Belfort-Montbéliard
Rue Engel Gros BP 527 90016 Belfort CEDEX France

bahi,mazouzi,sdomas@iut-bm.univ-fcomte.fr

Abstract

Java is often criticized for its poor performances
compared to native codes. Nevertheless, this language
provides lots of interesting functionalities to easily im-
plement scientific applications on o widely distributed
architecture (i.e. grid). The context of this paper
is that of iterative algorithms. In order to increase
the efficiency of the code, we suggest to use a spe-
cial class of algorithms called AIACs (Asynchronous
Tterations, Asynchronous Computations). This paper
presents new results on our works to combine Java
and asynchronism within a programming/execution en-
vironment called JACE. New functionalities have been
added and interesting comparisons with C/MPI and on
the impact of overlap techniques are given.

1 Introduction

These last years, parallel programming gave rise to
distributed programming, in the sense of target archi-
tectures are more and more collections of distant com-
puting resources. A lot of problems emerge using such
architectures: heterogeneity, network bottlenecks, re-
sources allocation, application deployment, secured ac-
cesses, etc. Research projects based on the "grid com-
puting" try to address these difficult issues, in order
to solve very large problems. For example, Globus
[11] is a middleware for the grid that provides a lot
of functionalities (resource management, data manage-
ment, communication, fault detection, portability, . ..),
successfully used to program huge scientific applica-
tions. Project DIET [9] relies on the grid to do meta-
computing: choosing the best computing site among
a collection to solve a client problem. Unfortunately,
these environments are heavy to install and it is hard

1-4244-0054-6/06/$20.00 ©2006 IEEE

to obtain good performances unless we use clusters of
clusters, linked by high speed networks.

Simply using workstations, lower level environments
like MPT are a good and easy solution to construct
a virtual parallel machine (i.e. local), but not a dis-
tributed one. For example, it implies to have the same
version of MPI installed on each machine, to deploy
the computing code "by hand".

Keeping only advantages of these tools, we can state
that an environment well adapted to solve scientific
problems on the grid must:

e build an architecture composed of an unlimited
number of distant and heterogeneous machines,

e compile and spawn the computing codes,

e provide communication primitives between ma-
chines,

e possibly secure accesses to grid resources.

The main key to reach these goals is portability.
Nearly all problems come from the heterogeneity. If
we use a Java based environment, portability is insured
and a lot of problems disappear. By the way, few envi-
ronments like MPJ [4] or JMPI [14] propose Java MPI
clones. Other projects are based on active objects, like
ProActive [8] which is more generic and can be used
to solve scientific or classical concurrent problems, to
implement applications relying on migration, etc.

Meanwhile, there is still the efficiency problem
which is insufficiently addressed or skewed using big
clusters and dedicated high speed networks. In fact,
the classical computation libraries like ScaLAPACK
[7] and PetsC [5] obtain very poor performances on
heterogeneous and widely distributed architectures.
We can evenly say that it is the common way of pro-
gramming scientific applications that is not adapted

to the grid. We must think at the opposite and try to
adapt algorithms to the grid.

Our approach is based on ATACs (Asynchronous
Tterations-Asynchronous Communications) algorithms.
This class completely avoids the synchronization
phases which are clearly a bottleneck on a widely dis-
tributed architecture. Furthermore, these algorithms
are tolerant to communication deadlines and even mes-
sage loss. Meanwhile, they use a communication se-
mantic that no existing environment provides. For a
detailed comparison between synchronous and asyn-
chronous algorithms, one can refer to [1].

In order to reach the four goals given above and
to implement ATACs algorithms, we have developed
JACE (Java Asynchronous Computing Environment),
a programming/execution environment.

JACE has largely evolved since its beginnings [3] [2]
and many functionalities have been added. We have
also done new experiments based on real scientific prob-
lems in chemistry, and studied the influence of overlap-
ping the data domains.

In this paper, we present the new version of JACE
and give comparative results based on an advection-
diffusion problem.

In section 2, we do a recall on asynchronism and its
exploitation in JACE. In section 3, we give an overview
of the new functionalities and their goals. Finally, sec-
tion 4 presents the new application and its experimen-
tal results.

