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Abstract

The development of efficient parallel out-of-core appli-
cations is often tedious, because of the need to explicitly
manage the movement of data between files and data struc-
tures of the parallel program. Several large-scale applica-
tions require multiple passes of processing over data too
large to fit in memory, where significant concurrency exists
within each pass. This paper describes a global-address-
space framework for the convenient specification and effi-
cient execution of parallel out-of-core applications operat-
ing on block-sparse data. The programming model provides
a global view of block-sparse matrices and a mechanism
for the expression of parallel tasks that operate on block-
sparse data. The tasks are automatically partitioned into
phases that operate on memory-resident data, and mapped
onto processors to optimize load balance and data local-
ity. Experimental results are presented that demonstrate the
utility of the approach.

1 Introduction

The development of scalable parallel application codes
is a challenging task. Global-address-space parallel pro-
gramming models like Co-Array Fortran, Unified Paral-
lel C (UPC) and Global Arrays (GA) have sought to raise
the level of abstraction from distributed memory message-
passing models like MPI, without sacrificing performance.
While simpler than distributed memory models, prevalent
global address space models still require varying amounts
of information from the user in terms of data distribution
and computation partitioning. The models are not com-
pletely process-oblivious. Further, these models do not pro-
vide a unified treatment of other levels of the memory hier-
archy, notably the handling of secondary storage. Thus, the

development of parallel “out-of-core” applications remains
a very tedious and challenging task.

A parallel out-of-core application typically makes mul-
tiple passes over disk-resident data. During each pass, a
portion of the data is read in from disk, computed on, and
then written back to disk. For parallel computation, the data
brought in from disk must be partitioned and distributed
among the processors, and possibly communicated between
processors during the computation. The need for explicit
orchestration of all the data movement makes the task of
application development very tedious. The Global Arrays
(GA) [21] and Disk Resident Arrays (DRA) [20] libraries
facilitate the development of parallel out-of-core applica-
tions using dense multi-dimensional arrays, by providing a
global shared view of multi-dimensional arrays in memory
and disk, respectively. We use this as a basis, to develop an
enhanced framework to support the development of appli-
cations that operate on block-sparse matrices.

In this paper, we present an approach that provides a
global unified view of the memory-disk hierarchy to the
user. The user specifies the data in terms of fundamental
units (“bricks”) in a global data collection, and computa-
tion as tasks operating on these units, without any restric-
tion on the total size of the data collection relative to physi-
cal memory size, or any explicit specification of data move-
ment between secondary storage and primary memory. The
information provided by the user is used to determine a data
and computation partitioning aimed at minimizing inter-
processor communication and disk I/O, while achieving
good computational load-balance. This is achieved by gen-
eration of a hypergraph capturing task-data relationships,
that is then partitioned through two passes of a hypergraph
partitioner - an “outer” step that partitions the set of tasks
into groups so that their data can fit within memory, and an
“inner” step that maps tasks to processors.

We have developed a prototype implementation of the
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model over the ARMCI (Aggregate Remote Memory Copy
Interface) [19] and GA suite. We demonstrate the use of
this framework in the context of the Tensor Contraction En-
gine [2], a domain-specific compiler targeted at a class of
ab initio quantum chemistry computations. The computa-
tions involve tensor contractions with block-sparse tensors
that might be too large to fit into the collective memory of
the processors. The data is specified in terms of elemen-
tary multi-dimensional bricks into which the block-sparse
tensors are partitioned. The movement of data between
disk and physical memory, and the mapping of computa-
tion amongst the processes is determined automatically. We
present results that show that such user-transparent mecha-
nisms can achieve good performance, while extending the
computational domain effectively handled by extant global
address space programming models.

The paper is organized as follows. In Section 2, we dis-
cuss the applications that motivated our work. The Global
Arrays suite is described in Section 3.1 and the proposed
enhancements in Section 3.2. The data and computation ab-
stractions to manipulate block-sparse arrays are introduced
in Section 4. The implementation of the framework using
a hypergraph partitioner is discussed in Section 5. Exper-
imental results are discussed in Section 6. Related work is
detailed in Section 7. Section 8 concludes the paper.

