
A Decomposition Approach for Optimizing the Performance of MPI Libraries

Olaf Hartmann1, Matthias Kühnemann1, Thomas Rauber2, Gudula Rünger1

1 Chemnitz University of Technology 2 University Bayreuth
Department of Computer Science Department of Computer Science

Chemnitz, Germany Bayreuth, Germany
ruenger@informatik.tu–chemnitz.de rauber@uni–bayreuth.de

Abstract

MPI provides a portable message passing interface for
many parallel execution platforms but may lead to ineffi-
ciencies for some platforms and applications. In this ar-
ticle we show that the performance of both, standard li-
braries and vendor-specific libraries, can be improved by
an orthogonal organization of the processors in 2D or 3D
meshes and by decomposing the collective communication
operations into several phases. We describe an adaptive ap-
proach with a configuration phase to determine for a spe-
cific execution platform and a specific MPI library which
decomposition leads to the best performance. This may
also depend on the number of processors and the size of the
messages to be transferred. The decomposition approach
has been implemented in the form of a library extension
which is called for each activation of a collective MPI op-
eration. This has the advantage that neither the applica-
tion programs nor the MPI library need to be changed while
leading to significant performance improvements for many
collective MPI operations.

1 Introduction

MPI libraries provide a portable communication inter-
face for message-passing programs. In addition to single-
transfer operations where one processor sends a data block
which is received by another processor, MPI also provides
a set of collective communication operations realizing typi-
cal communication patterns with more than two participat-
ing processors. Examples are broadcast, gather or scatter
operations.

Internally, MPI libraries implement collective communi-
cation operations by combining single-transfer operations
according to the communication pattern required or by us-
ing several simpler collective communication operations to

realize the communication pattern of more complex oper-
ations. Depending on the interconnection network of the
target platform, different realizations of collective commu-
nication operations lead to different execution times. The
best performance usually results if the realizations are op-
timized for a specific interconnection network of a parallel
machine. This is usually done for vendor-specific MPI li-
braries.

Standard MPI libraries like LAM-MPI [6] or MPICH [4]
implement collective MPI operations such that a good per-
formance can be expected for a typical execution platform.
However, this general way of implementing collective MPI
operations may lead to performance degradations on some
platforms, compared to an optimized vendor-specific MPI
library. The advantage of these standard libraries is that
they provide satisfactory performance for a wide range of
execution platforms like cluster systems and that they can
be easily installed without complicated adaptations.

Runtime experiments on different execution platforms
show that the performance of collective MPI operations of
standard MPI libraries can be significantly improved by
using orthogonal processor groups or point-to-point algo-
rithms based on virtual communication topologies. An or-
thogonal processor group is obtained by arranging the par-
ticipating processors as a virtual 2D or 3D mesh. Based on
this arrangement, a collective communication operation is
then realized in two or three phases such that each phase is
performed in a different dimension of the processor mesh.
Since only a specific collective MPI communication opera-
tion is replaced by two or more communication phases on
the processor mesh, the use of this approach is completely
independent of the computation or communication struc-
ture of the parallel application considered. Therefore, all
applications based on MPI can benefit from the decomposi-
tion approach for optimizing communication. The overhead
caused by setting up the processor groups and the commu-
nicator handles for the orthogonal directions is negligible.

The performance improvements achieved by the decom-

1-4244-0054-6/06/$20.00 ©2006 IEEE

P

1

C 1 C

R

4P 5P

1P

3P
R 3

P0

R 2 2

2

Figure 1. A set of 6 processors arranged as a
two-dimensional mesh with 3 row groups and
2 column groups.

position into phases depend on numerous factors, like the
interconnection network of the target machine, the MPI li-
brary used, the specific group layout in the mesh and the
collective communication operation to be executed. There
may also be a dependency on the number of participating
processors and the message size. Thus, for an application
programmer it is demanding to benefit from this approach.
We therefore propose an adaptive implementation that au-
tomatically selects a suitable layout of the processor mesh
such that the best performance improvement for a specific
collective communication operation is obtained. In addi-
tion, we consider several realizations of collective commu-
nication operations using non-blocking send and receive op-
erations on virtual processor topologies like star, hypercube
and binomial tree interconnections.

The adaptive implementation of the decomposition ap-
proach has been integrated in an extension library for MPI
which can be linked with an arbitrary MPI library with the
effect that the collective communications operations are ex-
ecuted in an optimized way.