2 JACE basics
2.1 Benefits of asynchronism on the grid

To summarize the study of asynchronous algorithms
on the grid, presented in [1], we can say that direct
methods using sparse matrices and the message passing
paradigm are very hard to implement and may obtain
poor performances on an heterogeneous grid. Itera-
tive methods are easier to implement but suffer from
the same performance problem when they use a syn-
chronous execution scheme.

ASSY]

0 time

Figure 1. Synchronous iterations

As shown in Figure 1, each computing task must
send and receive dependencies data (dotted arrows) at
the end of each iteration (hashed boxes), and to retrieve
the global convergence state (plain arrows), before go-
ing on to the next iteration. This implies lots of idle
times (white boxes), especially when the machines are
heterogeneous and widely distributed over Internet.

0 time

Figure 2. Asynchronous iterations

As shown on Figure 2, an asynchronous execution
removes all these idle times by using non-blocking
communications and convergence detection. Each
task begins a new iteration with "old data" if no
messages (dependences and convergence state) have
been received. Obviously, using this technique on any
iterative algorithm may lead to an endless execution,
with no convergence. Meanwhile, the convergence
may be ensured by checking some mathematical prop-
erties on the iteration functions. Fortunately these
properties are satisfied for a large class of scientific
problems such as those described by linear systems
involving M-matrices or those modelized by partial
differential equations and discretized by the finite
difference method (e.g. [6]).

Since asynchronism tends to increase the number
of iterations to reach convergence, it is useful to
increase the convergence rate by always consuming
the last data received. On Figure 2, A computes
nearly two times faster than B. During iterations 2
and 3, B receives two dependencies messages from A.
Convergence may be accelerated if the second message
(plain arrow) is consumed by B and the first (dashed
arrow) directly crushed.

To summarize, an asynchronous execution relies on
a special communication semantic. Within a program-
ming/execution environment, it implies that:

e computations and communications are in different
processes,

e messages must be time stamped,

e communication buffers must allow direct crushing
of messages.

Unfortunately, no environment provides such func-
tionalities as internal mechanisms. Meanwhile, it is
sometimes possible to implement them "by hand" but
it is nor easy nor efficient. For example, [3] presents the
drawbacks using classical MPI to manage asynchronous
computations.

2.2 JACE overview

The idea that leads to the development of JACE was
to design a grid-enabled programming and execution
environment, allowing a simple and efficient implemen-
tation of asynchronous algorithms. In order to do ex-
perimental comparisons and to have a more generic en-
vironment, JACE should also provide primitives to im-
plement synchronous algorithms and a simple mecha-
nism to change from a synchronous to an asynchronous

execution. The main features of the first version of
JACE are:

e Widely distributed architecture

JACE builds a virtual distributed machine, com-
posed of heterogeneous machines scattered over
several distant sites. Each machine launches a
Java Virtual Machine, which executes a JACE
daemon (as in MPI or PVM).

e Thread-based computations and communi-
cations

Unlike MPI, the computation unit is a Java
thread, launched within the daemon context.
Therefore, a single daemon may execute multi-
ple tasks. There are also communication threads
which send and receive messages for every task
thread. This division is mandatory to implement
non-blocking communications needed for ATACs
algorithms.

e Easy spawning

JACE ensures the localization and a transparent
access to each machine during the spawning phase.
A simple text file describes how many and on
which machines tasks are created, executing which
Java byte-code.

e Standard programming interface

The JACE programming interface is intentionally
similar to that of MPI, but it only offers the basic
set of communication, synchronization and infor-
mation routines.

e Explicit message-passing over RMI

Tasks cooperate by explicit send and reception of
data, encapsulated in Message objects. Each mes-
sage is sent and received using the RMI protocol
(Remote Method Invocation). Since there are com-
munication threads, the computation task is never
blocked by a send, despite the fact that RMI calls
are blocking.

e Global convergence detection

JACE is designed to control the global conver-
gence transparently. Tasks only compute their lo-
cal convergence state and call the JACE API to
retrieve the global state. The internal mechanisms
of the convergence detection depend on the execu-
tion mode, synchronous or asynchronous.

As in classical environments like PVM [10], JACE
relies on four components: the daemon, the comput-
ing task, the spawner and an application programming
interface used to communicate between tasks.