2 Target Applications

In this section, we list two target applications that mo-
tivated the proposed framework. In general, the developed
framework mapping can benefit applications that:

• Can be partitioned into independent tasks,

• Involve many more tasks than the number of proces-
sors,

• Have wide variation in task execution times, and

• Operate on coarse-grain data, and incur disk I/O costs
and/or inter-processor communication costs if the task
and the data it operates on are not co-located.

Computations with data dependences can also benefit
from this mechanism, provided there is enough parallelism
at any point in the computation. For example, while per-
forming a sequence of block-sparse matrix multiplies, each
matrix multiply can be treated as a set of independent tasks
and processed using this mechanism.

2.1 Tensor Contraction Expressions

The development of the framework was primarily mo-
tivated by our work on the Tensor Contraction Engine

(TCE) [3] synthesis system. The TCE is a domain-specific
compiler for expressing ab initio quantum chemistry mod-
els. The TCE takes as input a high-level specification of
a computation, expressed as a set of tensor contraction
expressions, and transforms it into efficient parallel code.
Each tensor contraction expression is comprised of a collec-
tion of multi-dimensional summations of products of sev-
eral block-sparse input arrays. An operation on the indices
of the segments that form a block of an array determines if
it is non-zero. The wide-ranging sizes of the blocks leads
to significant variation in the computation and communica-
tion times involved in processing a block. The large sizes of
the arrays can significantly increase communication costs,
if locality is not taken into account. The arrays can also be
too large to fit in the aggregate physical memory of a paral-
lel machine, thereby requiring out-of-core treatment of the
data.

2.2 Lennard Jones Energy Minimization Using
Force Decomposition

Load balancing is important for force decomposition
molecular dynamics algorithms. The array of forces of di-
mension N×N is divided into multiple blocks of size m×m,
where m is the block size and N is the total number of atoms.
Each process owns N/P atoms, where P is the total number
of processors, and each processor computes a fixed subset
of inter-atomic forces [24]. The forces between atoms far-
ther from each other than the cut-off distance need not be
evaluated, resulting in unequal processing times for each
subset of the force-matrix. This, together with the block
decomposition of the force matrix, leads to load imbalance.

3 Overview of Approach

3.1 Global Arrays Programming Suite

The Global Arrays programming suite [22] provides a
set of inter-operable programming models, each at a dif-
ferent level of abstraction. At the lowest level is MPI,
a distributed-memory programming model with message
passing for two-sided communication. Though MPI is not
part of the suite, it is fully inter-operable with the abstrac-
tions provided in the suite, and is an integral part of the
hierarchy of abstractions presented to the user.

The Aggregate Remote Memory Copy Interface
(ARMCI) library [19] provides a distributed-memory view
with one-sided access to remote data. It has a rich set of
primitives for non-blocking operations, and contiguous and
non-contiguous data transfers optimized to hide latency.
ARMCI forms the underlying communication layer for a
number of compile/runtime systems, including Co-Array
Fortran [9], GPSHMEM [23], and Global Arrays.



The next higher level is the Global Arrays (GA) library.
GA provides a global view of a dense multi-dimensional
array distributed amongst the local memories of proces-
sors. It provides a shared-memory programming model in
which data locality is explicitly managed by the program-
mer. Explicit function calls are used to transfer data be-
tween global address space and local storage. It is similar to
distributed shared-memory models in providing an explicit
acquire-release protocol, but differs with respect to the level
of explicit control in moving blocks of data in multidimen-
sional arrays between remote global storage and local stor-
age. The functionality provided by GA has proved useful in
the development of large scale parallel quantum chemistry
suites such as NWChem [14] (which contains over a mil-
lion lines of code), adaptive mesh refinement codes such as
NWPhys/NWGrid (www.emsl.pnl.gov/nwphys) and appli-
cations in other areas [22].

The Disk Resident Arrays (DRA) model [20] extends the
GA programming model to secondary storage. It provides a
disk-based representation for multi-dimensional arrays and
operations to transfer blocks of data between global arrays
and disk resident arrays.

