
TPCC-UVa: An Open-Source TPC-C Implementation for Parallel

and Distributed Systems

Diego R. Llanos and Belén Palop

Universidad de Valladolid
Departamento de Informática

Valladolid, Spain
{diego,b.palop}@infor.uva.es

Abstract

This paper presents TPCC-UVa, an open-source im-
plementation of the TPC-C benchmark intended to be
used in parallel and distributed systems. TPCC-UVa
is written entirely in C language and it uses the Post-
greSQL database engine. This implementation includes
all the functionalities described by the TPC-C standard
specification for the measurement of both uni- and mul-
tiprocessor systems performance. The major character-
istics of the TPC-C specification are discussed, together
with a description of the TPCC-UVa implementation
and architecture and real examples of performance mea-
surements.

1 Introduction

Workload characterization in order to measure sys-
tem performance is a major topic in the field of Com-
puter Architecture. Many different benchmarks have
been proposed to simulate real working conditions of
both existing and proposed systems. Those bench-
marks can be classified in terms of their corresponding
application domains and their execution characteris-
tics.

The most popular benchmarks are related with nu-
merical processing, such as the SPEC CPU2000 bench-
mark suite [2], the NAS Parallel Benchmark [5] and
the OLDEN benchmarks [8], among others. These
benchmarks include many common characteristics of
real scientific workloads, and some of them can be ex-
ecuted in both sequential and parallel computing en-

D. R. Llanos is partially supported by the European Commis-
sion under grant RII3-CT-2003-506079. B. Palop is partially
supported by MCYT TIC2003-08933-C02-01.

vironments. These benchmarks are designed to chal-
lenge the CPU and memory subsystem capabilities of
the systems under test. However, they do not take into
account other aspects of the system architecture, such
as process management or I/O subsystem.

Database benchmarks, on the other hand, allow
to study not only CPU and memory hierarchy per-
formance, but the global performance of a system.
These benchmarks use a synthetic workload against a
database engine, measuring the performance of the sys-
tem in terms of the number of transactions completed
in a given period of time. One of the main advantages
of this class of benchmarks is that results are very rel-
evant to financial, commercial and corporative fields,
where this type of applications is dominant.

The TPC-C benchmark, designed by the Transac-
tion Processing Performance Council [10], simulates
the execution of a set of both interactive and deferred
transactions. This workload is representative of an
OLTP (On-line Transaction Processing) environment,
with features such as transaction queries and rollback.
These capabilities makes the TPC-C benchmark spec-
ification a de-facto standard for measuring server per-
formance. Most vendors publish performance values
for their systems, allowing the consumer to accurately
compare different architectures.

The Transaction Processing Performance Council
only distributes a requirements specification for the
TPC-C benchmark. Following this specification, ven-
dors may implement and run a TPC-C benchmark,
needing the approval of the TPC consortium to publish
its performance results [1]. Unfortunately, there is not
an official TPC-C benchmark implementation available
for research purposes.

In this paper we present TPCC-UVa, an unofficial,
open-source implementation of the TPC-C benchmark

1-4244-0054-6/06/$20.00 ©2006 IEEE

version 5.0. The purpose of TPCC-UVa is to be used
as a research benchmark for the scientific community.
The TPCC-UVa benchmark is written entirely in C
language, and it uses the PostgreSQL database engine.
This implementation has been extensively tested on
Linux systems, and it is easily portable to other plat-
forms. TPCC-UVa source code is freely distributed
from the project website. This makes easy to use it
for the performance measurement and behavior of real
systems or in the context of a simulation environment
such as Simics [4]. As an example, TPCC-UVa has
been recently used in the performance measurement of
different file systems [6].

The TPCC-UVa implementation includes all the
characteristics described in the TPC-C standard speci-
fication, except support for price/performance compar-
ison. The reason is that TPCC-UVa is only intended to
be used for measuring performance in research environ-
ments. It is important to highlight the fact that TPCC-
UVa is not an implementation approved by TPC, and
the results of the execution of TPCC-UVa, in partic-
ular its performance parameter (tpmC-uva), are not
comparable with the performance values obtained by
official implementations of TPC-C.

The rest of the article is organized as follows. Sec-
tion 2 describes the main characteristics of the TPC-
C benchmark specification. Section 3 presents the
TPCC-UVa implementation, describing its architec-
ture and main characteristics. Section 4 shows some ex-
perimental results obtained executing TPCC-UVa on a
real, multiprocessor system, while Section 5 concludes
the paper.