The rest of the paper is organized as follows. Section
2 describes how collective MPI operations can be imple-
mented based on orthogonal processor groups and suitable
point-to-point algorithms. Section 3 presents the adaptive
selection of implementation variants for specific execution
platforms and describes the design of the extension library.
Section 4 contains an experimental evaluation on different
target platforms. Section 5 discusses related work and Sec-
tion 6 contains concluding remarks.

2 Orthogonal Processor Groups

The realization of collective communication operations
in consecutive phases based on an orthogonal partitioning of
the processor set can be applied for arbitrary MPI libraries.
We first consider the 2D case and assume that the set of pro-
cessors is arranged as a two-dimensional virtual mesh with
a total number of p = p1 × p2 processors. The mesh con-
sists of p1 row groups R1, ..., Rp1 and p2 column groups

A A

1

A

A PP0 P2 4

P0 A

2

P P2 P3 P4 P1

A AA A A

5P0

B
ro

ad
ca

st

R1 R2 R3

leader group C1

root

Figure 2. Illustration of an orthogonal realiza-
tion of a broadcast operation with 6 proces-
sors and root processor P0 realized by 3 con-
current groups of 2 processors each.

C1, ..., Cp2 with |Rq| = p2 for 1 ≤ q ≤ p1 and |Cr| = p1

for 1 ≤ r ≤ p2. The row groups provide a partitioning
into disjoint processor sets and the column groups provide
a different partitioning into disjoint processor sets that are
orthogonal to the row groups. Using these two partition-
ings, the collective communication operations can be imple-
mented in two phases, each working on one of the partition-
ings of the processor mesh. Based on the processor mesh
and the two partitionings induced, group and communica-
tor handles are defined for the concurrent communication in
the row and column groups. Each processor belongs to ex-
actly one row group and analogously to exactly one column
group. A row group and a column group have exactly one
processor in common which can serve as communication
processor between row groups and column groups. Figure
1 illustrates a set of 6 processors P0, P1, ..., P5 arranged as
a p1 × p2 = 3 × 2 mesh.

For the decomposition of a broadcast operation on a 2D
mesh, the root processor first broadcasts the block of data
within its column group (leader group). Then each of the
processors in the leader group acts as a root in its row group
and broadcasts the data within this group (concurrent group)
concurrently to the other broadcast operations. Figure 2
illustrates the resulting two communication phases for the
processor mesh from Figure 1 with processor P0 as root of
the broadcast operation. In step (1), processor P0 sends the
message A within its column group C1 = {P0, P2, P4};
this is the leader group. In step (2), each member of the
leader group sends the message within its row group.

For the decomposition of a gather operation, the data
blocks are first collected concurrently within the row groups
by concurrent group based gather operations. In each group,
the data blocks are collected by the unique processor be-
longing to that column group (leader group) to which the
root of the global gather operation also belongs to. In a sec-
ond step, a gather operation is performed within the leader
group only and collects all data blocks at the root proces-

A2 A3 P4 A4 5A

2

G
at

he
r

1

P0 0A 1A A2 A3 A4 5A

0A 1A

0A 1A

Sc
at

te
r

2

1

P2

P3P2P1P0 P5P4

2A 3A 4A 5A

R1 R2 R3

1

root

leader group C

P0

Figure 3. Illustration of an orthogonal real-
ization of a gather operation (upward) and a
scatter operation (downward) with 6 proces-
sors and root processor P0 for 3 concurrent
groups of 2 processors each.

P2 A2 A3

P1 A0 A1

P0 A0

P1 A0

2
1

1C

2C

P3

P5

P1 A0 A1 A4 A5A2 A3

A0 A1 A4 A5A2 A3

A0 A1 A4 A5A2 A3

P3 A2 A3

P5 A4 A5

P2

P4

P0 A0 A1 A4 A5A2 A3

A0 A1 A4 A5A2 A3

A0 A1 A4 A5A2 A3P4 A4 A5
A3

A3

P2 A2

P A3

P2 A2

P3 A23

A

A

P4 A4

P5 A5

P4 A4

P5 A4

5

5

A1

A1

P0 A0

P1 A1

P0 A0 A1

2

1R

3R

R

Figure 4. Illustration of an orthogonal imple-
mentation of multi-broadcast operation for
the processor mesh of Figure 1.

sor specified for the global gather operation. If b is the size
of the original message, each processor in the leader group
contributes a data block of size b · p2 for the second com-
munication step. The order of the messages collected at the
root processor is preserved. Figure 3 (upward) illustrates
the two phases for the processor mesh from Figure 1 where
processor Pi contributes data block Ai, i = 1, ..., 6. In step
(1), the processors P0, P2, P4 concurrently collect messages
from its row groups. In step (2), the leader group collects
the messages built up in the previous step. A scatter oper-
ation starts at the root P0 and can be realized by reversing
the order of the two phases used for a gather operation.

