
Elementary Block Based 2-Dimensional Dynamic and Partial Reconfiguration 

for Virtex-II FPGAs 

Michael Hübner, Christian Schuck, Jürgen Becker 

Universitaet Karlsruhe (TH), Germany 

http://www.itiv.uni-karlsruhe.de/ 
{huebner,schuck, becker}@itiv.uni-karlsruhe.de 

Abstract 

The development of Field Programmable Gate Arrays 

(FPGAs) had tremendous improvements in the last few 

years. They were extended from simple logic circuits to 

complex Systems-on-Chip which enable the integration of 

complete microcontroller systems and their peripheral 

devices. Virtex-II FPGAs from Xilinx provide the 

possibility of dynamic and partial reconfiguration. This 

can be taken advantage of to substitute inactive parts of a 

hardware system and adapt the complete chip to a 

different requirement of an application while run-time. 

Existing approaches allow reconfiguration of slot based 

systems while run-time. Unfortunately such systems suffer 

from the fact, that fixed sized reconfigurable slots are not 

completely utilized by all functional blocks. Therefore a 

new 2-dimensional approach is necessary to optimize the 

placement of functions on the reconfiguration area for the 

FPGA. Benefit is a reduced chip size which leads to a 

reduction of power dissipation. This paper describes the 

method and procedure to include a 2-dimensional 

placement of reconfigurable blocks and the integration to 
a run-time system. 

Keywords: dynamic reconfiguration, online routing, 

Virtex, 2-dimensional Placement 

1. Introduction 

  1. Tabellen

Xilinx Virtex FPGAs offer the possibility of dynamic 

and partial run-time reconfiguration. This feature is used 

in new approaches by outsourcing configuration data 

which makes it possible to use FPGAs with smaller 

configuration memory and consequently smaller chip 

size. Thus it is possible to save costs and reduce power 

consumption since not actually used modules of a 

complete system do not allocate configuration memory 

and corresponding power consuming hardware [1]. 

Nevertheless power dissipation during reconfiguration has 

to be considered [2]. The authors of [3] raise this issue 

with the main focus on energy saving and basis for new 

design methodology. 

When designing a dynamic and partial reconfigurable 

system on an FPGA it has to be made certain, that no 

signal lines of a module cross the border to another 

functional block. During reconfiguration, such a signal 

line might cause a malfunction or a short-circuit, which 

destroys the FPGA. Because of this it is necessary to 

implement interfaces which are used as fixed routing 

resources. These interfaces, called BUS Macros, are 

placed in the same position for each functional block. 

Connecting the modules with signal lines on the same 

position grants the option, to substitute a module by 

another. Figure 1 shows the hardware reconfigurable 

system described in [2]. 

Figure 1. Dynamic reconfigurable system

Bus-Macro

Arbiter

Bus-Macro

Arbiter

M
o
d
u
le

 1

Bus Com 1

ID 1

M
o
d
u
le

 1

Bus Com 1

ID 1

M
o
d
u

le
 2

Bus Com 2

ID 2

M
o
d
u

le
 2

Bus Com 2

ID 2

M
o
d
u
le

 0

Bus Com 0

ID 0

M
o
d
u
le

 0

Bus Com 0

ID 0

M
o
d
u
le

 3

Bus Com 3

ID 3

M
o
d
u
le

 3

Bus Com 3

ID 3

Run-time

Module

Controller 

µController

(MicroBlaze)

Run-time

Module

Controller 

µController

(MicroBlaze)

Flash-

memory

Boot-

CPLD

I/O (e.g. CAN)

Flash-

memory

Boot-

CPLD

I/O (e.g. CAN)

ICAP

Decompressor

Unit (LZSS)

ICAP

Decompressor

Unit (LZSS)

In previous work, a method for dynamic and partial 

reconfiguration was presented in [1] and [4]. These 

systems have in common, that the reconfigurable area is 

slot based. Complete rectangular shaped areas with a 

fixed size can be substituted. This leads to a smaller 

design space in comparison to a 2-dimensional approach. 