2 Overview of the TPC-C standard
specification

The TPC-C benchmark specification simulates the
execution of a mixture of read-only and update in-
tensive transactions that simulate the activities found
in complex OLTP application environments [10]. The
TPC-C workload is determined by the activity of a
set of terminals that request the execution of different
database transactions, simulating the business activity
of a wholesale supplier.

Five different transaction types are defined by the
standard. The New Order transaction consists of enter-
ing a complete order through a single database trans-
action; the Payment transaction enters a customer’s
payment; the Order Status transaction queries the sta-
tus of a customer’s last order; the Delivery transac-
tion processes a batch of ten new, not-yet-delivered or-

http://www.infor.uva.es/~diego/tpcc-uva.html.

ders; finally, the Stock Level transactions determines
the number of recently sold items that have a stock
level below a specified threshold.

When a terminal send the transaction request it
waits to receive the results in all cases, except for the
Delivery transaction, that simulates a transaction ex-
ecuted in deferred mode. The structure of the corre-
sponding database is composed by several tables, with
different characteristics with respect to their scheme
and cardinality. This benchmark includes a scalability
criteria that allows to simulate a realistic workload, al-
lowing to change the database size and the number of
transaction terminals for a more accurate simulation of
the machine capabilities.

After the execution of the benchmark during a given
period of time, the number of New Order transactions
executed per minute gives the performance metric,
called transactions-per-minute-C (tpmC). The TPC-
C benchmark also includes a performance value that
takes into account the cost of the system under test,
the price-per-tpmC, to allow a comparison in terms of
price/performance. Additional details can be found in
the TPC-C standard specification [10].

3 TPCC-UVa architecture and imple-
mentation

The TPCC-UVa implementation is composed by five
different modules that collaborate to perform all the
necessary activities to measure the performance of the
system under test. These modules are:

Benchmark controller This module interacts with
the user, populating the database and allowing the
launch of different experiments.

Remote Terminal Emulator (RTE) There is one
RTE process per active terminal in the benchmark
execution. It simulates the activity of a remote
terminal, according with TPC-C specifications.

Transaction Monitor This module receives all the
requests from the RTEs, executing queries to the
underlying database system.

Checkpoints controller This module performs
checkpoints periodically in the database system,
registering timestamps at the beginning and the
end of each checkpoint.

Vacuum Controller This module avoids the degra-
dation produced by the continuous flow of opera-
tions to the database.

Database
Checkpoints
Controller

Vacuums
Controller

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

Figure 1. TPCC-UVa architecture.

Figure 1 shows the TPCC-UVa architecture. In-
terprocess communication is carried out using both
shared-memory structures and system signals, allowing
to run the benchmark in a shared-memory multipro-
cessor environment, as we will see in Section 3.6. The
following subsections describe each module in more de-
tail.

3.1 Benchmark Controller

The Benchmark Controller (BC) allows the user to
access the benchmark functionality. It performs the
following functions:

Database initial population: It creates a new
database to run a test. The database is composed by
the nine tables defined in the TPC-C specifications,
together with their required population and scalabil-
ity characteristics. Different mechanisms to ensure the
reference integrity of the data are also included, such
as primary and foreign keys.

Database consistency check: This option allows
the user to check the consistency of the active database,
to see if it meets the conditions described by the TPC-
C standard to run a test on it.

Restoring an existent database: This option
eliminates the modifications performed in the database
tables by a previous test run. The purpose of this op-
tion is to rebuild a database to run a new test accord-
ing with the TPC-C requirements without the need of
creating a new one from scratch, a time-consuming op-
eration.

Deleting a database: This option allows the user
to delete the current database.

Executing a test: This option launches the TPCC-
UVa modules that allow to run a measurement test.
Such a test is composed by three intervals: the ramp-
up period, a time when the performance of the system
is not stable yet and therefore will not be considered for
the performance measurement; the measurement inter-
val, where the performance measurement is done; and
the end-of-test period, when the Benchmark Controller
stops all the related processes.

To execute a test, the user should define different
execution parameters, such as the number of ware-
houses to be considered, the ramp-up period, the mea-
surement interval and the configuration of the Vacuum
Controller (see Sect. 3.5). To run a test, the Bench-
mark Controller starts the Transaction Monitor, up to
ten Remote Terminal Emulators for each one of the
selected warehouses, and the Checkpoint and Vacuum
Controllers (see Fig. 1). The Benchmark Controller
also defines the experiment timings, informing each
module about the current interval while executing a
test.

