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Abstract

We consider the problem of decontaminating a net-
work infected by a mobile virus. The goal is to per-
form the task using as small a team of antiviral agents,
avoiding any recontamination of disinfected areas, and
minimizing the amount of agents’ movements across
the network. In all the existing literature, it is assumed
that the immunity level of a disinfected site is nil.
In this paper we consider the network decontamination
problem under a new model of immunity to recontami-
nation: we consider the case when a disinfected vertex,
after the cleaning agent has gone, will become recon-
taminated only if a weak majority of its neighbours are
infected. We study the effects of this level of immunity
on the number of antiviral agents necessary to decon-
taminate the entire network. We focus on tori and on
trees, and establish lower-bounds on the team size; we
also establish lower bounds on the number of moves per-
formed by an optimal-size time of cleaners. We design
and present strategies for disinfecting tori and trees;
we prove that these strategies are optimal in terms of
both team size and number of moves. In particular, the
upper and lower bounds are are tight for tree networks
and for synchronous tori; the bounds are within a con-
stant factor of each other in the case of asynchronous
tori.

1 Introduction

1.1 The Framework

Paralleling the diffusion of networked systems and
the increase in both their size and complexity, the pres-
ence of dangerous and possibly malicious threats is ex-
periencing a surge in variety and difficulty to be han-
dled. Among the many pressing security threats in
networked systems supporting mobile agents, two are

predominant: the presence of static processes that can
harm incoming agents (harful hosts), and the presence
of mobile agents that can harm the network (harmful
agents or intruders) (e.g., see [10, 16, 19]). An exam-
ple of the second type is a virus: an extraneous mobile
agent infecting any visited site. The focus of this paper
is on the latter.

The immediate impact of the presence of a virus in a
network is that, in absence of anti-viral protection, the
nework sites become infected. In such cases, a crucial
task is to decontaminate the infected network. The
task is to be carried out by a team of anti-viral sys-
tem agents (the cleaners), able to disinfect visited sites,
avoiding any recontamination of disinfected areas. The
goal is to perform the task using as small a team of an-
tiviral agents as possible and minimizing the amount
of agents’ movements across the network.

A solution protocol will then specify the strategy to
be used by the agents; that is, it specifies the sequence
of moves across the network that will enable the agents,
upon all being injected in the system at a chosen net-
work site, to disinfect the whole network. The protocol
must guarantee that, after a site has been disinfected,
it will not be recontaminated; typically, contamination
will reoccur if the virus returns to that site in absence
of a system agent. Such a protocol will be called mono-
tone.

1.2 Previous Work

The network decontamination problem was first pro-
posed by Breisch in 1967 in the context of a maze of
caves contaminated by gas [5].

Since then, the problem has been extensively stud-
ied under the name of graph searching. The reason
for its success is that its several variants (edge-search,
node-search, mixed-search, t-search, etc.) are closely
related to standard graph parameters and concepts,
including tree-width, cut-width, path-width, and, last

1-4244-0054-6/06/$20.00  ©2006 IEEE



but not least, graph minors [3]. Viewed sometimes as a
pebbling problem in graphs (e.g., [12]) or as a pursuit-
evasion game (e.g., [17]), the graph searching problem
also arises in VLSI design through its equivalence with
the gate matrix layout problem [11]. Among the im-
portant results is that there are always optimal solu-
tions that are monotone, i.e. that avoid recontamina-
tion [4, 13]. Contributions to related search problems
can be found in [15, 20, 21] and the references therein.

In all these investigations on the graph search prob-
lem there is a common assumption made that the clean-
ing agents are able to jump across the network; that is,
they assume that a cleaner is able to go “out of the
system” and to reenter the system anywhere in one
single step. This assumption clearly does not hold in
the case of mobile agents in a network, since they can
only move from a node to a neighbouring node. Actu-
ally, it does not hold even in the original setting of a
maze of caves [5, 17]. The removal of this assumption
makes the previous solutions no longer valid [2].