The idea of integrating a Network-On-Chip was described 

1-4244-0054-6/06/$20.00  ©2006 IEEE



in [3] and this work will describe a step forward to this 

new approach. 

Actual and future work will support systems which have a 

more flexible character. Exploitation of adaptivity with an 

optimized utilization of chip resources is the goal for 

future reconfigurable systems. 

The paper is organized in the following manner: Section 2 

describes the basic methods and organization of the 

configuration memory. Section 3 describes the read-, 

modify writeback method for 2D-placement. In section 4 

the necessary basic hardware for the approach is 

presented. The system integration is described in section 

5. For the software support the management API is 

presented in section 6. Finally the paper is closed in 

section 7 with the conclusions. 

2. Basic Methods and Configuration 

Memory 

  2. Tabellen Formelabsc

An existing IP-Core will be used to enable the access to 

the internal reconfiguration memory of the FPGA. This 

core allows both to read configuration data as well as 

writing data through an internal configuration access port 

[8]. Therefore configuration of the chip can be read, 

manipulated and finally written back to the memory. With 

a new approach it is possible to modify any rectangular 

shaped area within the configuration memory. This needs 

a special process which will be described in this work. 

Xilinx provides the JBits tool which enables the 

manipulation of existing configuration bitstreams. Java 

classes allow the access to previous stored bitstreams with 

a development computer. The goal of this work is to 

introduce an autonomous system integrated on an on-chip 

processor. Here the well introduced MicroBlaze processor 

is used. To reduce the overhead for software manipulating 

the bitstream, an own C-based approach was developed 

which has its paradigm in the JBits tool. Our software is 

optimized for the necessary functions while JBits 

provides a facility of functions for more manipulation 

possibilities.

Basic principle of this work is the Xilinx Virtex-II 

product family which includes 11 devices. The number of 

system gates range from 40K with the XC2V40 to 8M 

with the biggest device XC2V8000. Virtex-II FPGAs 

belong to the family of fine grained reconfigurable 

architectures with a variety of configurable elements like 

logic and routing resources. This enables a flexible and 

fine-grained possibility of adaptation while run-time. This 

is exploited if dynamic and partial reconfigurability is 

used for run-time adaptive systems of the future. Support 

for this is the internal reconfiguration access port (ICAP) 

which allows the access to the configuration memory 

without external wiring or additional devices. In the 

following chapter the most important and for this work 

fundamental criteria of the architecture and its structure 

will be discussed. 

2.1. Virtex-II Architecture 

Virtex-II FPGAs consist, like the most Xilinx FPGAs, 

of four basic elements which are built up in a regular 

array structure. The CLB-blocks (Configurable Blocks) 

build up the kernels of the device. They include the 

combinatorial logic and the register resources. Internal, a 

CLB- block is made up of 4 similar slices. Each slice 

includes two configurable Look-up-Tables (LUT), two 

registers and two multiplexers. To provide sequential 

logic, slice outputs can be connected to inputs. The LUTs 

can be also configured as memory (RAM) or shift 

register. Through the switch matrixes, adjacent to the 

CLB- blocks, each logic block has access to the routing 

resources of the FPGA. The routing resources run in 

horizontal and vertical direction between each switch 

matrix. Different length build up a set of optimal routing 

resources for connecting the utilized logic element on the 

chip (see figure 2). 

• Long Lines are bi-directional circuits which 

overstretch the complete height and width of the module. 

• Hex Lines are unidirectional circuits which route 

the signals to every 3rd and 6th block in all four 

directions. The signal can either be gripped in the middle 

and at the end of the circuit. 

• Double Lines are unidirectional circuits which 

route the signals to every next and next but one block in 

all four directions. The signal can either be gripped in the 

middle and at the end of the circuit. 