Summary results of last test: This option reads
and processes the benchmark logs produced by the set
of Remote Terminal Emulators and the Transaction
Monitor during the execution of the test. The informa-
tion provided by the logs can be divided in two parts.
The first one is the number of New Order transac-
tions executed per minute, together with the response
time of the executed transactions. This information
will determine the performance of the system under
test. The second part is the data needed to ensure
that the test has been performed following the TPC-
C specifications, such as the terminal response times
and the relative percentage of each transaction in the
executed transaction set. Both data types should be
processed by the Benchmark Controller to ensure that
the test has been valid and to return the TPCC-UVa
Transactions-Per-Minute (tpmC-uva) metric.

As we said in the Introduction, the tpmC-uva met-
ric obtained with TPCC-UVa should not be compared
with tpmC values obtained by approved implementa-
tions of the benchmark. To highlight this fact, the
Transactions-Per-Minute metric returned by TPCC-
UVa is called tpmC-uva instead of tpmC.

3.2 Remote Terminal Emulators

The Remote Terminal Emulators (RTE from here
on) generate the transaction requests for the system.
Each RTE runs as an individual process, generating
new transactions according with the requirements of
the TPC-C benchmark specification. Once the mea-

surement time is expired, the Benchmark Controller
stops each one of the RTE using system signals. The
RTE capabilities are the following:

User simulation: Each RTE simulates the behavior
of a user connected to it, performing transaction type
selection and transaction input data generation. It also
simulates two related wait times: “keying time” and
“think time”.

Terminal simulation: Each RTE generates the out-
put required by each terminal, showing the informa-
tion introduced by the simulated user and the results
obtained once the transaction is executed. Although
each RTE can show this information in the standard
output, the generated output is usually redirected to
/dev/null to avoid collapsing the system console.

Transactions management: Each RTE generates
a transaction type according with the TPC-C specifi-
cations, sending it to the Transactions Monitor. If the
transaction is interactive, the results are sent back to
the corresponding RTE once the transaction is com-
pleted.

Transaction response time measurement: Each
RTE measures the response time for each one of the
transactions requested. This data is stored locally in
a log file, together with additional information that
will be needed for the performance measurement of the
system under test.

3.3 Transactions Monitor

The Transactions Monitor (TM from here on) re-
ceives the transaction requests from all the RTEs, pass-
ing them to the database engine and returning the gen-
erated results back to the RTEs. The transactions are
executed according with their arrival order. The TM
also registers the results of the delayed execution of the
Delivery transaction and, when needed, data related to
errors in the execution of transactions. The TM is ac-
tivated and deactivated by the Benchmark Controller.

Clause 2.3.5 of the TPC-C standard specifica-
tion [10] indicates that “if transactions are routed
or organized within the SUT, a commercially avail-
able transaction processing monitor” is required, with
a given set of functionalities. To avoid the use
of commercially-available software, our TM does not
route or organize transactions, but only queues them
for execution in arrival order.

3.4 Checkpoints Controller

The Checkpoints Controller is responsible for or-
dering checkpoints periodically, registering the times-
tamps at the beginning and end of each checkpoint,
according with Clause 5.5.2.2 of the TPC-C standard
specification [10]. The first checkpoint is performed
when the Checkpoints Controller is activated, at the
beginning of the measurement interval.

3.5 Vacuum Controller

The Vacuum Controller mitigates the negative ef-
fects of a continuous flow of transaction executions in
the database system. This controller is needed because
the chosen database engine (PostgreSQL) keeps resid-
ual information that slows down the database opera-
tion. To avoid a performance loss in the execution of
long tests (more than two hours), the Vacuum Con-
troller executes periodically the PostgreSQL vacuum
command [7]. The user can configure the interval be-
tween vacuums and their maximum number.

3.6 TPCC-UVa communication proce-
dures

Communication between the Transaction Monitor
and each Remote Terminal Emulator was implemented
using the communication procedures provided by Unix
System V IPC interface, such as semaphores, shared
memory and message queues [9]. The communication
between the TM and the RTEs is based on the use of
a single queue of pending transaction requests. This
queue is used by the RTEs to submit transaction re-
quests to the TM. The incoming order of the requests
into the TM determine their execution order. A syn-
chronization semaphore is used to manage reads and
writes to this queue. Once a transaction is completed,
the results are transmitted from the MT to the RTE
that issued the request through a shared-memory data
structure. Again, a semaphore is used to manage each
data structure.

