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Abstract

A self-stabilizing protocol is a brilliant framework for
fault tolerance. It can recover from any number and
any type of transient faults and eventually converge to
its intended behavior. Performance of a self-stabilizing
protocol is usually measured by stabilization time: the
time required to complete the convergence to its in-
tended behavior under the assumption that no new fault
occurs during the convergence. But a self-stabilizing
protocol has no guarantee to complete the convergence
if faults are frequently occurred.

This paper brings new light to efficiency analysis of
stabilization. The efficiency is evaluated with consid-
eration for faults occurring during the convergence. To
show the feasibility and effectiveness of the approach,
this paper applies the approach to the maximal match-
ing protocol.

1 Introduction

A self-stabilizing protocol[2] is a protocol that
achieves its intended behavior regardless of the initial
network configuration (i.e., global state). Thus, a self-
stabilizing protocol is resilient to any number and any
type of transient faults and is adaptive to any number
and any type of topological changes of networks: after
the last fault or the last topological change occurs, the
protocol starts to converge to its intended behavior.
These advantages make self-stabilizing protocols ex-
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tremely attractive for designing highly dependable dis-
tributed systems. The self-stabilization has attracted a
great deal of attention of researchers and practitioners
working in the field of distributed systems.

A self-stabilizing protocol can converge to its in-
tended behavior from any configuration, but the con-
vergence is guaranteed only when no new fault or topo-
logical change occurs during the convergence. Perfor-
mance of a self-stabilizing protocol is usually mea-
sured by stabilization time : the time required to com-
plete the convergence under the assumption that no
new fault occurs during the convergence. In other
words, the stabilization time guarantees that the self-
stabilizing protocol can complete the convergence if no
new fault or topological change occurs during the pe-
riod of the stabilization time. In distributed systems
where faults or topological changes repeatedly occur
with interval shorter than the stabilization time, a self-
stabilizing protocol cannot guarantee to converge to its
intended behavior.

On the other hand, because of a rapid increase in
the size of distributed systems and development of dy-
namic distributed systems such as P2P systems and
mobile systems, self-stabilizing protocols are highly de-
sired to tolerate frequent faults or topological changes.
However, to the best of our knowledge, the problem
has been tackled by few work and waits further inves-
tigation.

1.1 Contribution of This Paper

It is generally said that self-stabilizing protocols are
inefficient in distributed systems with frequent faults or
topological changes. Its main reason is that a new fault
or topological change brings the system into an un-
expected configuration, and thus, the system restarts
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convergence to its intended behavior from scratch. But
the reasoning seems too pessimistic. Should a single
new fault or topological change spoil all the efforts a
self-stabilizing protocol made before the disturbance?
This is the question that motivated us to start this
research.

In this paper, we propose a new measure, stabi-
lization time with �F faults, of efficiency in con-
vergence: it is the worst case time a self-stabilizing
protocol requires to converge to its intended behavior
from any configuration despite occurrence of �F faults
during the convergence. The stabilization time with �F
faults is usually represented as a function of network
parameters (e.g., the numbers of processes and links,
diameter, degree etc.) and the number �F of faults.
Another contribution we make in this paper is to pro-
pose an analysis method to evaluate the stabilization
time with �F faults. Roughly speaking, we regard each
action of a protocol as a forward step to the conver-
gence, and occurrence of fault as a backward step. By
quantifying influence of the forward step and the back-
ward step, we can estimate the stabilization time with
�F faults.

To show the feasibility and effectiveness of the pro-
posed method, we evaluate the stabilization time with
�F faults of a maximal matching protocol proposed by
Hsu and Huang [7] and show that it is 2m+n+4∆ · �F
where n and m are the numbers of processes and links
respectively, and ∆ is the maximal degree of all pro-
cesses. Notice that the stabilization time with �F faults
can be considered as a generalization of the already
known (usual) stabilization time, 2m + n [5].