ARMCI, GA, and DRA provide a unified programming
model for handling different levels of the memory hierarchy
in which the user controls the location of data in the mem-
ory hierarchy. This has been shown to achieve high per-
formance, while being a simpler programming model than
message passing.

3.2 Proposed Enhancements

The GA/DRA framework is convenient to develop paral-
lel out-of-core applications that operate on large dense mul-
tidimensional arrays. However, for applications operating
on block-sparse data, with the current GA/DRA framework,
a multidimensional block-sparse array must either be repre-
sented as multiple arrays, one per nonzero block, or as a
compacted one-dimensional array that stores a sequence of
linearized blocks. With the Tensor Contraction Engine, a
large number of multidimensional tensor contractions are
required, where each tensor is block-sparse, with widely
varying sizes for the nonzero blocks. A tensor contrac-
tion is essentially a generalized multidimensional matrix-
matrix multiplication. With block-sparse tensors, a con-
traction requires pairwise contractions of several nonzero
block pairs. In this context, achieving computational load
balance among the processors, along with minimization of
inter-processor communication is not straightforward. Fur-
ther, the block-sparse tensors could be too large to fit in the
aggregate physical memory of the parallel machine. De-
veloping efficient parallel out-of-core algorithms for such
block-sparse tensors is very tedious.

The framework described in this paper was motivated by

the difficulty of developing efficient parallel out-of-core ap-
plications operating on block-sparse data structures. The
framework comprises of the following:

• A globally addressable “bricked” representation of
block-sparse multidimensional arrays. Each non-zero
block is represented as a set of multi-dimensional
“bricks”, where the data layout within a brick con-
forms to a standard “row-major” ordering. The bricks
are globally addressable using a multi-dimensional tu-
ple. The total size of the collection of bricks of a block-
sparse array is not restricted by the aggregate physical
memory of the parallel machine. The movement of
bricks between disk and main memory is transparent
to an application program.

• “Task pools” for specification of sets of concurrent
tasks that operate on bricks of the globally addressable
block-sparse arrays. Each task in a task pool speci-
fies source and result bricks. The mapping of tasks to
processors, and the movement of input data bricks to
a task’s processor is implemented by the system, with
the goal of load-balanced execution with minimization
of disk-to-memory data movement and inter-processor
communication.

• Automatic mapping and scheduling of the tasks in a
task pool onto processors, along with the generation of
disk I/O and inter-processor communication needed to
achieve parallel out-of-core execution of the collection
of tasks.

4 Locality-aware Abstractions

In this section, we briefly discuss the data and computa-
tion abstractions to manipulate block-sparse matrices. Note
that the computation abstraction is decoupled from the data
abstractions and can be leveraged for other data structures
as well. The details of these abstractions can be found
in [17].

4.1 Abstraction for Block-Sparse Matrices

The abstraction for multi-dimensional block-sparse ma-
trices provides collective functions for creating and de-
stroying arrays and non-collective functions to get/put data
from/to the distributed block-sparse array.

The non-zero blocks of the array are divided into bricks
of a specified size, which are then distributed amongst the
processors in a round-robin fashion. This ensures a uni-
form distribution of the data among all processors. A small
brick size allows for a more uniform distribution of the data
amongst the processors. On the other hand, a large brick
size allows for coarse-grained, and possibly more efficient,



computation and potential reduction in the communication
cost, due to amortization of the communication latency.

A replicated index is created is store information pertain-
ing to the distribution of the non-zero bricks in block-sparse
array. The one-sided mechanisms provided by the ARMCI
library, together with the replicated index, enables the non-
collective access to arbitrary bricks in the array.

The arrays can be created by specifying the number of di-
mensions, the number of blocks, and the actual block sizes.
In addition, a bitmap can be provided to specify whether a
block is zero. Alternatively, a function that takes as argu-
ment the block indices and returns whether it is zero, can be
provided.

4.2 Computation Specification

The computation abstraction provided to the user enables
the specification of a set of independent tasks to be executed
in parallel. For each such set, all processes collectively cre-
ate a task pool object.