The more general setting where agent can not jump,
called contiguous search, has been first proposed and
studied by Barriere et al. [1], where optimal strategies
without recontamination were shown for trees. The in-
vestigations have thus focused on the analysis of the
team size necessary to decontaminate classes of net-
works, and on the development of monotone decon-
tamination strategies for those classes. In particular,
Flocchini et al. have studied hypercubes [6], meshes
[8], and chordal rings and tori [7]; Fomin et al. have
investigated outerplanar graphs [9].

1.3 Recontamination and Immunization

What the new investigations have in common with
the old ones is not only the goal of avoiding recontam-
ination but also the recontamination model, i.e., the
rules that allow a disinfected site to become recontam-
inated. In fact, in all investigations, it is assumed that
a disinfected site, in absence of a cleaner, becomes re-
contaminated if just one of its neighbours is contami-
nated. In other words, it is assumed that the immunity
level of a disinfected site is nil.

This assumption is quite strong and not necessarily
realistic. In fact many systems employ local major-
ity based rules at each site to enhance reliability and
fault-tolerance. This is for example the situation in dis-
tributed systems where majority voting among various
copies of crucial data are performed between neigh-
bours at each step [18]. Indeed, local voting schemes
are used as a decision tool in a number of consensus
and agreement protocols, in consistency resolution pro-
tocols in distributed database management systems,

data consistency protocols in quorum systems, mutual
exclusion algorithms, key distribution in security, re-
configuration under catastrophic faults in system level
analysis, and computational models in discrete–time
dynamical systems.

Systems employing majority-based local voting
schems have clearly a higher level of resistance to viral
recontamination. In fact, a disinfected vertex, after the
cleaning agent has gone, will become recontaminated
only if a (weak) majority of its neighbours are infected.
In other words, the immunity level of a disinfected ver-
tex is half of its degree.

1.4 Main Results

In this paper we consider the network decontamina-
tion problem under this new model of immunity to re-
contamination. We study the effects of this level of im-
munity in tori and in trees; and establish lower-bounds
on the number of cleaners necessary for decontamina-
tion, and on the number of moves performed by an
optimal-size team of cleaners. We design and present
strategies for disinfecting tori and trees and prove that
these strategies are optimal in terms of both team size
and number of moves. In particular, the upper and
lower bounds are are tight for tree networks and for
synchronous tori; the bounds are within a constant
factor of each other in the case of asynchronous tori.
Among other results, we show that with local immu-
nization only O(1) agents are needed to decontaminate
meshes and tori, regardless of their size; this must be
contrasted with e.g. the 2 min{n, m} agents required
to decontaminate a n × m torus without local immu-
nization [7]. Interestingly, among tree networks, binary
trees were the worst to decontaminate without local
immunization, requiring Ω(log n) agents in the worst
case [1]. Instead, with local immunization, they can be
decontaminated by a single agent.

Due to space limitations, some of the proofs of lem-
mas and theorems are omitted.

2 Basic Properties

Let the network be represented by an undirected
graph. Vertices are indicated with a white circle, and
said to be white, if they have not been visited by an
agent yet; are indicated with a black circle, and said to
be black, if they contain an agent; are indicated with a
star, and said to be star, if they have been previously
visited by an agent that eventually left, and have not
been recontaminated yet. Black and star vertices are
said to be clean. For a vertex v, let d(v) denote its
degree, m(v) = �d(v)/2�+ 1 denote the majority of its



neighbours, and s(v) denote the number of its clean
neighbours at any given moment.

The presence of the majority rule imposes imme-
diate limits on computability; for example, to avoid
recontamination of a vertex v, an agent may leave it
only if a strong majority (i.e., m(v)) of clean neighbours
remains. Notice that the status of a vertex (clean or
contaminated) is not detectable from a distance. We
have:

Lemma 1. At any step of a monotone algorithm, let
A be an agent located at vertex v:
(1) if s(v) < m(v) − 1, A cannot move from v;
(2)if s(v) = m(v) − 1, A can only move to a white
neighbour of v;
(3) if s(v) ≥ m(v), A can move to any neighbour of v.

Lemma 2. At any step of a monotone algorithm all
the clean vertices form a connected subgraph.

The proof of Lemma 2 is immediate because all agents
start moving from the same vertex. We shall now study
monotone algorithms for disinfecting meshes and trees,
and prove lower and upper bounds to the number of
agents and moves.