4 Experimental results

As a working example, in this section we present the
results of the execution of TPCC-UVa on a multipro-
cessor system. The system under test is a Compaq Pro-
Liant server, equipped with two Intel Xeon 2.40GHz
processors, 1 280 Mb of RAM, three 36GB hard disks
in RAID 5 configuration, and running RedHat Linux
9.0 with a 2.4.20-8smp precompiled kernel. Figure 2
shows the results given by TPCC-UVa for a 2-hours

Test results accounting performed on 2004-18-10 at 17:58:57 using 9 warehouses.

Start of measurement interval: 20.003233 m

End of measurement interval: 140.004750 m

COMPUTED THROUGHPUT: 107.882 tpmC-uva using 9 warehouses.

29746 Transactions committed.

NEW-ORDER TRANSACTIONS:

12946 Transactions within measurement time (15035 Total).

Percentage: 43.522%

Percentage of "well done" transactions: 90.854%

Response time (min/med/max/90th): 0.006 / 2.140 / 27.930 / 4.760

Percentage of rolled-back transactions: 1.012% .

Average number of items per order: 9.871 .

Percentage of remote items: 1.003% .

Think time (min/avg/max): 0.000 / 12.052 / 120.000

PAYMENT TRANSACTIONS:

12919 Transactions within measurement time (15042 Total).

Percentage: 43.431%

Percentage of "well done" transactions: 90.858%

Response time (min/med/max/90th): 0.011 / 2.061 / 27.387 / 4.760

Percentage of remote transactions: 14.862% .

Percentage of customers selected by C ID: 39.601% .

Think time (min/avg/max): 0.000 / 12.043 / 120.000

ORDER-STATUS TRANSACTIONS:

1296 Transactions within measurement time (1509 Total).

Percentage: 4.357%

Percentage of "well done" transactions: 91.435%

Response time (min/med/max/90th): 0.016 / 2.070 / 27.293 / 4.640

Percentage of customers chosen by C ID: 42.284% .

Think time (min/avg/max): 0.000 / 9.998 / 76.000

DELIVERY TRANSACTIONS:

1289 Transactions within measurement time (1502 Total).

Percentage: 4.333%

Percentage of "well done" transactions: 100.000%

Response time (min/med/max/90th): 0.000 / 0.000 / 0.001 / 0.000

Percentage of execution time < 80s : 100.000%

Execution time min/avg/max: 0.241/2.623/27.359

No. of skipped districts: 0 .

Percentage of skipped districts: 0.000%.

Think time (min/avg/max): 0.000 / 4.991 / 38.000

STOCK-LEVEL TRANSACTIONS:

1296 Transactions within measurement time (1506 Total).

Percentage: 4.357%

Percentage of "well done" transactions: 99.691%

Response time (min/med/max/90th): 0.026 / 2.386 / 26.685 / 5.120

Think time (min/avg/max): 0.000 / 5.014 / 38.000

Longest checkpoints:

Start time Elapsed time (s) Execution time (s)

Mon Oct 18 20:19:56 2004 8459.676000 27.581000

Mon Oct 18 18:49:10 2004 3013.506000 21.514000

Mon Oct 18 19:19:32 2004 4835.039000 14.397000

Mon Oct 18 18:18:57 2004 1200.238000 13.251000

No vacuums executed.

>> TEST PASSED

Figure 2. Results summary of a TPCC-UVa benchmark execution on an Intel Xeon multiprocessor
system.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns

Response Time (s)

Response Time Distribution, New Order transactions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns

Response Time (s)

Response Time Distribution, Order Status transactions

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns

Response Time (s)

Response Time Distribution, Payment transactions

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

N
um

be
r

of
 T

ra
ns

ac
tio

ns

Response Time (s)

Response Time Distribution, Stock Level transactions

Figure 3. Response time distribution of some transaction types for a 2-hours execution on the system
under test.

test, using nine warehouses, a ramp-up period of 20
minutes and no vacuum operation. The most impor-
tant result is the computed throughput, in this case
107.882 tpmC-uva. To be valid, the test should meet
some response time requirements: The last line of the
results file indicates that these requirements have been
met in our experiment.