Each task in the task pool is identified by the routine to be
invoked to process that task, identified by a function handle,
and the set of locality elements it operates upon. In addi-
tion, any private data specific to that task can also be spec-
ified. Each locality element corresponds to a global data
region, identified by its global address, size, and its access
mode. Three access modes are supported. Read, write, and
update accessing modes allow for put, get, and accumulate
of global data, respectively.

All processes populate the task pool before sealing it.
Once a task pool is sealed no more tasks can be added to it.
At this point the task pool is fully defined and any start-time
optimizations can be performed.

Subsequently, all the processes collectively process the
tasks in the task pool. A task pool, once created, can be
processed multiple times, thus amortizing the cost of any
start-time optimizations.

5 Implementation

In this section, we discuss the implementation of the
framework. The computation in a task pool is a collection of
tasks, where each task explicitly specifies its operand data
bricks. We modeled the dependencies of tasks to its operand
data bricks using the computational hypergraph model [5].
In the constructed hypergraph, vertices represent tasks and
hyper-edges represent the operand data bricks. Weight of a
task and cost of an hyper-edge reflects the relative estimated
execution time of the task, and the size of the operand data
brick, to characterize the cost of moving the brick, respec-
tively.

Here, we propose a hypergraph partitioning-based two-
level approach for the generation of a schedule for disk I/O

operations, inter-processor communication operations and
task execution:

• The “outer” level of partitioning divides the task pool
into multiple disjoint clusters, sets of tasks, where to-
tal amount memory required by each of these clusters
is less than the total collective memory of the parallel
machine. Then each one of these clusters is executed in
the parallel machine one by one. An attempt is made to
minimize the number of such clusters, as well as to re-
duce the I/O overhead due to data bricks shared among
multiple clusters.

• The “inner” level of partitioning takes as input a clus-
ter from the outer-level partitioning, and computes a
mapping of task (and possibly data) to processors in
order to optimize the execution of the cluster. The ex-
ecution of a cluster requires the loading of operand
data bricks from disk to memory, parallel execution
of the cluster’s tasks among the processors (possibly
interspersed by inter-processor communication), and
write-back of result data bricks. Hence, mapping is
achieved by performing a balanced P-way partitioning
of the cluster’s hypergraph where the total hyper-edge
cut is minimized.

We start with some preliminary definitions for hyper-
graphs. Then we present the outer-level and inner-level par-
titioning phases in more detail.

5.1 Hypergraph Partitioning

A hypergraph H = (V,N) is defined as a set of vertices V
and a set of nets (hyper-edges) N among those vertices. For
every net n j, s j is equal to the number of its vertices, i.e.,
s j = |n j|. Weights (wi) and costs (c j) can be assigned to
the vertices (vi ∈V ) and edges (n j ∈ N) of the hypergraph,
respectively. A P-way partition Π = {V1,V2, ...,VP} of H
is a partitioning of vertices of H that satisfies the follow-
ing criteria: 1) each part is a nonempty subset of V , 2) the
parts are pairwise disjoint, and 3) the union of the P parts is
equal to V . In the traditional hypergraph partitioning prob-
lem, a partition is said to be balanced if Wp ≤ Wavg(1 + ε)
for 1 ≤ p ≤ P , where W p = ∑vi∈Vp wi is the sum of the
vertex weights of part Vp , Wavg = (∑vi∈V wi)/P denotes the
weight of each part under the perfect load balance condi-
tion, and ε represents the predetermined maximum imbal-
ance ratio allowed. In a partition P of H, a net that has at
least one vertex in a part is said to connect that part. The
connectivity λ j of a net n j denotes the number of parts con-
nected by n j . A net n j is said to be cut if it connects more
than one part (i.e. λ j > 1). The cut nets are also referred
to as external nets, denoted as NE . There are various cut-
size definitions for representing χ(Π) of a partition P. The
relevant, connectivity-1 definition is:



χ(Π) = ∑
n j∈NE

c j(λ j −1) (1)

In equation 1, each cut net n j contributes c j(λ j − 1)
to the cut-size. The hypergraph partitioning problem can
be defined as the task of dividing a hypergraph into two
or more parts such that the cut-size is minimized, while
a given balance criterion among the part weights is main-
tained. Algorithms based on the multi-level paradigm, such
as hMETIS [16] and PaToH [5], have been shown to com-
pute good partitions quickly for this NP-hard problem.