3 Disinfecting Toroidal Meshes.

We first consider networks whose structure is a k-
dimensional toroidal mesh, with k = 1 (i.e., the mesh
is a ring), k = 2, and k = 3.

For k = 1, two (in fact, 21) agents starting from any
position and moving in opposite directions are trivially
necessary and sufficient for disinfecting a network of
any number of vertices. This case does not differ from
the standard operation of cleaning agents on a ring.
The real novelty is for 2 and 3-dimensional meshes,
where respectively 22 and 23 agents are necessary and
sufficient, as we show below.

We recall that a 2-dimensional toroidal mesh of m×
n vertices is a mesh where each vertex vi,j , with 0 ≤ i ≤
m − 1, 0 ≤ j ≤ n − 1, is connected to the four vertices
vi−1,j , vi+1,j , vi,j−1, vi,j+1, where the operations on
indices i and j are respectively done modm and mod
n. For any vertex v we have d(v) = 4, m(v) = 3.
A lower bound on the number of agents needed for a
2-dimensional toroidal mesh is given in the following:

Theorem 1. For disinfecting a 2-dimensional toroidal
mesh of m × n vertices:
1. at least four agents are necessary;
2. four agents must perform at least m × n moves.

The lower bounds of Theorem 1 hold even if the
system is fully synchronous, i.e. even if the agents are

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
◦ • ◦ ◦ ◦ • • ◦ ◦ � • ◦
◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

(a) (b) (c)

Figure 1. Three agents starting from the same
vertex can initially move as shown in (a), or
(b), or to symmetric positions. The next move
can only produce configuration (c), or sym-
metric, after which no agent can move.

perfectly synchronized in ther actions and movements.
Indeed, for synchronous systems the bounds of Theo-
rem 1 are strict, as shown by the following algorithnm
for monotone decontamination.

Algorithm 1. Disinfecting an m × n 2-dimensional
toroidal mesh with four agents A0, A1, A2, A3.

1. start with the agents in vertex v0,0;

2. with four total steps move A1 to v0,1, A2 to v1,0,
A3 to v1,1, leaving A0 in v0,0. Note that all
the agents can now move to white neighbours by
Lemma 1 (Figure 2 (a));

3. move A1 to v0,2, then A3 to v1,2 (Figure 2 (b));
continue moving A1 and A3 alternatively on rows
0 and 1 until they reach v0,n−1 and v1,n−1, respec-
tively. Now all the vertices in rows 0 and 1 are
clean;

4. move A2 to v2,0 and A3 to v2,n−1 (Figure 2 (c)).
Note that A3 is adjacent to A2 by a toroidal con-
nection, hence it can be moved to a white neigh-
bour by Lemma 1;

5. move A3 to v2,n−2, then to v2,n−3, and so on until
v2,1, is reached (Figure 2 (d));

6. move A2 to v3,0 and A3 to v3,1; proceed moving
A3 along row 3, and so on, until the whole network
has been visited.

Using Algorithm 1 we have:

Theorem 2. Four synchronous agents can monotoni-
cally disinfect a 2-dimensional toroidal mesh of m × n
vertices making m × n moves.

If the system is not synchronous, the same strategy
will work employing just one additional agent, whose
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Figure 2. Illustration of Algorithm 1.

only function is to synchronize the movements of the
other agents. In particular, this agent will act as a
moving token: each of the other agents will perform its
move according to Algorithm 1 only upon being visited
by the token. It is not difficult to verify that this can
be accomplished by at most doubling the number of
moves:

Theorem 3. Five asynchronous agents can monoton-
ically disinfect a 2-dimensional toroidal mesh of m×n
vertices making at most 2m× n moves.