• Direct Connect Lines are unidirectional circuits 

which route signals to the neighbouring horizontal, 

vertical and diagonal blocks.  

• Fast Connect Lines connect CLB internal outputs 

of LUTs with inputs of LUTs. The continuous structure of  

Figure 2. Hierarchic Routing-Resources 
[9] 



CLB-blocks and routing- resources in the centre of the 

module is interrupted by the vertically running BRAM-

and multiplier-columns. These are also connected by the 

global routing-network. 

The outer brim is formed by IO-blocks which are used 

as a connection to the peripheral devices. Additionally 

there are blocks with resources for he clock-management 

which have to be dealt with separately. Further details on 

the architecture of Virtex-II can be found in [9]. 

2.2. Memory Architecture 

All characteristics of the configurable FPGA-elements 

are controlled by memory cells which have to be 

initialized after a voltage has been impressed. This kind of 

memory is referred to as the configuration memory of the 

FPGA. 

Writing into the configuration memory is accomplished 

via a bitstream which contains information about internal 

configuration logic and data meant for the configuration 

memory. 

The configuration memory is organized in frames with 

a width of 1 bit which stretch across the entire height of 

the FPGA (figure 3). A frame is the smallest addressable 

unit of the configuration memory which means that all 

manipulations have to be carried out on frame basis. 

Configuration frames cannot directly be related to a 

defined hardware unit. In fact they set up different 

physical units alongside a narrow FPGA column. The 

length of a frame depends directly on the number of CLB-

columns and therefore varies depending on the type of 

module inside the product line. The frames are classified 

into 6 different groups: CLB, IOB, IOI, GCLK, BRAM 

and BRAM_INT, which can roughly be assigned to the  

Figure 3. Virtex-II Configuration-Frame-
Mapping [9] 

physical resources. IOB- frames set up the IO-blocks at 

the left and right brim. The IO-blocks at the top and at the 

bottom are controlled by the matching CLB-frames. 

These are also responsible for the entire CLB-

configuration, the routing-resources and the IOB-

registersat the top and bottom brim. Similar to the IOB-

frames the IOI-frames account for the configuration of the 

registers at the left and right brim. By using the BRAM-

frames it is possible to set the content of the block-RAM 

memory. The BRAM_INT-frames set up the remaining 

BRAM-characteristics and the multipliers. The GCLK-

frames in the centre are responsible for the global clock-

network. The configuration memory area of a physical 

FPGA column consists of different frames and depends 

on the type of resource it contains (see table 1). 

This way 22 configuration frames can be assigned to a 

physical CLB-column for example. 

Table 1. # minor frames per column 

Type IOB IOI CLB BRAM BRAM 

INT

GC

LK 

# Frames 4 22 22 64 22 4 

The addressing of the single frames is carried out by an 

unambiguous 32-bit address which consists of `Block 

Address´ (BA), `Major Address´ (MJA) and `Minor 

Address´ (MNA). 

Table 2. frame addressing 

X BA MJA MNA 

31-27 26-25 24-17 16-9 

The configuration memory is divided into three types 

of blocks which are assigned to the columns with the 

appropriate resources as follows:  

• Block Address (BA) 0: GCLK, IOB, IOI, CLB 

• Block Address (BA) 1: BRAM 

• Block Address (BA) 2: BRAM_INT 

Figure 4 shows the memory map at Major-Frame-

Level. 

Figure 4. Memory map Major- Frame- 
Level [9] 

It is a function of the number of existing CLB-columns 

(n) and the number of existing BRAM-columns (m). A 

Major-Frame therefore matches a physical column of the 



FPGA. The frames which are part of this column are 

addressed by the Minor-Address. It ranges from 0 to the 

number of frames -1, e.g. from 0 to 21 for a CLB-column.  

The manufacturer of Xilinx gives no particulars about 

a detailed mapping of a special FPGA-resource on single 

bits inside a configuration frame. Hence it is not possible 

without any difficulty to read the configuration out of an 

LUT or a routing-resource from the referring frames.  