In this work we define a new hypergraph partitioning
problem that we call Bounded Incident Net Weight (BINW)
Partitioning Let Π = {V1,V2, ...,VP} be the P-way partition
of hypergraph H. The cost of a partition is again com-
puted using the connectivity-1 cut-size definition (Eq.1),
but the constraint on the partitioning is different. Let I(Vi)
denote the nets that are incident on vertices in (Vi), i.e.,
I(Vi) = {n j|vk ∈ n j,∀vk ∈ Vi}. The BINW partitioning is
defined as finding a minimum cost partition where each
part’s incident net weight sum is bounded by a predeter-
mined weight constraint M:

∑
n j∈I(Vi)

c(n j) ≤ M (2)

Please note that P is not predetermined in this problem,
however, minimizing the connectivity-1 cost while obeying
the incident net weight constraint would also minimize the
number of parts.

5.2 Outer-level Partitioning: Out-of-Core Parti-
tioning

The goal of the outer-level partitioning is to divide the
tasks into clusters such that the total amount of memory re-
quired by the tasks of each cluster is less than available ag-
gregate memory. In order to achieve this we use the compu-
tational hypergraph model together with Bounded Incident
Net Weight Partitioning described in the previous section.
Consider a P-way BINW partitioning Π of a computational
hypergraph H, where the weight constraint M is set to the
aggregate memory of the parallel machine. Since the data
bricks that are required by each task is represented by nets
connected to that task, the data bricks required by the tasks
of a part Pi constitute the incident net set I(Vi). By definition
of BINW partitioning, we know that the total sum of the net
costs (size of the data elements) is less than M. Hence, all
data bricks required by a cluster of tasks will fit into the ag-
gregate memory of the parallel machine. Each data brick
needs to be read/written at least once for each cluster. Mini-
mizing the connectivity-1 metric corresponds to minimizing
the number of times that a data brick is shared among the

clusters - hence it corresponds to minimizing the I/O due to
data bricks shared among the clusters.

One of the challenges in BINW partitioning is that it is
not possible to directly determine the smallest feasible P.
One approach could be to estimate the number of parts,
and partition using an existing hypergraph partitioner that
uses the traditional vertex weight balance constraint, and
check whether the resulting partition violates the memory
constraint. If it produces an infeasible partition, the number
of parts can be increased and tried again. This approach has
two problems. First, since we will be forcing a partition into
a predetermined number of parts without any control on the
actual incident net weights, it is very possible that it will re-
sult in a high load imbalance in incident net weights, result-
ing in under-utilization of the parallel machine’s memory.
The second problem is that finding a solution will likely re-
quire multiple partitioning, increasing the time to generate
the partition.

We have developed a BINW partitioner by modifying the
successful serial hypergraph partitioner PaToH [6]. Since
PaToH achieves P-way partitioning through recursive bisec-
tion, we have chosen to use the same framework. During the
recursive bisection, the nets that are in the cut are split in or-
der to achieve correct accounting of the connectivity-1 cost
metric. In PaToH, the default action for the size-1 split-nets
is to discard them, since they cannot be in the cut for a future
bisection. However, since our weight constraint is based on
incident net weights, we have modified the code so that the
sum of the weights of such size-1 nets are accumulated in a
separate weight variable for each vertex. While computing
the weight constraint, those weights are aggregated with the
sum of the internal net weights to compute a part’s incident
net weight.

We have also modified the stopping condition of the re-
cursive function. Since P is not predetermined, we stop
when a incident net weight of a part is less than or equal
to the predetermined weight constraint M.

5.3 Inner-level Partitioning: Locality-aware
Load-balancing

The goal of the inner-level partitioning is to compute a
mapping of tasks and data bricks to the processors of the
parallel machine for an optimized execution.