The TPC-C standard requires some performance
plots to be generated after a test run. The execution
of TPCC-UVa produces different data files to generate
the plots required [3]. Figure 3 shows the response time
distribution for some transaction types for the experi-
ment shown in Fig. 2. These plots have been obtained
following the requirements described in Clause 5.6.1
of the TPC-C benchmark. Figure 4(a) shows the fre-
quency distribution of think times for the New-Order
Transaction (Clause 5.6.3), and Fig. 4(b) shows its cor-
responding throughput (Clause 5.6.4).

Finally, Fig. 5 shows the effect of the vacuum oper-
ations performed by the Vacuum Controlled described
in Sec. 3.5. Figure 5(a) shows the performance of the
system under test in a 8-hours test with hourly vacu-
ums, while Fig. 5(b) shows the performance obtained
in a experiment of similar characteristics but with no

vacuums. It can be seen that the performance during
the first hour (3 600 seconds) is very similar in both
cases. After each vacuum, the performance shown in
Fig. 5(a) drops noticeably, but the system can keep a
stable number of New-Order transactions per minute
during the execution of the experiment. Figure 5(b)
shows that the performance of the experiment with no
vacuums is very good during the first four hours, but
the database pollution gets worse as the experiment
proceeds. In fact, this pollution makes the second ex-
periment fail, because the response times obtained at
the end does not meet the TPC-C standard require-
ments.

5 Conclusions

This paper describes TPCC-UVa, an open-source
implementation of the TPC-C benchmark intended for
measuring performance of parallel and distributed sys-
tems. The implementation simulates the execution of
an OLTP environment according with the TPC-C stan-
dard specification. The major characteristics of the
TPC-C specification has been discussed, together with
a description of the TPCC-UVa architecture and real

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45

T
hi

nk
 T

im
e

F
re

qu
en

cy

Think Time (s)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

tp
m

C
-u

va
)

Elapsed Time (s)

(a) (b)

Figure 4. (a) Frequency distribution of think times and (b) throughput of the New-Order transaction
for a 2-hours execution on the system under test.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5000 10000 15000 20000 25000 30000

T
hr

ou
gh

pu
t (

tp
m

C
-u

va
)

Elapsed Time (s)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5000 10000 15000 20000 25000 30000

T
hr

ou
gh

pu
t (

tp
m

C
-u

va
)

Elapsed Time (s)

(a) (b)

Figure 5. Throughput of the New-Order transaction for a 2-hours execution on the system under test
With (a) hourly vacuum operations, and (b) no vacuums.

examples of performance measurements for a parallel
system. TPCC-UVa can be freely downloaded from
http://www.infor.uva.es/~diego/tpcc-uva.html.

Acknowledgments

The author would like to thank Julio A. Hernández
and Eduardo Hernández for implementing the first ver-
sion of TPCC-UVa as part of their BSc. thesis.

References

[1] A. Eisenberg and J. Melton. Standards in practice.
SIGMOD Rec., 27(3):53–58, 1998.

[2] J. L. Henning. SPEC CPU2000: Measuring CPU per-
formance in the new millennium. Computer, 33(7):28–
35, 2000.

[3] Llanos, Diego R. TPCC-UVA Installation and User
Guide. Technical Report Revision 6, Computer Sci-
ence Department, University of Valladolid, Spain,
November 2004.

[4] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hgberg, F. Larson,
A. Moestedt, and B. Werner. Simics: A Full System
Simulation Platform. IEEE Computer, pages 50–58,
February 2002.

[5] NAS parallel benchmark.
http://science.nas.nasa.gov/Software/NPB.
Access date: January 2005.

[6] J. Piernas, T. Cortés, and J. M. Garćıa. Traditional
file systems versus DualFS: a performance comparison

approach. IEICE Trans. Inf. and Syst., E87-D(7), July
2004.

[7] PostgreSQL 7.1 reference manual. PostgreSQL Global
Development Group, 2001.

[8] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J.
Hendren. Supporting dynamic data structures on
distributed-memory machines. ACM Trans. Program.
Lang. Syst., 17(2):233–263, 1995.

[9] W. R. Stevens. Advanced programming in the Unix en-
vironment. Addison-Wesley, 1993. ISBN 0-201-56317-
7.

[10] TPC benchmark C standard specification, revision
5.0. Transaction Processing Performance Council,
February 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