For a multi-broadcast operation, each processor con-
tributes a data block of size b and the operation makes
all data blocks available in rank order for each processor.
Using a 2D processor mesh, the operation can be imple-
mented by the following two steps: first, group-based multi-
broadcast operations are executed concurrently within the
row groups, thus making each data block available for each
processor within column groups, see Figure 4 for an illustra-
tion. Second, concurrent group-based multi-broadcast op-
erations are performed to distribute the data blocks within
the column groups. For this operation, each processor con-
tributes messages of size b · p2.

The decomposition approach for 2D meshes can be ap-
plied recursively to the internal communication organiza-
tion of the leader group or the concurrent groups, respec-
tively, so that the communication in the leader group or
the concurrent groups again uses an orthogonal structur-
ing of the group. This leads to 3D or higher dimensional
mesh structures. Runtime experiments have shown that 3D
meshes are usually sufficient to get good performance im-
provements.

3 Adaptive MPI extension library

The performance improvements obtained by an orthogo-
nal realization of collective MPI operations are provided as
an extension library which can be linked with arbitrary MPI
libraries. The library is organized in two phases:

• The configuration phase is responsible for determining
for each collective MPI operation which implementa-
tion leads to the best improvements for a given exe-
cution platform and a specific MPI library. The con-
figuration phase has to be executed only once for each
combination of MPI library and execution platform.

• The execution phase contains the actual extension li-
brary and is activated by linking the extension library
to an arbitrary MPI application. The execution phase
is activated for each collective MPI operation called by
the application. When activated, the execution phase
selects for the given number of processors and mes-
sage size the best implementations either using orthog-
onal processor groups, virtual topologies or the MPI
implementations provided by the underlying MPI li-
brary. The execution of the collective or single-transfer
MPI operations required is realized with the underly-
ing MPI library.

In the following, we describe the two phases and the inter-
face between the two phases in more detail.

3.1 Configuration phase

To determine which implementations are best suited for a
given architecture and a given MPI library, the configuration
phase executes an evaluation program which starts bench-
marks for each collective MPI operation using different im-
plementation variants and different organizations of the or-
thogonal processor groups in two or three dimensions. The
benchmark program measures the communication times for
different numbers of processors and different message sizes.
The evaluation program starts the benchmark program for
all possible 2D or 3D layouts of the processors and also for
different virtual processor topologies suitable for the exe-
cution of the specific collective communication operation

 0

 50

 100

 150

 200

 250

 300

 350

 1000 10000 100000 1e+06 1e+07

th
ro

ug
hp

ut
 (

in
 M

by
te

 p
er

 s
ec

on
d)

message size (in byte)

Throughput of different MPI_Gather() algorithms using orthogonal processor groups and
communication pattern with 32 processors on the Xeon Cluster (Scali).

OPG 3D
OPG 2D
original MPI_Gather() operation
P2P (star)
P2P (binomial tree)

Figure 5. Throughput of different implemen-
tation variants for a gather operation on the
dual Xeon cluster for 32 processors.

considered. These topologies can be based on spanning
trees for communication operations with a root processor,
like broadcast or gather, or virtual interconnection networks
for communication operations without a root processor, like
multi-broadcast or multi-accumulation. The current imple-
mentation considers a star, a hypercube, a binomial tree, and
a ring topology. By comparing all communication times
measured, the evaluation program can select for each num-
ber of processors and each message size which implemen-
tations variant should be used for the given execution plat-
form and MPI library.

The evaluation program builds intervals of message sizes
and numbers of executing processors and specifies for each
interval which implementation variant should be used. The
results are stored in a configuration table which is later used
by the execution phase to select the fastest implementation
at program execution time. Depending on the benchmark
tests it is also possible that the original implementation pro-
vided by the underlying MPI library is selected as the best
implementation for a specific number of processors and a
specific message size.