1.2 Related Work

Many work considered occurrence of transient faults
after convergence and designed self-stabilizing proto-
cols that can recover from the transient faults effi-
ciently. The concepts of time-adaptability [8], fault-
containment [3, 4] and continuous containment [11]
are proposed to approach the subject. While all of
them consider the impact of transient faults at a legiti-
mate configuration (i.e., after convergence), our desired
goal is to consider the impact of transient faults dur-
ing convergence and to design self-stabilizing protocols
that can achieve efficient convergence despite transient
faults during the convergence.

The paper [9] is most related to this paper. It con-
siders self-stabilizing mutual exclusion on a dynamic
ring network. It evaluates efficiency of convergence
with considering process joins and leaves during con-
vergence. The paper insists that the analysis method
can be applied to convergence analysis with considera-

tion for transient faults during convergence. However,
the protocol considered in the paper is vulnerable to
transient faults during convergence, and thus the anal-
ysis with transient faults is left as a future work. In this
paper, we extend the proposed method to the analysis
with consideration for transient faults during conver-
gence and prove that the method is applicable.

1.3 Organization of This Paper

The rest of this paper is organized as follows. Sec-
tion 2 introduces the computation model, faults and
the stabilization time with �F faults. Section 3 pro-
poses the method to evaluate a stabilization time of �F
faults. Section 4 analyzes the stabilization time of �F
faults for the maximal matching protocol proposed by
Hsu and Huang [7]. We conclude this paper in Section
5.

2 Model

A distributed system S = (P, L) consists of a
set P = {v0, v1, . . . , vn−1} of processes and a set L

of (communication) links. A link connects two distinct
processes. When a link connects processes v and w, this
link is denoted by (v, w). We say w is a neighbor of
v if (v, w) ∈ L. The set of all neighbors of v is denoted
by Nv. The number of neighbors of v is denoted by
|Nv| and |Nv| is called the degree of v. The degree of S
is the maximum degree of all processes and is denoted
by ∆ (∆ = maxv∈V {|Nv|}).

Each process v is a state machine. Each process can
directly read its neighbors’ states and can change its
own state according to its current state and its neigh-
bors’ states. The normal action of each process v

is defined by a set of guarded actions in the following
form:

〈guardv〉 → 〈statementv〉

The guard 〈guardv〉 of process v is a boolean ex-
pression on its own state and its neighbors’ states.
When the guard is evaluated to be true, 〈statementv〉
is executed and changes the state of v. In this pa-
per, we assume that the guarded action can be atomi-
cally executed: evaluation of the guard and execution
of the statement are executed in one atomic action.
This model is called the shared-state model.

In this paper, a transient fault of v is modeled by a
faulty action of v. A faulty action of v can change
v’s state arbitrarily. A faulty action models undesirable
reset of the process, memory corruption and so on in
real distributed systems.



A configuration (i.e., a global state) of a dis-
tributed system is specified by an n-tuple σ =
(s0, s1, . . . , sn−1) where si stands for the state of pro-
cess vi. A process v is said to be enabled at a con-
figuration σ when v has a normal action whose guard
is true at σ. A process v is said to be disabled at σ

when it is not enabled at σ.
As the execution model, we adopt the central dae-

mon (sometimes called the sequential execution model)
where only a single process can execute an action be-
tween two consecutive configurations.

Now we consider transition of the consecutive con-
figurations σ and σ′. The transitions are classified into
the following two cases:

1. Transition by a normal action of a process vi: Let
vi be an enabled process at σ = (s0, s1, . . . , sn−1)
and σ′ = (s′0, s

′

1, . . . , s
′

n−1) be the configuration
resulting from σ by vi’s normal action. A normal
action of vi changes its state from si to s′i depend-
ing on si and its neighbors’ states at σ. Notice
that sj = s′j holds for each j(�= i).