2.3. ICAP-Interface 

Virtex-II FPGAs employ different modes and interface 

to access the configuration logic. In the following 

paragraph the Internal Configuration Access Port (ICAP), 

which was employed in this work for configuration, is 

briefly introduced. The ICAP-interface is on-chip. It 

provides reading as well as writing access on the 

configuration memory for the hardware implemented on 

the FPGA. The communication protocol employed 

matches the SelectMap- Interface in Slave-Mode which is 

not dealt with here in detail however, as a completed IP-

Core has been utilized in this work which already 

implements the protocol.  

Figure 5. ICAP–Interface [8] 

Figure 5 shows the ports of the ICAP-Primitive. 

Unlike the SelectMap-Interface it employs separate 

unidirectional data lines with a width of 8 bit for the input 

when the configuration is written and the output when it is 

read out. Using an ICAP-interface one has to bear in mind 

that the configuration-modes configuration-pins of the 

FPGAs M0-M2 are not set on JTAG `Boundary Scan´ 

Mode (101), as this setting disables the ICAP-Interface.  

3. Read-Modify-Writeback Method 

As already explained in the basic principles the Xilinx 

Virtex-II FPGAs permit a dynamic reconfiguration of the 

components of the configuration memory while run-time 

of the remaining hardware, the so-called partial dynamic 

reconfiguration. Due to architectural features of the 

internal configuration logic (see paragraph 2.2) it is 

however only possible to address the configuration 

memory on frame basis and thus solely read or write 

configuration data frame by frame.  

As a frame stretches across the entire height of the 

module it follows that at all times all resources which are 

in one FPGA-column are affected by this process of 

reading or writing a frame. However Xilinx FPGAs hold 

the characteristic of `Glitchless Switching´ which means 

that when transcribing the up-to-date configuration with 

an identical configuration the function of the affected 

resources is not influenced. These conditions provided, 

single FPGA resources can be manipulated through the 

`Readback-Modify-Writeback´ method, without 

interfering with the remaining resources contained in the 

column. Therefore the corresponding configuration frame 

is read out of the configuration memory with the aid of a 

readback-sequence. This is followed by the manipulation 

of the bits inside the readback frame which are assigned 

to the FPGA-resource. The other bits remain unmodified. 

Finally the partly changed frame is written back into the 

configuration memory with a write-sequence. The 

problem in this operation is the fact that the manufacturer 

Xilinx gives no particulars about the addressing of single 

resources inside a frame.  

4. Basic Hardware System 

The substructure of the systems hardware is the Virtex-

II FPGA product line by Xilinx. With the aid of the 

software package `Xilinx Platform Studio´ (XPS) (see [5] 

and [6]) provided by the firm complex micro-controller 

systems can easily be developed. Apart from micro-

controllers these mainly contain buses as well as 

functional units which are attached to buses like memory-

controller or timer. The single components are part of the 

software package and are provided as complete IP-cores. 

These are merged; the newly developed system is then 

synthesized and loaded onto the FPGA as a bitstream.  

To begin with a basic system was  created which holds 

the following basic functions:  

• enable access to the internal ICAP -Interface 

• provide user interface to interact with the system  

• allow access to an external data memory  

• permit software debugging  

The most important necessary units and their function 

will be shown in the following paragraph. 

4.1. OPB-HwIcap-Core 

The OPB-HwIcap-Core by Xilinx forms the interface 

to the internal configuration-interface ICAP (see 

paragraph 2.3). The module internally consists of an 

OPB-controller which works as interface for the OPB-

bus, a ICAP-controller to regulate the data- and control-

flow between ICAP-Primitive, Block-RAM and OPB-

controller and a Block-RAM memory. As can be gathered 

from figure 6 the exchange of configuration packages 

(data) is carried out by the OPB-controller (i.e. processor) 

and ICAP-primitive through the BRAM-memory. With a  



Figure 6. OPB-HWICAP-Core 

ICAP-

Controller

OPB-

Controller

ICAP-PrimitiveBRAM

Data-Flow

Control-Flow

ICAP-

Controller

OPB-

Controller

ICAP-PrimitiveBRAM

Data-Flow

Control-Flow

magnitude of 2KB it is dimensioned in a way that it can at 

least store one configuration-frame. 