Let us now turn our attention to the 3-dimensional
case. We recall that a 3-dimensional toroidal mesh of
m×n×p vertices is a mesh where each vertex vi,j,k, with
0 ≤ i ≤ m−1, 0 ≤ j ≤ n−1, 0 ≤ k ≤ p−1, is connected
to the six vertices vi−1,j,k, vi+1,j,k, vi,j−1,k, vi,j+1,k,
vi,j,k−1, vi,j,k+1, where the operations on indices i, j,
and k are respectively done modm, modn, and mod
p. For any vertex v we have d(v) = 6, m(v) = 4.
A lower bound on the number of agents needed for
disinfecting such a network is given by:

Theorem 4. For disinfecting a 3-dimensional toroidal
mesh of m × n × p vertices:
1. at least eight agents are necessary;
2. eight agents must perform at least m × n × p + 3
moves.

The lower bounds of Theorem 4 hold even if the
system is fully synchronous, i.e. even if the agents are
perfectly synchronized in ther actions and movements.
Indeed, for synchronous systems the first bound of The-
orem 4 is strict and the second bound is almost strict.

For this purpose we give the following algorithnm for
monotone disinfecting, as an extension of Algorithm 1
in three dimensions.

Algorithm 2. Disinfecting an m×n×p 3-dimensional
toroidal mesh with eight agents A0, A1, . . . , A7.

1. start with the agents in vertex v0,0,0;

2. with twelve total steps move A1, A2, . . . , A7 to
v0,0,1, v0,1,0, . . . , v1,1,1 respectively, leaving A0 in
v0,0,0;

3. move A2, A3, A6, A7 alternatively one position
each, to vertices with increasing value of the in-
dex j, until they reach v0,n−1,0, v0,n−1,1, v1,n−1,0,
v1,n−1,1 respectively. Now all the vertices in rows
(0,j,0), (0,j,1), (1,j,0), (1,j,1), for 0 ≤ j ≤ n − 1,
are clean;

4. move A4, A5, A6, A7 one position each, to vertices
with i = 2. A6, A7 are again adjacent to A4, A5 by
a toroidal connections, hence they can be moved
to white neighbours by Lemma 1. Therefore, move
A6, A7 alternatively one position each, to vertices
with decreasing value of the index j, until they
meet A4, A5;

5. move A4, A5, A6, A7 one position each, to vertices
with i = 3. Then move A6, A7 to vertices with
increasing value of the index j, and repeat steps 4.
and 5. until all the vertices with k = 0 and k = 1
have been visited. If m is odd move back A7 of
n−2 steps in direction j, to the vertex vm−1,n−1,1;

6. now the four agents A1, A3, A5, A7 are in the ver-
tices v0,0,1, v0,n−1,1, vm−1,0,1, vm−1,n−1,1 respec-
tively, forming a square of unitary side. Move
these agents one position each onto the plane
k = 2;

7. note that each vertex v in the plane k = 2 is ad-
jacent to a clean vertex in k = 1, then three clean
neighbours in k = 2 are sufficient to protect v. Let
the agents A1, A3, A5, A7 traverse the whole plane
k = 2 with the previous Algorithm 1. Then, if n
is odd, move back A7 of n − 2 steps;

8. again the four agents A1, A3, A5, A7 form a square
of unitary side. Move these agents to the next
plane k ← k + 1 and repeat steps 7. and 8. until
the whole network has been visited.

We have:

Theorem 5. Eight synchronous agents can mono-
tonically disinfect a 3-dimensional toroidal mesh of
m×n× p vertices. For m and n even the agents make
m × n × p + 4 moves.



Note that if m and/or n is odd some extra moves
are done over the bound m× n× p + 4, as indicated in
steps 5. and 7. of the algorithm.

As for the 2-dimensional case, if the system is not
synchronous, the same strategy will work employing
just one additional agent, whose only function is to
synchronize the movements of the other agents. In par-
ticular, this agent will act as a moving token: each of
the other agents will perform its move according to Al-
gorithm 2 only upon being visited by the token. Again,
it is not difficult to verify that this can be accomplished
by at most doubling the number of moves:

Theorem 6. Nine synchronous agents can mono-
tonically disinfect a 3-dimensional toroidal mesh of
m×n× p vertices. For m and n even the agents make
at most 2m × n × p + 8 moves.

Generalizing the previous designs, we have the fol-
lowing result:

Theorem 7. 2k synchronous agents (resp., 2k + 1
asynchronous agents) can monotonically disinfect a k-
dimensional toroidal mesh.