2. Transition by a faulty action of a process vi: Let
σ = (s0, s1, . . . , sn−1) and σ′ = (s′0, s

′

1, . . . , s
′

n−1)
be consecutive configurations where σ′ is resulted
from σ by vi’s faulty action. A faulty action of
vi changes its state from si to s′i, where s′i can be
an arbitrary state. Notice that sj = s′j holds for
each j(�= i). The faulty action can occur at any
configuration.

When configurations are changed from σ to σ′ by
a normal action or a faulty action, the transition is
denoted σ �→ σ′.

An execution of a protocol is represented by an infi-
nite sequence of configurations in the order they appear
in the execution: an infinite sequence of configurations
E = σ0, σ1, . . . is an execution if and only if σi �→ σi+1

holds for every i(i ≥ 0). A partial execution is denoted
by E[σi, σj ] = σi, σi+1, . . . , σj(i ≤ j). An execution is
called fault-free if it contains no transition by a faulty
action.

The execution is not uniquely determined only from
the initial configuration, since there may exist several
actions that can be executed at each configuration:
normal actions of enabled processes and faulty actions
of all processes. One of them is arbitrarily chosen to be
executed. In this paper, we assume that every execu-
tion is weakly fair: every enabled process eventually
executes its normal action unless it becomes disabled.

A problem is specified by legitimate predicates. We
say a configuration is legitimate when it satisfies the
legitimate predicates. Protocols are required to reach
a legitimate configuration specified by a problem.

A self-stabilizing protocol is resilient to any
number and any type of transient faults. A self-
stabilizing protocol satisfies two properties, conver-
gence and closure, under the assumption that no
fault occurs. The convergence means that a system
eventually reaches a legitimate configuration from any
initial configuration. The closure means that a system
never goes out from the legitimate configurations once
it reaches a from any legitimate configuration. Sta-
bilization time is a performance measure for self-
stabilizing protocols. The stabilization time is the
worst case time complexity required to reach a legiti-
mate configuration from any initial configuration under
the assumption that no faulty action occurs.

Definition 1 The stabilization time of a protocol is
f(S) if any fault-free execution E from any initial con-
figuration σ0 satisfies the followings:

Let σ be any configuration in E and �N be
the number of normal actions in E[σ0, σ]. If
�N ≥ f(S) holds, then there is a legitimate
configuration in E[σ0, σ]. �

The stabilization time f(S) is usually a function
with parameters of the distributed system S such as
the numbers of processes and links, diameter, degree
and so on.

In this paper, we try to evaluate the worst case time
complexity required to converge to a legitimate configu-
ration with considering transient faults during the con-
vergence.So we define the stabilization time with �F

faults as a new performance measure of self-stabilizing
protocols.

Definition 2 For a self-stabilizing protocol, the stabi-
lization time with �F faults is g(S, �F) if any execution
E from any initial configuration σ0 satisfies the follow-
ings:

Let σ be any configuration in E and �N

and �F be the numbers of normal actions
and faulty actions in E[σ0, σ] respectively. If
�N ≥ g(S, �F) holds, then there is a legitimate
configuration in E[σ0, σ]. �

The stabilization time with �F faults g(S, �F) is a
function that has parameter �F in addition to these of
network characteristics.

Remark: Under the assumption that no faulty ac-
tion occurs, the closure property guarantees that all
configurations after a legitimate configuration are also
legitimate. Thus, we can rephrase the last sentence of
Definition 1 as follows: If �N ≥ f(S) holds, then σ is a
legitimate configuration. However we cannot rephrase



Definition 2 in a similar way since the closure property
does not hold when a faulty action occurs: for exam-
ple, configuration σ cannot be legitimate when a faulty
action occurs immediately before σ.

3 Proposed Method

In this section, we propose a method to evaluate
the stabilization time with �F faults. Roughly speak-
ing, we regard each normal action as a forward step to
the convergence, and each faulty action as a backward
step. We will define a variant function to represent
the distance (in some sense) of a configuration from le-
gitimate configurations. The value of the variant func-
tion decreases by each normal action, and may increase
by faulty actions. A system is legitimate if a variant
function is equal to zero.