A configuration frame read back by the ICAP- 

Primitive can therefore be directly modified by the 

processor inside the BRAM-memory for example, before 

it is finally written back. The software driver included by 

the firm provides functions to write and read data between 

the processor and BRAM-memory as well as between 

BRAM-memory and ICAP-primitive. 

5. System Integration 

In contrast to a first online peripheral approach with 

JBits (not described here), the following approach tries to 

put the Read-, -Modify- Writeback process into practice 

as on-chip solution on the FPGA, i.e. on the MicroBlaze 

Soft-Core-Processor which is implemented there. As a 

suitable possibility to communicate with the ICAP-

interface the driver of the HwIcap-module, which was 

already employed and tested in the peripheral approach, 

can be used. The task is now mainly restricted to deriving 

the addressing of the single FPGA-resources and 

therefore enable the manipulation of the single resources.  

The conceptional goal of this work was to exchange 

rectangular shaped configuration areas with each other 

with the aid of the Read-, -Modify- Writeback process or 

shift or swap them to a different area. The smallest 

rectangular shaped configuration area which can be 

exchanged with any other rectangular shaped area is a 

CLB-block with a related routing-matrix. This 

combination forms a so-called elementary-block (E-

block). A subtler granularity e.g. on the slice-level, is not 

possible without restrictions. Single slices inside a CLB-

block are different and therefore cannot be exchanged 

with each other. As a consequence of the different 

multiplexers the configuration of a slice 0 cannot be 

transferred to one of a slice_1 for example. Larger 

rectangular areas always consist of several elementary-

blocks. Therefore it is sufficient for the conceptional 

formulation to deal with the addressing of elementary-

blocks, i.e. CLB-block plus Routing-Matrix inside a 

frame or a group or frames. Due to missing 

documentation the addressing of E- blocks within a frame 

was developed first. Afterwards the methods which allow 

the optional shifting or exchanging of rectangular shaped 

areas were realized in C-Code. 

5.1. Elementary Block Approach 

The basic idea behind the approach is to group single 

E-blocks to rectangular shaped modules and to provide an 

API to swap and shift the modules on the base of a 

homogenous FPGA area. Besides that an API function to 

load previously stored modules from an external memory 

was implemented. A key property of the modules is that 

they are self contained i.e. no routing wires are crossing 

the modules borders. 

To store a module, in a first approach, the complete 

configuration frames, containing the relevant module 

information are stored sequentially, in a bitstream like 

manner like explained in next section. 

5.2. Storage of Modules 

In order to store rectangular shaped modules in an 

external memory the actual module data that is included 

within different configuration frames is extracted from the 

.bit file of the complete design. This is done by a small 

tool based on the Xilinx JBits API. In the first step the 

tool takes the filename of the .bit file, the lower left E- 

block coordinates and the size of the module in height and 

width and cuts of the corresponding set of configuration 

frames. In a second step, to omit the placement 

information, a scaling of the module data is done by down 

shifting the module within the frames. Finally in a third 

step the tool writes the single frames sequentially to a new 

.flh file which in turn can be stored in the external 

memory. Another small tool was written to transfer the 

prepared .flh module data to the flash memory via a serial 

connection. 

6. Configuration Management API 

Based on the E- block approach we developed a new 

configuration management system which is able to load 

rectangular shaped modules from an external module 

repository, place them to an appropriate position onto the 

reconfigurable chip area and hook them up to an existing 

bus system. The system can be triggered by a serial 

interface from the outside as well completely on chip 

from a controlling application via its API functions. For a 

seamless integration the serial interface implements a 

protocol to transfer setup parameters and module data to 

consistent memory. 