2.2.1 Daemon.

The daemon is the core of the environment. It provides
communication mechanisms, task localization and ex-
ecution. It runs on all machines composing the virtual
distributed machine. An XML file containing informa-
tions on all machines is given as a parameter to start
the daemon. With these informations, a daemon can
contact all other daemons and build a directory con-
taining, for example, the stubs needed for RMI calls.
This directory is also used to localize tasks and thus,
to route messages between tasks.

As soon as all daemons are started JACE is ready
to execute tasks.

2.2.2 Task.

A JACE application is a set of cooperating sequen-
tial tasks. As shown in figure 4, all tasks run as Java
threads within the daemon. Thus, multiple tasks may
execute within the same daemon and can share the
system resources. When a task is spawned, an unique
identification number (task ID) is assigned to it.

To write a JACE application, the user simply needs
to extend the Task base class and to define a run()
method containing its own code. In fact, the Task class
represents the programming interface since it contains
all methods to communicate and to retrieve informa-
tions on the execution context.

Figure 3 shows a code example of a task such as
a programmer must write it. When the task is com-
piled, the byte-code can be stored on any point of the
network, accessible via a valid URL, for example on a

public class Compute extends jace.Task {

int DATA_TAG = 123;
byte[] tab;

public void jaceInitTask(){
jaceInit(0);
tab=new byte[1024];

}

public void run(){
jaceBarrier();
if (jaceMyId == 0) {
tab=(byte[]) jaceReceive(1,DATA_TAG) ;
}
else {
jaceSend (tab,0,DATA_TAG) ;
}
}
};

Figure 3. A JACE Program Example

shared disc or a Web server. By using the reflexivity
mechanisms and the dynamic class loading, the daemon
downloads the byte-code, creates a new thread corre-
sponding to the control flow of this byte-code, calls
the initialization method jaceInitTask() and finally
starts the thread run() method.

2.2.3 Spawner.

When all daemons are started, computation begins by
launching the user task on the desired nodes. This
functionality is supplied by the spawner. It supports
only static spawning, that is, tasks cannot be spawned
and deleted during program execution. The number of
tasks to be created and an URL of the task byte-code
must be specified. All tasks execute the same code,
following the SPMD model. The task mapping is done
by JACE, trying to balance the number of tasks over
the number of machines. After termination of the
user’s task, the daemon returns the results and cleans
the current session by calling a Java garbage collection.

2.2.4 Communications.

The API of JACE is very similar to that of MPI. There
are primitives dedicated to initialize the environment,
to retrieve informations, to synchronize tasks and to
communicate between tasks. As said above, only the

last ones completely differ from MPI since they use a
special semantic and rely on RMI calls.

Send Queue

MM M-

Sender

)

User’s Tasks E ‘ 2
JaceSend () ‘%
o0 o (0] o

JaceReceive ()
®) 8 E

(5) Receiver

>

Network

P

Receive Queue

Figure 4. JACE message management.

An example of message management is shown on
Figure 4. Whether the execution is asynchronous or
not, message queues are not managed in the same way.
In the asynchronous case:

1. To send data, the user’s task calls the JaceSend ()
method of the API, giving the data, a destination
and a tag as parameters. The whole is encapsu-
lated in a Message object, represented by a white
box, and put in the send queue. Since there is al-
ready a white box (i.e. same source, destination
and tag for the two messages) in the queue, the
message queued is replaced by the newest.

2. When the send thread (Sender) awakes, it checks
the send queue.

3. the Sender sends the existing messages via a RMI
call to the daemon where the destination task is
located.

4. When the RMI server is contacted, the message
to receive, represented by a grey box, is an ar-
gument of the called method iSendYou(). The
server passes the message to the receiving thread
(Receiver).

5. The Receiver stores the message in the receive
queue. Since there is already a grey box in the
queue, this last one is replaced by the one just
received.

6. To receive data, the wuser’s task calls the
JaceSend () method, specifying the source and tag
of the message.

In the synchronous case, the same steps occur but
messages are never crushed in the queues. If the same
message exists, the newest is simply stored at the end
of the queue. Note that it is the basic behavior of
existing environments.

This first version of JACE has given an entire sat-
isfaction to obtain the first comparisons between syn-
chronous and asynchronous executions of real scientific
applications. Nevertheless, new developments in the
domain of load balancing on networks with a dynamic
topology, has bring us to include new functionalities
and to define a better organization of the virtual dis-
tributed machine.