When a task is assigned to a processor, the input data
bricks associated with the task are brought into local mem-
ory and the task is executed. The output data are then writ-
ten/accumulated into the global regions. If a task is exe-
cuted on a processor that contains the data bricks required
by it, no communication is required. In addition, if a set of
tasks that require the same data regions are co-located in a
processor, communication cost can be significantly reduced
by reusing the data across tasks.



Hence the objective is to partition the set of tasks among
the available processors, such that the amount of communi-
cation required is minimized, while maintaining the balance
of computational load amongst the processors.

We model the problem of locality-aware load-balancing
as a hypergraph partitioning problem. Again each task and
data brick is represented, respectively, by a vertex and net
in the hypergraph. The computational load of tasks and the
size of data bricks are used as weights and costs of respec-
tive vertices and nets. Additionally, each data brick is also
represented by a zero-weight vertex. For each data brick,
the corresponding net connects the vertices corresponding
to it and the tasks that access it.

Consider a P-way partition Π of such a hypergraph. We
decode the partitioning as follows. For each vi ∈Vi, we map
the corresponding task/data-brick to processor Pi. Cut nets
corresponds to the data bricks that are shared and hence re-
quired by multiple processors. Those data bricks are shared
by λ j parts, they need to be communicated exactly λ j − 1
times, that is, moved from the owner processor (the pro-
cessor to which the data-brick vertex is assigned) to all the
processors that need it, except itself. Hence, by assigning
the size of data bricks as net costs, the proposed method re-
duces the task and data mapping problem to the P-way hy-
pergraph partitioning problem using the connectivity-1 cost
function (Eq 1).

6 Experimental Results

In this section, we provide preliminary performance data
on the prototype implementation of the framework. Ex-
periments were performed to evaluate the primitives on the
Colony2a system in the Pacific Northwest National Labora-
tory, a twenty-four node cluster with each node being a dual
1GHz Itanium-2 with 6GB memory, interconnected using
Myrinet.

We first evaluate the utility of the approach in abstracting
away explicit disk I/O handling, by comparing it with an al-
ternative implementation based on virtual memory. Virtual
memory provides an address space potentially much larger
than the available physical memory. The virtual memory
mechanism provides for transparent movement of data be-
tween disk and main memory.

We evaluated the approaches using dense matrix-matrix
multiply as shown below:

C[O,O] = A[O,V ]∗B[V,O]
O was set to 1000, while V was varied between 100,000

and a million.
For the implementation using virtual memory, referred

to as vm-layout the data is organized in exactly the same
way as for our hypergraph-based partitioning approach, i.e.
as a collection of bricks, with the elements of a brick be-
ing stored in row-major order. The computation of a par-

V Brick size vm-layout Hypergraph
Partitioning Total

time time
100K 500 85 0.4 89
100K 1000 86 < 0.1 87
500K 500 958 2.0 578
500K 1000 710 0.1 532
1M 500 5166 6.0 1191
1M 1000 1960 0.3 1108

Table 1. Execution times of dense matrix mul-
tiplication, in seconds

tial product using a brick-brick interaction is done using
DGEMM. The results are shown in Table 1.

We show results of experiments with two brick sizes
(500 and 1000), and matrices of three sizes (A’s size: 1000
by 100K; 1000 by 500K; 1000 by 1M). For the smallest
case, all three matrices can fit in physical memory, and
the performance of the vm-based implementation and the
hypergraph-partitioning-based implementation are compa-
rable. With the medium-sized matrix (1000 by 500K), the
total size of the three matrices exceeds the 6 Gbytes of phys-
ical memory on the machine. The vm-based implemen-
tation is clearly slower than the hypergraph-partitioning-
based approach. With the large matrix (1000 by 1M), the
vm-based approach is again slower, with the difference in
performance between the two being greater. Performance
for the medium and large case is better with a brick-size of
1000 than with brick-size of 500. The hypergraph partition-
ing time also decreases with increasing brick size, since the
number of bricks (nets) and number of vertices decreases.
The total hypergraph partitioning time is quite negligible for
all the cases.