The detailed description of the algorithm proving
the result will be in the final version of the paper.

A matching lower bound still has still to be proved
for k > 3; we do pose the following

Conjecture 1. To disinfect a k-dimensional toroidal
mesh, with k ≥ 1, 2k agents are necessary.

4 Disinfecting Tree Networks

Tree structured networks have been carefully stud-
ied without local immunity [1, 2, 14]. As one may ex-
pect, the results in our model are different. Let us first
establish a lower bound on the number of moves, same
for all trees. Let δ be longest path between two leaves.
|δ| (number of edges in δ) is the diameter of the tree.
We have:

Theorem 8. For disinfecting a tree of n vertices and
diameter |δ|, at least 2(n−1)−|δ| moves are necessary.

We study tree disinfecting starting from binary
trees.

4.1 Decontaminating trees with vertex
degree ≤ 3.

The number of agents needed for disinfecting a tree
T of n vertices depends on the maximum vertex degree
d-max = maxv∈T (d(v)). The case d-max = 1 is non

interesting because it implies n = 1, 2. For d-max =
2, 3 we shall prove that one agent suffices, while for
d-max ≥ 4 the number of agents is a function of the
tree structure.

The case d-max = 2 is elementary, because the tree
is a chain and can be monotonically visited by an agent
starting at one exterme. The diameter is n − 1, and
the agent performs n− 1 moves consistently with The-
orem 8. The case d-max = 3 is much more interesting,
because it includes the whole family of binary trees
(e.g., rooted or unrooted, ordered or unordered, etc.).
The results here are very different from the ones of [1]
where log2 n agents were needed, in fact, we now show
how a single agent can disinfect one such a tree.

The agent A traverses T starting from a leaf. For
each vertex v reached by A, let F (v) be the vertex from
which A has come, and T 1(v), T 2(v) be the two other
vertices connected to v, in any order, to which A may
go. If anyone of these vertices does not exist, we give
it value null. We pose:

Algorithm 3. Disinfecting a tree T of n vertices with
d-max = 3 (i.e., a binary tree of any sort) using one
agent A.

1. let x be a leaf of T ; /x is the starting vertex

v ← x; c ← 0; /c is the number of visited vertices

2. REP (v); /procedure call

3. procedure REP (v)

if v = null then return;

move A to v; c ← c + 1; if c = n then halt;

REP (T 1(v)); REP (T 2(v)); /recursive calls

move A to F (v).

The functioning of Algorithm 3 can be followed in
Figure 3, where the numbers on the edges indicate the
ordering of the moves in the procedure REP. The num-
ber to the left corresponds to the move: move A to v;
the number to the right, if any, corresponds to the in-
verse move: move A to F (v). The latter move is not
done on some edges, because the algorithm halts when
the n-th vertex is reached. We have:

Theorem 9. One agent can monotonically disinfect a
tree T of n vertices with d-max = 3, making 2(n−1)−
|λ| moves, where λ is a path connecting two arbitrary
leaves of T .

If the path λ of Theorem 9 is chosen as the longest
path between two leaves, then the lower bound of Theo-
rem 8 is met. This is the case of Figure 3 where n = 14,
|λ| = 7, and 21 moves are done.
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Figure 3. Edge traversal in Algorithm 3. The
path λ of Theorem 9 is traversed with the
moves 1, 2, 7, 8, 17, 18, 21.

4.2 Disinfecting General trees.

For trees with d-max > 3 the analysis is much more
difficult than in the binary case. For one such a tree
T , let v be any vertex, and consider a group of agents
entering v for the first time. The agents may come
from outside, i.e. v is the starting vertex, or from an
edge e of T . In both cases v is the root of a subtree
T ′ ⊆ T whose vertices are all white except for v (in
particular T ′ = T if v is the starting vertex). Following
the approach of [1], we assign to v an agent-number
N(v) indicating the minimum number of agents needed
for disinfecting T ′ if entering from v. We shall see that
N(v) is independent of the origin of the agents, that
is, external or e.