3 New Functionalities of JACE
3.1 Migration

JACE allows the weak migration (strong migration
requires changes in the JVM) of tasks by using the se-
rialization mechanism. When the task arrives on the
destination daemon, a thread is created to take the
control of the task and to execute its method run().
The thread starts its execution with the data of the
task right before the migration. As the location of the
task changed, a message containing the new location is
sent to all daemons before the migration. Thus, other
tasks can send their messages to the new location in
a transparent way. Since JACE can do synchronous
and asynchronous executions, the migration is not com-
pleted in the same way in both cases. Indeed, in the
asynchronous case, no synchronization is required. The
tasks continue their execution whereas a task migrates.
In the synchronous case, when the migrant task starts
again its execution, the other tasks must also restart to
avoid deadlocks produced by explicit synchronizations
in the code.

For now, the migration is launched by an explicit
call to the JACE APIL It is particularly useful to im-
plement a load balancing policy. Supposing the data
are regularly saved, it can even be used to restart a
task when the hosting machine has crashed.

3.2 Console

The console is a stand-alone process that allows to
configure the virtual machine, to receive informations
concerning the tasks and to dynamically spawn tasks.
It can be launched from any machine, even one not
in the virtual machine. A console uses special RMI
calls to contact daemons and to interact with the JACE
environment. From a JACE console, one can:

e obtain informations on the machines (conf);

e add/delete a node to the virtual machine during
the execution(add/del);

e view the content of task queues (queue);

e spawn a task on the environment during the exe-
cution (spawn);

e execute a set of commands in the form of script
(exec).

Because it interacts dynamically with daemons, the
console allows the execution of MIMD programs!, us-
ing different byte-codes for the same execution. For ex-
ample, one can execute a distributed application com-
posed of 3 tasks A, B and C. Tasks A and B execute
the same computation code and task C' deals with the
input/output of the application.

The script functionality has been successfully used
to simulate mobile and dynamic networks. In conjunc-
tion with a little scheduler adding and deleting nodes
along time, scripts allowed to check the behavior of
load balancing algorithms on a network where nodes
may appear and disappear at any time.

3.3 Site-view architecture

In order to minimize the most penalizing commu-
nications (those between distant machines), we have
enforced an organization by geographical sites.

Sitel
private cluster
SISESES
frontal
O ®
RMI
O O O O O
Site2 Site3

Figure 5. Multisite view of JACE architecture.

It means that the spawner takes care to put maxi-
mum number of tasks with following identifiers in the
the same site. Indeed, when data are distributed over

Multiple Instruction Multiple Data

a linear set of tasks, most applications imply commu-
nications between a task and its neighbors. If neighbor
tasks are in the same site, there are no distant commu-
nications.

Figure 5 gives an example of a virtual distributed
architecture composed of 3 sites. One of them contains
a private cluster (hashed circles). In this case, a frontal
machine (plain circle) must forward incoming/outgoing
messages from/to other sites. In JACE, the daemon
launched on the frontal do this automatically. Thus,
it is possible to reach machines with private IPs in a
transparent way for the user.

4 Experiments

The first experiments using JACE [3] [2] were rela-
tively simple problems. The application presented in
this paper modelizes the diffusion (in three dimensions)
of chemical components in a little deep water, taking
account the reaction between components. The system
evolution follows an advection-diffusion model, based
on a system of partial differential equations.

For each time step to simulate, we use a combina-
tion of multisplitting techniques and Newton’s method
to solve the problem. To summarize, it consists in
computing a Jacobian matrix and to use it in a loop
to solve a succession of linear systems. The loop ends
when the linear system solution allows to compute a
vector close enough (precision is fixed by the user) to
the problem solution, at the chosen time step. Thus,
the whole algorithm is composed of two nested loops.
The outer iterates on time steps and the inner on linear
system resolutions, which can be done asynchronously.

The experiments on these problem have three goals:

e to check that asynchronism is much efficient on an
heterogeneous grid,

e to study the impact of the overlap techniques,

e to compare the JACE version with a C version,
implemented with a multithreaded MPIL.