Definition 3 Let Σ be a set of possible configurations
of a distributed system. For a self-stabilizing protocol,
a variant function F : Σ → Z is a function from a con-
figuration to a non-negative integer that satisfies the
following properties:

• ∃M : ∀σ ∈ Σ:F(σ) ≤ M

• A configuration σ is legitimate if F(σ) = 0

• There is an integer x satisfies the followings for
any transition σ �→ σ′ caused by a normal action:

max{F(σ) − x, 0} ≥ F(σ′)

• There is an integer y satisfies the followings for
any transition σ �→ σ′ caused by a faulty action:

F(σ) + y ≥ F(σ′)

Using the variant function, we can estimate the sta-
bilization time with �F faults.

Theorem 1 Let F be a variant function. Let M , x,
and y be the constants used in Definition 3. The stabi-

lization time with �F faults is at most �M+�F·y
x

	.

Proof: Proof by contradiction. Assume that there
is no legitimate configuration before the time when

�M+�F·y
x

	-th normal action is executed. Then each nor-
mal action makes F decrease so the total sum which all
normal actions make F decrease is at least M + �F · y.
On the other hand, the total sum which all faulty ac-
tions make F increase is at most �F · y. The maximum
of F is M . Therefore F becomes zero before the time
when the �M+�F·y

x
	-th normal action is executed and

the configuration is legitimate at that time because of
the definition of F . �

Using F , we present a sufficient condition that a
configuration is legitimate.

Theorem 2 A configuration σ is legitimate if there is
a preceding configuration δ which satisfies the following
property:

Let E[δ, σ] = σ0, σ1, . . . , σk be a partial exe-
cution where σ0 = δ and σk = σ. Then the
value of h computed by the following procedure
is equal to zero.

h = M

for i := 0 to k − 1
if (σi �→ σi+1 is caused by a normal action)
then

h := max{f − x, 0}
else % σi �→ σi+1 is caused by a faulty action

h := min{f + y, M}
endif

end

Proof: Let mi be a value of function F at σi and hi

be a value of h when the i-th iteration of the “for”
statement is executed. We show that mi ≤ hi holds
for any i (0 ≤ i ≤ k). Clearly, m0 ≤ h0 holds because
of h0 = M and F ≤ M . Assume that mi ≤ hi holds.
It is sufficient to consider the following three cases for
the transition σi �→ σi+1.

1. Case that σi �→ σi+1 is caused by a normal action
and mi+1 = 0 holds: From the procedure, hi+1 ≥
0 holds so mi+1 ≤ hi+1 holds.

2. Case that σi �→ σi+1 is caused by a normal action
and mi+1 > 0 holds: From the definition of F ,
0 < mi+1 ≤ mi − x holds. On the other hand,
hi+1 = max{hi − x, 0} holds. From the induction
hypothesis, mi+1 ≤ hi+1 holds.

3. Case that σi �→ σi+1 is caused by a faulty action:
From the definition of F , mi + y < mi+1 ≤ M

holds. On the other hand, hi+1 = min{hi + y, M}
holds. From the induction hypothesis, mi+1 ≤
hi+1 holds. �

4 Self-stabilizing Maximal Matching

In this section, we analyze the stabilization time
with �F faults of the self-stabilizing maximal matching
protocol proposed by Hsu and Huang [7]. The proto-
col is called Hsu-Huang protocol in the followings. A



matching of S = (P, L) is a subset of links L′(L′ ⊆ L)
in which no two links connect to a common process. A
matching L′ is maximal if it is not properly contained
in any other matching.