Similar to the approach described in [2] the proposed 

system uses a slot- based concept. The systems lifecycle 

is based upon two phases, the initialisation phase and the 



runtime phase. In the initialisation phase of the system the 

reconfigurable chip area is partitioned into a static and 

dynamic part, whereas the dynamic part consists of 

distributed configuration slots like shown in figure 7. The 

system configuration parameters like, quantity, position, 

and size of the configuration slots and the width of the 

used routing module are stored in an external memory. In 

a second step the routing module and the data of the 

reconfigurable modules are uploaded through the serial 

interface as well. In this way the system is highly flexible 

and can be tailored to the application specific needs of 

various partial and dynamically reconfigurable designs. 

Figure 7 System partitioning example 

Once the initialisation phase is completed the system is 

ready for reconfiguration of the slot structure. The 

dynamic modules stored in the flash repository can be 

inserted into the slots. A detailed description of the used 

online routing mechanism, the basic structure of the 

software and the simplified system design flow trough the 

use of the API are described in the next chapters.  

6.1. Online Routing 

To enable the feature of online routing the 

reconfigurable area of the design was divided into vertical 

configuration slots similar to the approach described in 

[7]. The key property of such a slot is that the underlying 

FPGA architecture is homogenous in both vertical and 

horizontal direction and that it is identical for each slot. 

This allows rectangular shaped modules to be placed into 

any of the configuration slots regardless of its vertical 

position within the slot. It is also possible to place 

multiple smaller modules, that don’t use the complete slot 

height, on top of each other into one configuration slot, as 

long as the sum of the module heights does not exceed the 

slot height.  

The modules in the repository are self contained with 

respect to their used routing and CLB resources. In order 

to communicate with the outer world each module has a 

LUT-based communication interface in the lower right 

corner of the module. Via its interface the module can be 

dynamically connected during runtime to a LUT-based 

communication primitive. 

The communication primitives are located adjacent to 

each configuration slot in so called “vertical routing 

channels”, which can be seen in figure 8. Each slot has its 

own routing channel attached to it which covers the whole 

height of the slot. This ensures that the modules have 

access to the communication primitives, no matter on 

which vertical position they are placed within the slot. A 

hard wired macro, which builds the bridge to static area, 

is placed on the bottom. In the initial configuration the 

slots and the vertical routing channels at the left are 

completely empty (figure 8 a). All configurable elements 

are loaded (placed) into this area form configuration 

management system, running on the MicroBlaze 

processor [7] at runtime.  

modul modul 

b) c) d) a) 

Figure 8 Online Routing Procedure 

The online routing is based on only two types of 

communication primitives, which can be seen in Figure 9. 

Type-I primitives route the signals from the previous to 

the next Type-I or Type-II primitive in a vertical direction 

(up/down) along the routing channel. Type-II primitives 

do the same as Type-I primitives but in addition they also 

route the signals to the left in horizontal direction. The 

height of a Type-I primitives is one CLB-row. The width 

of Type-I and Type-II primitives and the height of a 

Type-II primitive depends on the number of signals to 

route. Per CLB-row/column height/width it is possible to 

route 8 signals.  

Figure 9 Routing Block Types 

When the configuration management system is 

initialised all vertical routing channels are filled up with 

Type-I primitives and a special closure primitive on top of 

each channel, see figure 8 b). It ensures that the dangling 

TYPE- I 

TYPE- II 

TYPE- III 

Routing Channel 

Makro

Static Area 

Configuration Slot 



inputs of the last Type-I primitive have a defined low-

level. As with the modules the routing primitives are 

stored in the flash repository and can be placed into the 

routing channels just as the modules can be placed into 

the slots. 