3.2 Execution phase

For each activation of an MPI collective communication
operation, the execution phase dynamically selects the most
efficient implementation for the message size specified by
the MPI operation and the number of processors participat-
ing in the operation. The selection is based on the con-
figuration table computed by the configuration phase. The
execution phase is supported by an extension library which
is responsible for

• creating the 2D or 3D processor meshes required for
the best implementation for the given number of pro-
cessors and the corresponding communicators in the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1000 10000 100000 1e+06

th
ro

ug
hp

ut
 (

in
 M

by
te

 p
er

 s
ec

on
d)

message size (in byte)

Throughput of different MPI_Gather() algorithms using orthogonal processor groups and
communication pattern with 64 processors on the Jump.

OPG 3D
OPG 2D
original MPI_Gather() operation
P2P (star)
P2P (binomial tree)

Figure 6. Throughput of different implemen-
tation variants for a gather operation on the
IBM Regatta system (bottom).

different dimensions of the processor mesh; these com-
municators are used for the realizations of the different
phases of the collective communication operations;

• providing additional realizations of the collective com-
munication operations based on virtual topologies us-
ing non-blocking send and receive operations of the
underlying MPI library;

• managing the selection of the best implementation of
each collective MPI operation depending on the num-
ber of processors and the message size of the specific
MPI operation.

Depending on the number of processors and the config-
uration table, there might be a large number of different 2D
or 3D processor meshes leading to the best performance. If
this is the case, a lazy construction of the processor meshes
and the corresponding communicators can be useful: In-
stead of creating all meshes and communicators at program
start, a mesh is only created when the configuration phase
selects the mesh for the implementation of a collective MPI
operation. In this case, the mesh and communicators are
created and can be used for further activations of collective
MPI operations. If a processor mesh is not needed for the
execution of a program, it is not created, thus reducing the
implementations overhead.

The approach presented can be applied to arbitrary MPI
programs using collective communication operations.

4 Runtime Experiments

In this section, we show runtime experiments for differ-
ent execution platforms and different MPI libraries. We
consider the performance improvements obtained for col-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1000 10000 100000 1e+06

th
ro

ug
hp

ut
 (

in
 M

by
te

 p
er

 s
ec

on
d)

message size (in byte)

Throughput of different MPI_Gather() algorithms using orthogonal processor groups and
communication pattern with 32 processors on the Opteron SMP-cluster (LAM 7.1.1/Infiniband).

OPG 3D
OPG 2D
MPI
P2P (star)
P2P (binomial tree)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000 10000 100000 1e+06

th
ro

ug
hp

ut
 (

in
 M

by
te

 p
er

 s
ec

on
d)

message size (in byte)

Throughput of different MPI_Gather() algorithms using orthogonal processor groups and
communication pattern with 32 processors on the Opteron SMP-cluster (MPICH-VMI-2.0/Infinib.).

OPG 3D
OPG 2D
MPI
P2P (star)
P2P (binomial tree)

Figure 7. Throughput of different implemen-
tation variants for a gather operation on the
dual Opteron cluster using LAM-MPI (top)
and MPICH-VMI (bottom).

lective MPI operations in isolation and in the context of ap-
plication programs from scientific computing.

4.1 MPI operations in isolation

The number of different 2D or 3D layouts of the proces-
sor mesh depends on the total number of processors avail-
able. For 96 processors, for example, there are 10 different
2D layouts to be considered (2 × 48, 3 × 32, 4 × 24, 6 ×
16, 8× 12, 12× 8, 16× 6, 24× 4, 32× 3, 48× 2). We have
performed runtime experiments on five different platforms,
the cluster systems CLiC with 528 processors, a dual Xeon
cluster with 32 processors, the IBM Regatta p690+ cluster
JUMP with 1312 processors, a Cray T3E 1200 with 512
processors, and an Opteron cluster with 64 processors.

As an example for benchmark results, Figures 5, 6, and
7 show the data throughput (in MBytes per second) ob-
tained with different layouts of the processor mesh for an
MPI Gather() operation on different platforms. The grey
areas depict the throughput obtained with an orthogonal re-
alization using 2D meshes (OPG 2D) or 3D meshes (OPG

MPI_Allgather()

MPI_Allreduce()

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

 0 10 20 30 40 50 60 70 80 90 100

performance improvement (in %)

Performance improvements of different collective MPI communication operations
with 48 (upper bar) and 96 processors (lower bar) on the CLiC (LAM).

maximum
average
minimum

MPI_Allgather()

MPI_Allreduce()

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

 0 10 20 30 40 50 60 70 80 90 100

performance improvement (in %)

Performance improvements of different collective MPI communication operations
with 48 (upper bar) and 96 processors (lower bar) on the CLiC (MPICH).

maximum
average
minimum

Figure 8. Performance improvements
achieved for LAM-MPI (top) and MPICH
(bottom) on the Beowulf cluster CLiC.