The Hsu-Huang protocol was proposed in [7] and
was analyzed in [10, 5]. In the protocol, each node v

maintains a single variable which is either null, denoted
by v � null, or points to one of its neighbors w(∈ Nv),
denoted by v � w. For (v, w) ∈ L, if v � w and w � v

hold, (v, w) is regarded as a matched link. The protocol
consists of three guarded actions R1, R2 and R3 (see Fig.
1).

The following theorem is shown in [7, 5]:

Theorem 3 The Hsu-Huang protocol is a self-
stabilizing protocol and its stabilization time is 2m + n

where m is the number of links. �

Now we analyze the stabilization time with �F faults
of the Hsu-Huang protocol. From Fig. 1, each action
needs a neighbor denoted by w in Fig. 1 to be exe-
cuted. So we say that a normal action is executed for
(v, w) where v is a process and w is the neighbor of v.
More precisely, a normal action of R1 or R2 is said to
be executed for link (v, w), when it change v’s variable
from v � null into v � w. Also, a normal action of R3
is said to be executed for link (v, w), when it change v’s
variable from v � w into v � null. We use (v, w, Rk)
to denote that a normal action Rk(1 ≤ k ≤ 3) is exe-
cuted for (v, w). Let c(v, w) be the number of normal
actions that can be executed for (v, w) or (w, v) under
the assumption that no faulty action occurs. Note that
c(v, w) = c(w, v).

Lemma 1 [5] Let v and w be processes such that
(v, w) ∈ L. If no faulty action occurs at any process,
then the followings hold:

1. When (v, w, R1) is executed, no more normal ac-
tion can be executed for (v, w) (i.e., c(v, w) = 0).

R1: (v � null) ∧ (∃w ∈ Nv: : w � v)
→ (v � w)

R2: (v � null) ∧ (∀w ∈ Nv: :¬(w � v))
∧(∃w ∈ Nv: : w � null)

→ (v � w)
R3: (v � w) ∧ (w � x) ∧ (x 	= v)

→ (v � null)

Figure 1. Actions in the Hsu-Huang protocol
of v

2. When (v, w, R2) is executed, exactly one additional
normal action can be executed for (v, w) (i.e.,
c(v, w) = 1), and it is (v, w, R3) or (w, v, R1) .

3. When (v, w, R3) is executed, at most two addi-
tional normal actions can be executed for (v, w)
(i.e., c(v, w) ≤ 2), and the next normal action is
(v, w, R2) or (w, v, R2). �

Let fmm(σ) be the function that returns the worst
case (i.e., maximum) number of normal actions exe-
cuted to reach a legitimate configuration under the as-
sumption that no faulty action occurs at any process.
From Theorem 3, fmm(σ) is at most 2m + n for any
configuration σ. Now we analyze impact of executing a
normal action and a faulty action on the value of fmm.

Lemma 2 Let σ and σ′ be configurations such that
σ 
→ σ′. If its transition is caused by a normal action,
fmm(σ′) ≤ fmm(σ) − 1 holds.

Proof: It is obvious from the definition of fmm. �

Lemma 3 Let σ and σ′ be configurations such that
σ 
→ σ′. If its transition is caused by a faulty action,
then fmm(σ′) ≤ fmm(σ) + 4∆ holds.

Proof: Let v be a process that executes a faulty action
and w be any neighbor of v (i.e., w ∈ Nv). Focusing
the link (v, w), there are three possible states of v: (α)
v � null (β) v � w (γ) v � x ∧ x 	= w. The case (γ) is
further classified into three sub-cases depending on x’s
state: (γ1) x � null (γ2) x � v (γ3) x � x′ ∧ x′ 	= v

(See Fig. 2. Note that each arrow means a pointer of
v or x. The self-loop arrows mean null.) In the same
way, possible states of w are classified to the five states
(instead of x and x′, we use y and y′ for w). So the
state of the link (v, w) is denoted by s(v, w) = (δ, ε)
where where δ, ε ∈ {α, β, γ1, γ2, γ3}. Now we consider
c(v, w) of all twenty five cases depending on s(v, w).
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Figure 2. The states of v focusing on the link
(v, w)



In the state of s(v, w) = (α, α), (v, w, R2) or
(w, v, R2) may occur. From Lemma 1, c(v, w) is at
most two. In the case of s(v, w) = (α, β), the next
action of v is R1. So the normal action on (v, w) is
(v, w, R1) or (w, v, R3), so c(v, w) is at most one. In
the same way, c(v, w) is calculated for all the cases (in
Table 1).