Due to the requirements of our computational
model, the agents in v can disinfect T ′ using the fol-
lowing principle. First note that the other extreme of
e, if any, is clean because the agents came from it. As-
sume that v has r children u1, ..., ur in T ′ with agent-
numbers N(u1) ≥ N(u2) ≥ ... ≥ N(ur) (leaves have
agent-number 1). As in [1], if N(u1) > N(u2) then
we set N(v) = N(u1). In fact one agent can be kept
in v while the others traverse the subtrees rooted in
u2, ..., ur; then all the N(v) agents can traverse the
subtree rooted in u1. In the present case, however, we
can use N(v) = N(u1) agents at v even if N(u1) is
equal to the agent-number of other children of v, pro-
vided a majority of children ui has N(ui) < N(u1).
In fact all such subtrees can be disinfected by less than
N(v) agents, keeping one agent in v; then all the agents
can move to the other subtrees, leaving v protected by
the clean vertices ui already visited. Without such a
majority N(u1)+1 agents are needed, where the extra
agent must be always kept in v.

For implementing the above principle we first give
a new Algorithm 4 for computing the agent-numbers.

Then we shall use this numbering in the disinfecting
process. Algorithm 4 starts assigning value 1 to the
leaves, and initial value 0 to the internal vertices. Then
procedes assigning increasing values k = 1, 2, ... to the
internal vertices, in consecutive rounds. At any round
k the vertices in the following four sets are processed:

S1 = {v ∈ T |N(v) = 0, d(v) = 2, v has neighbours
u1, u2

with N(u1) = k, N(u2) = 0}
S2 = {v ∈ T |N(v) = 0, d(v) = 3, v has neighbours

u1, u2, u3

with k = N(u1) ≥ N(u2) > 0, N(u3) = 0}
S3 = {v ∈ T |N(v) = 0, d(v) ≥ 4, v has neighbours

u1, ..., ud(v)

with k = N(u1) ≥ N(u2) ≥ ... ≥
N(ud(v)−1) > 0, N(ud(v)) = 0};

S4 = {v ∈ T |N(v) = 0, d(v) ≥ 2, v has neighbours
u1, ..., ud(v)

with k = N(u1) ≥ N(u2) ≥ ... ≥ N(ud(v)) >
0}.
These sets change within the same round because the
new value k is assigned to some of their vertices. A
vertex v getting N(v) = k is then eliminated from its
set (where N(v) = 0 is required), but may bring in
another vertex w of which v is a neighbour. We have:

Algorithm 4. Assigning agent-numbers to the vertices
of a tree T with d-max > 3.

1. ∀v ∈ T do if d(v) = 1 then N(v) ← 1 else
N(v) ← 0;

2. k ← 0;

3. repeat k ← k + 1;

while ∃v ∈ S1 ∪ S2 ∪ S3 ∪ S4 do

if v ∈ S1 ∪ S2 then N(v) ← k;

if v ∈ S3 ∪ S4 then let s = �d(v)/2
 + 1;

/condition v ∈ S4 occurs when the last
agent-number is assigned

if N(u1) > N(us) then N(v) ← k else
N(v) ← ∗;

∀v ∈ T with N(v) = ∗ do N(v) ← k + 1

until all v ∈ T have N(v) > 0.

We are now ready to present the disinfecting algo-
rithm, using a number of agents equal to the maximal
value of N(v). The agents start from a vertex chosen
as the root of T . For any vertex v except the root,
F (v) denotes the vertex from which the visiting agents
came.



Algorithm 5. Disinfecting a tree T of n vertices with
d-max > 3 after the agent-numbers have been com-
puted, using N = maxv∈T (N(v)) agents A1, ..., AN .

1. transform T into an ordered rooted tree as fol-
lows:

choose a vertex r with N(r) = N as the root;

for each internal vertex v, order its s children
u1, ..., us such that

N(u1) ≤ N(u2) ≤ ... ≤ N(us);

2. c ← 0; /c is the number of visited vertices

3. REP2(r); /recursive procedure call starting from
the root

4. procedure REP2(v)

if v = r then start with A1, ..., AN in v else
move A1, ..., AN(v) to v;

c ← c + 1; if c = n then halt;

if v has s children u1, ..., us then for i ← 1 to
s do REP2(ui);

move A1, ..., AN(v) to F (v).