3D). The dashed lines show the throughput obtained by us-
ing a star and a binomial tree virtual processor interconnec-
tion. The figures show that for different message sizes, dif-
ferent implementation variants lead to the best performance.
Compared to the implementation provided by the underly-
ing MPI library, significant performance improvements can
usually be obtained for a wide range of message sizes. Sig-
nificant performance improvements can also be obtained for
vendor-specific MPI libraries like Cray-MPI, ScaMPI [3] or
mpcc on the IBM Regatta.

Figure 8 summarizes the performance improvements ob-
tained for the CLiC cluster using LAM-MPI (top) and
MPICH (bottom). The bars represent the minimum, av-
erage, and maximum performance improvements over all
message sizes (between 992 and 7 480 288 Bytes) for a to-
tal number of 48 processor (upper bar) and 96 processors
(lower bar). For LAM-MPI, the largest performance im-
provement can be obtained for MPI Bcast() operations as
well as MPI Allgather() and MPI Allreduce() which are
both implemented by using MPI Bcast(). The reason for
the large improvements lies in the implementation of the

0 10 20 30 40 50 60 70 80 90 100

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

MPI_Allgather()

MPI_Allreduce()

performance improvements (in %)

Performance improvements with 32 processors on the Xeon cluster (ScaMPI/SCI).

minimum
average
maximum

Figure 9. Performance improvements on the
dual Xeon cluster with ScaMPI/SCI for 32 pro-
cessors.

MPI Bcast() operation which is based on a binomial virtual
tree. A parent node sends the broadcast block to its chil-
dren with non-blocking send-operations without taking into
account the size of the corresponding sub-trees. Both LAM-
MPI and MPICH use different protocols for different mes-
sage sizes. An eager protocol is used for small messages.
Using this protocol, a processor sends a data block also if
a matching receive operation has not yet been issued. The
receiving processor therefore has to store the message in a
system buffer and then has to copy it to the user buffer of the
matching receive later. This copy operation can be avoided
by using a rendezvous protocol which stores the message
at the sender side until the receive buffer has been speci-
fied. A rendezvous protocol is used for larger messages.
The optimal change from the eager to the rendezvous pro-
tocol depends on many architectural parameters and cannot
be set in advance. The adaptive approach is able to find a
suitable changing point which substantially contributes to
the significant performance improvements.

The performance improvements for the dual Xeon clus-
ter using the SCI network with ScaMPI is given in Fig-
ure 9. Figure 10 contains the performance improvements
for the Cray T3E-1200 (top) and the IBM Regatta system
(bottom). For the IBM Regatta System, the largest perfor-
mance improvements can be obtained when using specific
point-to-point algorithms, especially for MPI Reduce(),
MPI Allgather() and MPI Allreduce(). For other opera-
tions, orthogonal realizations help to successfully reduce
the execution time. Figures 11 and 12 present the perfor-
mance improvements for the Opteron cluster using the Eth-
ernet network and the Infiniband network, respectively, for
both LAM-MPI and MPICH. The improvements are sig-
nificantly larger for LAM-MPI, but also for MPICH good
average improvements can be obtained for both networks.

0 10 20 30 40 50 60 70 80 90 100

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

MPI_Allgather()

MPI_Allreduce()

performance improvements (in %)

Performance improvements with 48 processors on the Cray T3E−1200.

minimum
average
maximum

MPI_Allgather()

MPI_Allreduce()

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

 0 10 20 30 40 50 60 70 80 90 100

performance improvement (in %)

Performance improvements of different collective MPI communication operations
with 32 (upper bar) and 64 processors (lower bar) on the Jump.

maximum
average
minimum

Figure 10. Performance improvements ob-
tained on the Cray T3E-1200 (top) for a total
number of 48 processors and on the IBM Re-
gatta cluster (bottom) for a total number of
32 processors (upper bar) and 64 processors
(lower bar).