Table 1. c(v, w) for each state
w\v (α) (β) (γ1) (γ2) (γ3)
(α) 2 1 2 0 2
(β) 1 0 3 1 3
(γ1) 2 3 2 0 2
(γ2) 0 1 0 0 0
(γ3) 2 3 2 0 2

When v executes a faulty action at σ, the state of
v can change. The state change of v may increase the
value of c(v, w) for all the links connecting to v. More-
over, it may increase the value of c(x, y) for all the
links where x is a process pointing v at σ and y is a
neighboring process of x. We observe these two case.

First, we observe the links connecting to v. Since the
increase of each c(v, w) is at most 3, the increase of each
c(v, w) is at most 3. However, the cases where c(v, w)
increases by 3 is only the following four cases (where
σ and σ′ be configurations before and after the faulty
action respectively) (See Fig. 3. Note that process v

and w are colored processes in the figure.):

(1) s(v, w) = (β, β) at σ then s(v, w) = (γ1, β) at σ′.

(2) s(v, w) = (β, β) at σ then s(v, w) = (γ3, β) at σ′.

(3) s(v, w) = (γ2, γ1) at σ then s(v, w) = (β, γ1) at
σ′.

(4) s(v, w) = (γ2, γ3) at σ then s(v, w) = (β, γ3) at
σ′.

The cases (1) and (2) require that v � w holds at
σ, so only one of the cases can occur for only one link
(v, w). Similarly, the cases (3) and (4) require that
v � w holds at σ′, so only one of the cases can occur
for only one link (v, w). Thus the influence of links
connecting to v is at most 2(∆− 2) + 2 ∗ 3 = 2(∆ + 1).

Second, we observe links connecting to processes
that point v at σ. Let x be a process pointing v at
σ and y be a process adjacent to x. (See Fig. 4) The
faulty action of v can change the state of x from γi to
γj where 1 ≤ i ≤ 3, 1 ≤ j ≤ 3 and i �= j. Table 1
shows that the increase of each c(x, y) is at most 2 and
it can occur at each link connecting to the matched link
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Figure 3. All 4 cases c(v, w) increases by 3

(v, x) at σ with v. So the influence of links connecting
to x except (v, x) is at most 2(∆ − 1).

� � � � 

Figure 4. A topology of v, x, y

Consequently, fmm(σ′) ≤ fmm(σ)+2(∆+1)+2(∆−
1) = fmm(σ) + 4∆ holds. �

Lemmas 2 and 3 induce the following theorem.

Theorem 4 The stabilization time with �F faults of
the Hsu-Huang protocol is 2m + n + 4∆ · �F. �

From Theorem 4, readers may think of the deferred
penalty [9] of transient faults: when huge number of
transient faults are executed in the beginning part of
an execution, the huge number of normal actions seem
to be needed to reach a legitimate configuration. How-
ever, in the context of self-stabilization, we can escape
the deferred penalty of transient faults by consider-
ing some configuration after the period of frequent oc-
currence of transient faults as an initial configuration.
Consequently, the execution reaches a legitimate con-
figuration if it has a part of the execution satisfying the
condition of Theorem 4.

In what follows, we show an example of an execution
such that the stabilization time with �F faults is 2m+
n − 5 + 2(∆ + 1) · �F . This example implies that the
stabilization time with �F faults is not so overestimated
in Theorem 4: the estimation can be improved by at
most 2∆ · �F .