4.1 Asynchronism vs. synchronism

Figure 6 gives a comparison of the execution time (in
seconds) of the synchronous and the asynchronous ver-
sions. The problem size is given by dimension. Thus,
70 means that a vector of size 70° must be found for
each time step. The program code is compiled with
Java 1.5 (client version). The linear system resolutions
are done using GMRES method from the MTJ [12] li-
brary. 31 time steps are computed.

32 machines of various power (from 2.4GHz to 3GHz
Pentium) have been used. 16 was linked by a gigabit
network and the others by a 100Mb network. We have
limited (with QoS) the bandwidth between the two sets
to simulate distant sites.

1100 T T T T

Synchronous
| Asynchronous ——-—-

1000

900

800

700

600

500

Time in second

400

300

200

100

0
30 35 40 45 50 55 60 65 70
Problem size

Figure 6. Comparison between synchronous
and asynchronous version.

Even if the chosen architecture is quite homoge-
neous, the asynchronous version is more efficient than
the synchronous. It is mainly due to the machine num-
ber and the low bandwidth between the two machine
sets. By the way, experiments using only the 16 first
machines give better results with the synchronous ver-
sion since global communications and convergence de-
tection are no more penalizing.

4.2 Overlap impact

Overlap is a way to distribute data over computing
task such as some solution components are computed
by two different tasks.

TO

T1

T2 AN NS TO |
no overlap

with overlap

Figure 7. Overlapping distribution.

Figure 7 gives a comparison: on the left, no com-
ponents are shared, on the right, grey blocks represent
components shared by Ty-T1, and T1-T5.

For some problems, which is the case for our one,
overlap may accelerate the convergence, as we can see
on Figure 8. The execution time is given for different
overlap size. A size of 2 indicates that the domain
of each task is extended by 2 components along each
dimension, which may increase drastically the memory
needed to store the data.

1200

T T
Synchronous, no overlap

Synchronous, overlap : 2 ————-

Synchronous, overlap : 3 - - - - -

Asynchronous, no overlap -
1000 [~ Asynchronous, overlap : 2 —-—-— -
Asynchronous, overlap : 3 —-— - - 1

Time in second

[
30 35 40 45 50 55 60 65 70
Problem size

Figure 8. Comparison with and without over-
lap.

Whether the execution is asynchronous or not, over-
lap tends to decrease the execution time. But we note
that the good size must be chosen since an overlap of 2
is often better than 3. For now, the impact of overlap
is unpredictable because it depends on too many pa-
rameters, such as number of tasks, problem type and
size, etc.

4.3 Raw performance

A frequent question concerns the performance ratio
between JACE and other environments. Because it is
written in Java and user’s tasks too, the raw perfor-
mances may be poor compared to a C version of the
same application. In order to address this question,
we have compared our code and a C version using a
multithreaded MPI (MPICH/MADELEINE [13] with
PM2), on an homogeneous cluster of 16 machines. Ob-
viously, it is the worst case for Java since the commu-
nications are not really penalizing in this context and
the computation time largely prevails.

Table 1 gives the ratio between the Java and C ex-
ecution times. Surprisingly, the efficiency of the Java
version is good compared to the C version. It is quite

| size | ratio in synch. | ratio in asynch. |

20 16.7 6.7
40 5.8 4.22
60 6.3 5.3
70 6.9 7.8

Table 1. Comparison between JAVA and C ex-
ecution.

common to have a ratio of 10 for scientific applica-
tions and we obtain an average of 6. The worst case
occurs for small problem sizes because communications
are dominant but messages become very small, which is
penalizing for RMI calls that have a big latency. As ex-
pected, the ratio increases with the problem size since
the computations take a more and more important part
in the total execution time. The better ratio for asyn-
chronous execution is not really relevant because of the
homogeneous context but it should be confirmed in a
really heterogeneous and widely distributed context.

As a conclusion of these results, we note that Java is
a realistic way to do high performance computing. Fur-
thermore, JACE completely hides the asynchronism
mechanisms which is not the case of the C version.
By the way, our application consists in 1500 lines of
code and the C version 2200. The excess (nearly the
third of the code), represents the lines needed to man-
age asynchronism, for which a very small part may be
reused in another application.