After a module is placed into one of the slots Figure 8 

c), it needs to be connected to the routing primitives. This 

is done by just replacing the Type-I primitive, which is 

adjacent to the modules interface, with a Type-II 

primitive. As stated before the Type-II primitives also 

routes the signals to the left and therefore it hooks up to 

the modules interface. The module is connected as 

described in Figure 8 d). This is the same for each module 

regardless of its position within the slots. 

Unrouting a module is done in the opposite way. The 

Type-II primitive, which was connected to the module 

interface, is replace by a Type-I and the area where the 

module was placed is overwritten with a blank 

configuration. Routing and unrouting a module by 

swapping Type-I with Type-II primitives and vice versa 

does not effect the other modules as the primitives are 

designed in a way that they feature glitch less switching 

of the Virtex-II configuration logic. 

6.2. Simplified System Design Flow 

Building a partially reconfigurable system is extremely 

simplified through the use of the new configuration 

management API compared to the proposed “modular 

design flow“ from Xilinx. The reason is that the area of 

the static design parts in no longer touched by 

reconfiguration of the dynamic parts. The use of long 

horizontal connection macros which involves a waste of 

chip area and serious timing problems is also no longer 

necessary. This chapter gives a brief overview which 

steps are necessary to create partially reconfigurable 

designs with the use of the new API. 

All components of the static design and the 

reconfigurable modules are implemented with the Xilinx 

XTS/ISE tool chain. The partitioning of the system 

(compare section 5) is done through use of area- and 

configprohibit- constraints within the .ucf file. As a basic 

rule all instantiated components need to be locked down. 

The static ones to the static part and the dynamic modules 

to the bottom position within one of the slots. Every slot 

must contain just one module at that time. The rest of the 

slot area is blocked by a configprohibit- constraint. As 

there are usually more dynamic modules than slots in the 

design this process needs to be repeated until every 

module was instanciated at least once. The single 

elements of the online routing system (chapter 6.1) are 

generated through a LUT base prototype macro as shown 

in figure 10. To obtain the smallest possible granularity of 

the module position within the slots, double lines are used 

as routing resources. 

CLB- width =2 

signal width= 9-16 

TYPE-I routing block 

TYPE-II routing block 

TYPE-III routing block 

bottom macro 

module interface 

LUT macro-external-pin 

Figure 10 Prototype Routing Macro Example 

The key property of the macro is its homogeneity, so 

the single elements can be combined with each other like 

described in section 6.1. The routing macro is also added 

to the design and instantiated once for every configuration 

slot. Its placement is fixed with a lock constraint in the 

.ucf file to a position, so that the bottom macro part is just 

below the routing channel. On the one side the macro- 

external- pins are connected to the module interface and 

on the other side to a application specific bus system.  

Once all components of the system, the static once, the 

dynamic reconfigurable modules and the routing 

prototype macros are connected together the system is 

synthesized and a .bit file of the entire design is created. 

On the base of this design the introduced tool chain is 

used to extract the routing blocks and the dynamic 

reconfigurable modules which are converted to a flash 

compatible .flh file respectively (chapter 5.2). After that 

the .flh files are transferred to flash and the .bit file of the 

entire design is loaded into FPGA configuration memory. 

6.3. Software Structure 

The software of the configuration management API is 

implemented in C and made to run on a MicroBlaze 

processor It is build of a hierarchic modular concept 

(figure 11). Therefore it is easy to adapt and extend, 

whereas for most application only the flash driver needs 

to be adapted. 

The bottom layer is comprised of the device drivers 

and utility modules which directly access the hardware or 

extend the driver functionality respectively. On the layer 

above are the manager modules. Every manager module 

is responsible for a specific task during system runtime. 

The ICAP manager module operates on the ICAP 

interface and covers the implementation of the proposed 

RMW- method. The flash manager module organizes all 

consistent data in flash memory and grants access to 

them. The central element is the configuration manager 

module that handles the reconfigurable slot structure and 

the proposed online routing capability. It also provides all 

the API- functions to control the reconfiguration process 



and to obtain the system status information. The serial 

interface module is only needed during the initialisation 

phase to transfer the system parameters and the module 

data. It can be omitted during runtime phase if the system 

is controlled by a host application on chip. In the case of  

an external controlling host application it forward the 

incoming commands to the appropriate manager module. 