We next present performance data for a block-sparse ten-
sor contraction example:

C[O,O,V,O] = A[O,O,V,V] * B[V,O]
C and A are 4-dimensional block-sparse tensors, while

B is a 2-dimensional block-sparse tensor. High-accuracy
quantum chemistry models such as the coupled cluster mod-
els [10] are replete with such block-sparse tensor contrac-
tions. Each array index ranges either over occupied electron
orbitals (O) or over virtual orbitals (V). The index ranges O
and V are partitioned into a fixed (power-of-two) number
of so-called “irreps”. The number of irreps depends on the
nature of spatial symmetry of the chemical molecule being
modeled, and is often 4 or 8. For the experiments below, O
consisted of 4 spatial symmetry blocks of sizes 100, 50, 25,
and 25. V was twice O, with symmetry blocks of size 200,
100, 50, and 50. A block (p,q,r,s) of multidimensional ten-
sor C is nonzero iff Exclusive Or(p,q,r,s) equals zero. For 2-
D tensor B, only the four diagonal blocks are non-zero, and



Brick size No. Processors
1 2 4

25 667 464 246
50 599 370 226
75 638 349 300
100 660 466 321

Table 2. Time for parallel out-of-core block-
sparse constraction, in seconds.

for the 4-D tensors, 64 of the 256 blocks are nonzero. For
example, block (1,2,0,3), (1,2,1,2), (1,2,2,1) and (1,2,3,0)
are nonzero. It can be observed that the range of sizes of
nonzero blocks varies considerably. For A, the largest block
has 400,000,000 nonzeros while the smallest nonzero block
has 1,562,500 nonzeros.

The cost was evaluated for brick sizes varied between 25
and 100. The execution times are shown in Table 2.

The scalability of the initial prototype is being improved
through a number of implementation optimizations (e.g.
collective memory allocation for multiple blocks rather than
one at a time).

7 Related Work

The use of recursive and blocked data layout for dense
matrix algorithms has been the subject of many studies
[8, 12]. Abstractions for block-sparse matrices also exist
in the context of linear algebra and iterative solvers [11].
Aztec [27] is a parallel iterative solver package that provides
a global view of a distributed matrix. Advanced partitioning
techniques [13] are used to determine the computation dis-
tribution and mapping. We provide a general-purpose ab-
straction for block-sparse matrices. The partitioning of the
matrices is performed to balance computation load-balance
and communication costs. In addition, the mechanisms for
locality-aware load-balancing are not tightly coupled with
block-sparse matrices, and can be utilized in a wide range
of contexts.

The use of hierarchically tiled arrays as a primitive data
type has been proposed and evaluated in the context of
MATLAB [1, 4].

Dynamic load-balancing based on work-stealing has
been studied, particularly for state-space search [26] .
Charm++ [15] supports dynamic load-balancing by object
migration. Cilk [25] supports load-balancing of computa-
tions based on work-stealing. OpenMP exploits parallelism
at the loop level by distributing different iterations to differ-
ent processors. Locality is not taken into consideration in
any of these schemes.

Çatalyürek and Aykanat [5] have used hypergraph-
partitioning to parallelize sparse matrix-vector multiplica-

tions. Chang et al. [7] performed parallel data aggregation
based on hypergraphs.

Thus, different aspects of the proposed framework bear
similarities to previous work, but we are unaware of any
other work that has combined all three of the following
facets of the framework developed here:

• Implementation of a globally addressable “brick”
repository, and bricked representation of block-sparse
matrices

• Automatic deduction of data locality relations from a
high-level specification of the computation

• Automatic synthesis of schedule for out-of-core par-
allel execution of block-sparse matrix computations
through runtime optimization

The work presented in this paper represents an extension
of our work [18] that addressed dat aanc computation ab-
stractions for “in-core” block-sparse computations.

8 Conclusions

The paper describes the design and implementation of
high-level abstractions for specifying parallel computations
on block-sparse matrices. Computation primitives to im-
prove load balancing by exploiting locality were presented.
The programmer exposes the parallelism in the computa-
tion, and the system automatically groups the tasks into a
sequence of phases, and determines the computation map-
ping and data movement for tasks in each phase. Prelimi-
nary experimental results demonstrate that the approach is
very promising.
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