4.2 Application Programs

We consider the optimized communication methods in
the context of complex program applications in order to
verify the performance improvements achieved in isolation.
For this purpose we apply the adaptive approach to reduce
the communication overhead of a Jacobi iteration and a so-
lution method of ordinary differential equations.

For the Jacobi iteration, we consider three different im-
plementation variants based on a row-wise and a column-
wise distribution of the iteration matrix A. The row-wise
realization uses an MPI Allgather() operation to distribute
the intermediate result to all processors participating in
the computation. For the column-wise realization, either
an MPI Allreduce() and MPI Allgather() operation or an
MPI Reduce() and MPI Bcast() operation can be used to
distribute the intermediate result. Figure 13 (top) shows the
performance improvements of different implementations of

0 10 20 30 40 50 60 70 80 90 100

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

MPI_Allgather()

MPI_Allreduce()

performance improvements (in %)

Performance improvements with 16 (lower bar) and 32 processors (upper bar)
on the Opteron SMP−cluster (LAM−MPI 7.1.1/Fast−Ethernet).

minimum
average
maximum

0 10 20 30 40 50 60 70 80 90 100

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

MPI_Allgather()

MPI_Allreduce()

performance improvements (in %)

Performance improvements with 16 (lower bar) and 32 processors (upper bar)
on the Opteron SMP−cluster (LAM 7.1.1/Infiniband).

minimum
average
maximum

Figure 11. Performance improvements for the
Opteron cluster for 64 processors using the
Ethernet network (top) and the Infiniband net-
work (bottom) for LAM MPI 7.1.1.

the parallel Jacobi iteration using the adaptive approach
to select a suitable communication method on the CLiC
(LAM-MPI) for 96 processors. In most cases, the adaptive
approach selects point-to-point algorithms for performing
the collective communication operations, since these algo-
rithms lead to slightly larger performance improvements.

Parallel Adams methods are variants of general linear
methods for solving ordinary differential equations (ODEs)
as proposed in [10], see [7] for a more detailed descrip-
tion of a parallel implementation. General linear methods
compute several stage values yκ,i in each time step κ, κ =
1, 2, . . . which correspond to numerical approximations of
yκ,i = y(tκ + aih) with abscissa vector (ai), i = 1, ..., K ,
and stepsize h = tκ − tκ+1. The stage values of one
time step are combined in a vector Yκ = (yκ,1, ...,yκ,K).
An MPI Allgatherv() operation is used to distribute the in-
termediate result. Figure 13 (bottom) shows the average
performance improvements that are obtained by an adap-
tive selection of communication methods to perform the
MPI Allgatherv() operation on the CLiC (96 processors,

0 5 10 15 20 25 30 35 40 45 50

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

MPI_Allgather()

MPI_Allreduce()

performance improvements (in %)

Performance improvements with 16 (lower bar) and 32 processors (upper bar)
on the Opteron SMP−cluster (MPICH−VMI 2.0/Fast−Ethernet).

minimum
average
maximum

0 10 20 30 40 50 60 70 80 90 100

MPI_Reduce()

MPI_Scatter()

MPI_Gather()

MPI_Bcast()

MPI_Allgather()

MPI_Allreduce()

performance improvements (in %)

Performance improvements with 16 (lower bar) and 32 processors (upper bar)
on the Opteron SMP−cluster (MPICH−VMI 2.0/Infiniband).

minimum
average
maximum

Figure 12. Performance improvements for the
Opteron cluster for 64 processors using the
Ethernet network (top) and the Infiniband net-
work (bottom) for MPICH-VMI-2.0.

LAM-MPI and MPICH) and the IBM Regatta system (64
processors). Again, the point-to-point realizations are se-
lected by the adaptive approach, since these are about 10%
faster than the orthogonal realizations for the system sizes
considered.

5 Related work

Several recent articles consider the improvement of col-
lective communication operations. In [1] the performance
of an MPI Allgather() operation in MPICH 1.2.5 on a Linux
cluster is evaluated. This implementation of MPICH im-
proves the performance of previous versions by using a re-
cursive doubling algorithm. The authors have developed
a dissemination allgather based on the dissemination bar-
rier algorithm. The paper experimentally evaluates MPICH
allgather and the implementations of the new allgather al-
gorithms on a Linux cluster of dual-processor nodes using
both TCP over Fast Ethernet and GM over Myrinet.