The API is the basis for extension of existing run-time 

systems which are presented in [2]. 

EDK- LIB

UART FLASH ICAP-PRIMITIVE

Serial Interface

Flash Driver

Icap Driver

Flash Manager

Configuration Manager

Icap Manager

Uart Driver

Icap UtilsUart Utils

EDK- LIB

UART FLASH ICAP-PRIMITIVE

Serial Interface

Flash Driver

Icap Driver

Flash Manager

Configuration Manager

Icap Manager

Uart Driver

Icap UtilsUart Utils

Figure 11 Modular Software Concept 

7. Conclusions and Future Work 

  3. Tabellen 1.

The paper discussed new perspectives and 

corresponding approaches for today’s microelectronic 

embedded and processor solutions incorporating on-

demand reconfigurable datapath allocations on suitable 

granularities in real-time. The focus of the paper has 

demonstrated substantially new dynamic and partial 

reconfiguration techniques for 2D FPGA placement and 

routing adaptation for today’s fine-grain Xilinx devices. 

State of the art solutions of partial and dynamic 

reconfigurable systems provide the substitution, of fixed 

rectangular shaped blocks of hardware modules while 

other parts stay in operation. The circumstance caused by 

the FPGA architecture and its reconfiguration mechanism, 

forces to substitute parts of a design in complete columns. 

Therefore, the reconfiguration of variable rectangular 

shaped hardware modules is a challenging task since 

configuration of hardware in the same column, doesn’t 

has to be affected while this process. The approach 

introduced here demonstrated variable two-dimensional 

placement of hardware modules to Xilinx Virtex-II 

FPGAs, which offers an optimized utilization of such 

kind of devices, in comparison to the traditional partial 

reconfiguration approach with fixed geometry column-

based topologies of module slots. 

In summary, the transparent and easy programmable 

integration of finegrained reconfigurable architectures 

into today’s and future microelectronic solutions for 

embedded systems and for universal as well as 

application-tailored processor architectures demonstrates 

very beneficial perspectives for short time-to-market 

pressure, for low cost and power consumption, and for 

additional options in fault tolerance and risk management. 

8. References 

  4. Tabellen

[1] J. Becker, M. Hübner, M. Ullmann: “Power Estimation and 

Power Measurement of Xilinx Virtex FPGAs: Trade-offs 

and Limitations”, SBCCI03, Sao Paulo, Sep. 03 

[2] J. Becker, M. Hübner, M. Ullmann: “Real-Time 

Dynamically Run-Time Reconfiguration for Power-/Cost-

optimized Virtex FPGA Realizations”, VLSI03, Darmstadt, 

Sep. 03 

[3] L. Benini, G. De Micheli: “Networks on Chip: A New 

Paradigm for Systems on Chip Design”, Date 02, March 

3~7, Paris France 

[4] J.C. Palma, A. Vieira de Melo, F. G. Moraes, N. Calazans, 

"Core Communication Interface for FPGAs", Proceedings 

of 15th Symposium on Integrated Circuits and Systems 

Design (SBCCI), 2002,Porto Alegre BRAZIL 

[5] http://www.xilinx.com/ise/design_tools/ 

[6] http://www.xilinx.com/ise/embedded/edk.htm 

[7] M. Huebner, T. Becker, J. Becker “Real-Time LUT-Based 

Network Topologies for Dynamic and Partial FPGA Self-

Reconfiguration”, SBCCI04, Brasil 

[8] B. Blodget, S. McMillan: “A lightweight approach for 

embedded reconfiguration of FPGAs”, DATE´03, Munich 

Germany 

[9] Xilinx, Virtex-II Platform FPGA User Guide UG002(v2.0), 

March, 23 2005 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