Note that in Algorithm 5 we could have started from
a leaf x instead of the root r, as done for binary trees.
However, starting from x would increase the total num-
ber of agent moves, because all the N agents necessary
at r should travel from x to r, while just one agent
is needed at x. As before we save on the last moves
because the algorithm halts when an agent reaches
the rightmost leaf �, so that the last command, move
A1, ..., AN(v) to F (v), is not executed on the return-
ing path from � to r. With the agent-numbers N(v)
defined as before, the root r and the rightmost leaf �
determined with the tree ordering of Algorithm 5, we
immediately have:

Theorem 10. N = maxv∈T (N(v)) agents can mono-
tonically disinfect a tree T of n vertices with d-max >
3, making 2

∑
v∈T−{r} N(v) − ∑

v∈λ−{r} N(v) moves,
where λ is the path connecting r to �.

On one hand Theorem 10 is very general; on the
other hand the given numbers of agents and moves de-
pend on a previous computation of all N(v), so that
no immediate result can be stated on a generic tree.
It is not even easy to establish lower bounds for this
problem, as shown in the example of Figure 4 where
an unexpected situation occurs. Although we have
N(r) = 4 at the root, we could start with only three
agents A1, A2, A3 there. Keep A1 at r and move A2, A3

to the child a; keep A2 at a and move A3 to e and back;

r 4

a 3

3e 1

b 3 c 3 d 3

f g 1 h 3

Figure 4. Portion of a tree with d-max = 4,
that can be repaired with N(r) − 1 = 3 agents
at the root. Agent-numbers are shown on the
vertices.

move A2, A3 back to r. Vertices a and e are clean, al-
though the subtree rooted at f has not been visited yet.
Repeat the same moves on the subtree rooted at d, so
that d and g become clean and the agents are brought
back to r. Now the three agents can all be moved to
any of the subtrees of r, that require three agents each
to be disinfected, because vertex r is protected by the
clean vertices a and d. Saving one agent is attained by
interrupting subtree traversals, then completed at later
steps. Obviously this is not always possible, however,
the example shows that the bound of Theorem 10 is
not strict in general.

More stringent results can be given for specific
classes of trees with d-max > 3. Let us examine the
case of complete k-ary trees with k ≥ 3, that is rooted
trees where all the internal vertices have k children,
and all the leaves are at the same level h = �logk n� (h
is the height of the tree; the root is at level 0). Apply-
ing Algorithm 4 we have that the agent-numbers are
increasing from 1 to N = �logk n
 passing from the
leaves to the root. Then we immediately have from
Theorem 10:

Corollary 1. N = �logk n
 agents can monotonically
disinfect a complete k-ary tree T of n vertices, with
k ≥ 3.

However, one agent less can be used for k = 3. We
have:

Corollary 2. N = �log3 n
 − 1 agents can monotoni-
cally disinfect a complete 3-ary tree of n vertices.

We now prove that the upper bounds of Corollaries 1
and 2 are strict, due to the constrained structure of
k-ary trees. For this purpose we prove a preliminary
result:



Lemma 3. Let T be a k-ary tree, k ≥ 3, and let x be
the root of a subtree X ⊆ T composed of white vertices.
If M < N(x) agents enter in x from its parent, or start
from x, then:
(1) not all the vertices of X can be visited by these
agents;
(2) not all the agents can eventually leave from X.

We then have:

Theorem 11. For disinfecting a complete k-ary tree
T of n vertices, with k ≥ 3, at least �logk n
− 1 agents
are necessary.

Theorem 11 proves that the upper bound of Corol-
lary 2 for 3-ary trees is strict. However, also the general
bound of Corollary 1 is strict, if limited to k-ary trees
with k ≥ 4. In fact we have:

Corollary 3. For disinfecting a complete k-ary tree T
of n vertices, with k ≥ 4, at least �logk n
 agents are
necessary.

Using the traversal orders implicitly assumed by
Corollaries 1 and 2, the total number of steps made
by the agents follow immediately. No significant lower
bound on these numbers have been found as yet.
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