In [2] the authors discuss the high-performance im-

12000 24000 36000 48000 60000 72000
0

10

20

30

40

50

60

70

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 (
in

 %
)

performance improvements of the parallel Jacobi iteration by communication algorithms
based on single−transfer operations on the CLiC with 96 processors

row−wise (MPI_Allgather())
column−wise (MPI_Allgather())
column−wise (MPI_Bcast())

800 5000 20000 45000 80000 180000 320000
0

10

20

30

40

50

60

70

80

90

100

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 (
in

 %
)

performance improvements of the parallel PAB−method by adaptive selection
of suitable communication methods on the JUMP and on the CLiC with LAM−MPI and MPICH

CLiC (LAM)
CLiC (MPICH)
JUMP

Figure 13. Runtime improvements for the par-
allel Jacobi iteration (top) and the parallel
PAB method (bottom).

plementation of collective MPI operations on distributed-
memory machines. A combination of different implemen-
tations of collective MPI operations are investigated along
with an exploitation of communication modes supported
by MPI. The implementations show performance improve-
ments in most situations compared to standard MPI imple-
mentations, such as MPICH. Experimental results from a
large Intel Pentium 4 processor cluster are considered.

An adaptive approach for collective communication op-
erations is presented in [8]. Different algorithms based on
virtual topologies are tested. The optimum algorithm and
optimum buffer sizes are determined by conducting a series
of experiments on the system. The tuning system uses the
native MPI point-to-point send and receive operations. The
approach is similar to our approach in the sense that differ-
ent versions of implementing MPI collective operations are
experimentally evaluated, but there is no extension library
as for our decomposition approach. Moreover, orthogonal
processor groups are not included. The search space of the
adaptive approach in [8] is reduced in [9] where perfor-

mance modelling techniques for collective communication
operations are given. Based on the performance modelling
the useful candidates for experiements are selected.

In [5] the performance behavior of collective commu-
nication operations are analyzed with models for point-
to-point communication operations, such as Hockney,
LogP/LogGP, and PLogP. The performance models provide
useful insights into various aspects of different algorithms
and their relative performance. The prediction results from
the models are used to determine switching points between
different available communication methods.

6 Conclusions

In this article we have shown that an adaptive approach
based on the decomposition of operations can be used to
successfully reduce the execution time of collective com-
munication operations for a wide range of different plat-
forms. For general libraries like LAM-MPI or MPICH,
average improvements between 30% and 50% can usually
be obtained. But also the performance of vendor-specific
libraries can be improved significantly. The adaptive ap-
proach can be used via an extension library that can be
linked to arbitrary MPI programs and can be used with ar-
bitrary MPI libraries.

References

[1] G.D. Benson, Cho-Wai Chu, Q. Huang, and S. G. Caglar.
A comparison of MPICH Allgather Algorithms on Switched
Networks. In 10th European PVM/MPI Users’ Group Meet-
ing. Springer LNCS 2840, 2003.

[2] E.W. Chan, M.F. Heimlich, A. Purkayastha, and R.A. van de
Geijn. On Optimizing Collective Communication. In Proc.
of Int. Conference on Cluster Computing, 2004.

[3] Scali / ScaMPI commercial MPI on SCI implementation.
http://www.scali.com/.

[4] LAM/MPI Parallel Computing. http://www.lam-mpi.org/.

[5] J. Pjesivac-Grbovic and T. Angskun and G. Bosilca and G. E.
Fagg and J. Dongarra. Performance Analysis of MPI Collec-
tive Operations. In Proc. of the 4th Int. Workshop on Perfor-
mance Modeling, Evaluation, and Optimization of Parallel
and Distributed Systems (PMEO-IPDPS, 2005.

[6] MPICH-A Portable Implementation of MPI. http://www-
unix.mcs.anl.gov/mpi/mpich.

[7] T. Rauber and G. Rünger. Execution Schemes for Parallel
Adams Methods. In Proc. of Euro-Par 2004, pages 708–717.
Springer LNCS 3149, 2004.

[8] S.S. Vadhiyar, G.E. Fagg, and J. Dongarra. Automatically
tuned collective communications. In Proc. of the Supercom-
puting. IEEE, 2000.

[9] S.S. Vadhiyar, G.E. Fagg, and J. Dongarra. Performance
Modeling of Self Adapting Collective Communications for
MPI. In Los Alamos Computer Science Institute Symposium,
2001.

[10] P.J. van der Houwen and E. Messina. Parallel Adams Meth-
ods. J. of Comp. and App. Mathematics, 101:153–165, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