A topology of the example is the same as the one
presented in [5], the tree Tm of Fig. 5 having m + 1
processes. Note that ∆ = m − 2. The pointers in the



initial configuration σ0 are shown by the arrows in Fig
5. The self-loop arrow means null.
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Figure 5. Tree Tm

In [5], they present the following schedule Qs, and
show that the (usual) stabilization time is 2m + n− 5.
Fig. 6 represent an execution from σ0 by Qs.

(4, 3, R3), (5, 3, R3), . . . ,
(m, 3, R3), (3, 2, R3), (2, 1, R3),

(4, 3, R2), (5, 3, R2), . . . ,
(m, 3, R2), (2, 3, R2), (3, 2, R1),

(4, 3, R3), (5, 3, R3), . . . ,
(m, 3, R3), (0, 1, R1)
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Figure 6. An execution from σ0 by Qs

Now we consider the following partial schedule Qf .
Note that (2, ∗, F ) denotes a faulty action that changes
the pointer of process 2 from any to process 1. Fig. 7
represent an execution from σ0 by Qf .

(4, 3, R3), (5, 3, R3), . . . ,
(m, 3, R3), (3, 2, R3), (2, 1, R3),

(4, 3, R2), (5, 3, R2), . . . ,
(m, 3, R2), (2, 3, R2), (3, 2, R1), (2, ∗, F )

Let E[σ0, σf ] be the partial execution starting from
σ0 by schedule Qf . The last configuration σf is the
same as σ0. The number of normal actions included in
Qf is 2(m − 1) = 2(∆ + 1).

Let Q = Q1Q2 · · · Q�F+1 where Qi = Qf for 1 ≤
i ≤ �F and Q�F+1 = Qs. The execution from σ0 by
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Figure 7. An execution from σ0 by Qs

schedule Q requires 2m + n− 5 + 2(∆ + 1) · �F normal
actions.

We analyze the Hsu-Huang protocol with transient
faults during convergence. We can analyze it with
topological changes (i.e., process join and leave, link
appearance and disappearance) during convergence,
but we omit it because the topological changes affect
the global parameters of systems (i.e., n, ∆, and so
on) and the obtained complexity has a complicated for-
mula.

5 Conclusion

We proposed a new performance measure, the sta-
bilization time with �F faults, for self-stabilizing proto-
cols. It is the worst case time a self-stabilizing protocol
requires to converge from any configuration despite oc-
currence of �F faults during the convergence. We also
proposed a new analysis method of the stabilization
time with �F faults. The main idea of our method is
that we regard each normal action as a forward step to
the convergence, and each faulty action as a backward
step. By quantifying influence of the forward step and
the backward step, we can estimate the stabilization
time with �F faults.

We applied the method to the self-stabilizing max-
imal matching protocol proposed by Hsu and Huang
and showed that its stabilization time with �F faults
is 2m + n + 4∆ · �F . It is generalization of the (usual)
stabilization time 2m + n.

We can show that the stabilization time with �F
faults of the Fast Coloring protocol proposed by Hedet-
niemi et al. [6] is n + (∆ + 1) · �F. But we omit it due
to lack of space.

Both the Fast Coloring and the maximal matching
are locally correctable problems: each process knows
how to correct its state only from the states of its
neighbors’ and its own. And both are non-reactive pro-
tocols. So analysis of other protocols, especially locally
in-correctable or reactive protocols, are one of our fu-



ture work. It is worth noting that a self-stabilizing
mutual exclusion protocol proposed in [1], one of the
most investigated reactive protocols, is vulnerable to a
transient fault during the convergence: a single tran-
sient fault can spoil almost all the efforts the protocol
made before the fault [9].

In this paper, stabilization time with �F faults are
estimated by the step complexity: total number of nor-
mal actions. We will extend it to other complexities
(e.g., round complexity and so on).
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