5 Conclusion

JACE combines asynchronism and Java in a single
environment. It was designed to implement and to ex-
ecute efficient computing codes in a grid context. Like
MPI, it builds a virtual distributed architecture but in
a more hierarchical way in order to minimize the band-
width use between distant machines. It allows to use
machines behind firewall, with private IPs, with is often
the case of clusters. JACE API offers primitives to im-
plement message passing codes, but with a special se-
mantic for communications. Indeed, non-blocking calls
are mandatory for asynchronous executions and mes-
sages may be crushed in the communication buffers.
These mechanisms are hidden and should not be im-
plemented by the user, which is the case with MPI and
C.

Once again, experiments have proved that asyn-
chronism is perfectly adapted to a grid context.
Furthermore, the efficiency may be optimized using an
overlapping distribution. Nevertheless, this principle

gives unpredictable results. The comparison of our
application with its C counterpart has shown that Java
is a good candidate to implement scientific computing
codes. In the future, progresses in "just in time"
compilation techniques may reduce significantly the
ratio.

For now, JACE has been used with a limited number
of machines (< 100). In order to increase the scalability
of our environment, it would be useful to adapt JACE
to a global computing context. That is, a client willing
to insert a daemon in the virtual distributed machine
would register to a central server. This method allows
to control accesses to the architecture but implies sev-
eral problems:

e computing resources may appear and disappear in
an unpredictable way,

e check point mechanisms are needed to store regu-
larly the computed data,

e a resource manager is mandatory, which allocates
and checks for available machines.

With this type of architecture, execution of algo-
rithms, mainly the asynchronous ones, may be com-
pletely different. Thus, it is necessary to study the
behavior of these algorithms on a grid with volatile
nodes.

References

[1] J.M. Bahi, S. Contassot-Vivier, and R. Couturier.
Evaluation of the asynchronous iterative algo-
rithms in the context of distant heterogeneous
clusters. Parallel Computing, 31(5):439-461, 2005.

[2] J.M. Bahi, S. Domas, and K. Mazouzi. Combina-
tion of java and asynchronism for the grid : a com-
parative study based on a parallel power method.
In 18th IEEE and ACM Int. Conf. on Parallel and
Distributed Processing Symposium, IPDPS 200/,
pages 158a, 8 pages, Santa Fe, USA, April 2004.
IEEE computer society press.

[3] J.M. Bahi, S. Domas, and K. Mazouzi. Jace : a
java environment for distributed asynchronous it-
erative computations. In 12th Furomicro Confer-
ence on Parallel, Distributed and Network based
Processing, PDP’04, pages 350-357, Coruna,
Spain, February 2004. IEEE computer society
press.

[4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

Mark Baker and Bryan Carpenter. Mpj: A pro-
posed java message passing api and environment
for high performance computing. In IPDPS ’00:
Proceedings of the 15 IPDPS 2000 Workshops on
Parallel and Distributed Processing, pages 552—
559, London, UK, 2000. Springer-Verlag.

Satish Balay, William D. Gropp, Lois Curfman
MclInnes, and Barry F. Smith. PETSc home page,
2003. http://www-unix.mcs.anl.gov/petsc/petsc-
2 /index.html.

Dimitri P. Bertsekas and John N. Tsitsiklis. Par-
allel and Distributed Computation: Numerical
Methods. Prentice Hall, Englewood Cliffs NJ,
1989.

L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, 1. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R.C. Whaley. ScaLAPACK Users’ Guide.
SIAM, 1997.

D. Caromel and al. ProactivePDC : Java library
for parallel, distributed, and concurrent comput-
ing. http://www-sop.inria.fr/oasis/ProActive/.

F. Desprez and al. DIET : Distributed Inter-
active Engineering Toolbox. http://graal.ens-
lyon.fr/ diet/.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine - A Users’ Guide and Tutorial for
Networked Parallel Computing. The MIT Press,
1994.

S. Tuecke 1. Foster, C. Kesselman. The Anatomy
of the Grid: Enabling Scalable Virtual Organiza-
tions. International Journal Supercomputer Appli-
cations, 15:200-222, 2001.

B. Jornoh and al. MTJ : Matrix Toolkit for Java.
http://mtj.dev.java.net/.

G. Mercier. MPICH-Madeleine IIT : An MPI
Implementation for Heterogeneous Clus-
ters of Clusters. http://dept-info.labri.u-

bordeaux.fr/ mercier/mpi.html.

S. Morin, I. Koren, and C. Krishna. Jmpi: Im-
plementing the message passing standard in java.
2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

