
A Self-Stabilizing Minimal Dominating Set Algorithm

with Safe Convergence

Hirotsugu Kakugawa and Toshimitsu Masuzawa

Department of Computer Science

Graduate School of Information Science and Technology

Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, JAPAN

{kakugawa, masuzawa}@ist.osaka-u.ac.jp

Abstract

A self-stabilizing distributed system is a fault-
tolerant distributed system that tolerates any kind and
any finite number of transient faults, such as message
loss and memory corruption. In this paper, we formu-
late a concept of safe convergence in the framework of
self-stabilization. An ordinary self-stabilizing algorithm
has no safety guarantee while it is in converging from
any initial configuration. The safe convergence prop-
erty guarantees that a system quickly converges to a
safe configuration, and then, it gracefully moves to an
optimal configuration without breaking safety. Then,
we propose a minimal independent dominating set al-
gorithm with safe convergence property. Especially, the
proposed algorithm computes the lexicographically first
minimal independent dominating set according to the
process identifier as a priority. The priority scheme
can be arbitrarily changed such as stability, battery
power and/or computation power of node.

1. Introduction

Self-stabilization is a theoretical framework of non-
masking fault-tolerant distributed algorithms proposed
by Dijkstra [2, 4]. Self-stabilizing algorithms can start
execution from arbitrary (illegitimate) configuration
and eventually configuration becomes legitimate. By
this property, a self-stabilizing system tolerates any
kind and any finite number of transient faults, such
as message loss, memory corruption, and topology
change.

By definition, a self-stabilizing system is guaranteed
to converge to a legitimate configuration, as long as no

transient faults occur enough long time. Although self-
stabilization property works quite well for networks in
which frequency of transient faults is low (compared to
the time for convergence to legitimate configuration),
it may not be suitable for dynamic networks, such as
mobile ad hoc networks, in which transient faults and
topology changes frequently occur.

1.1. Contribution of this paper

In this paper, we cope with a problem of safety guar-
antee during converging period by extending of self-
stabilization, named safe convergence. Such a concept
implicitly appears in several papers in the past, and we
formulate the concept formally in this paper. A safely
converging self-stabilizing system defines two classes of
legitimate configurations. One is a set of configurations
in which property or service is feasible, i.e., minimum
quality of service is guaranteed. The other is a set of
configurations in which property or service is optimal.
We consider configuration in both classes satisfy prop-
erty or service (a safety property) of a system.

When faults occur, it is better to converge to a fea-
sible legitimate configuration as soon as possible. If
no fault occurs for enough period of time, it is better
to converge to an optimal legitimate configuration to
provide the best quality of service. The safety con-
vergence property requires that the system should not
break a safety property while a system is moving from
a feasible configuration to an optimal configuration.

Then, we consider the problem of minimal dominat-
ing set (MDS) with safe convergence. We assume, in
this paper, that all processes are executed in parallel in
each step for execution model (the synchronous model),
and each process can read local variables of neighbor

1-4244-0054-6/06/$20.00 ©2006 IEEE

processes for communication model (the state-reading
model). These models are adopted often in literature
of self-stabilization.

Specifically, our algorithm computes a minimal dom-
inating set in which no two dominators neighbor each
other (i.e., a minimal independent dominating set,
MIDS). In addition, our algorithm computes the lexi-
cographically first MIDS according to the process iden-
tifier as a priority.

By our algorithm, configuration quickly moves to
a feasible one in which a safety property (in our cur-
rent setting, “dominating set is computed”) is satisfied.
Then, as long as no transient fault occur, a configura-
tion eventually becomes an optimal one in which an
MIDS is computed. By the safe convergence property,
each configuration from a feasible one to an optimal
one in the computation keeps the safety property.

Since we assume a synchronous scheduler, neighbor
processes may update their local states simultaneously
when a process updates its local state. Difficulty of
designing such an algorithm comes from this concur-
rency. Each process can update its local state only
when a safety property is not broken. On the other
hand, when a configuration is feasible but not optimal,
at least one process must make a move for convergence.
Thus, designing an algorithm that satisfies these two
requirements is not trivial under a synchronous sched-
uler. (If we assume a serial scheduler, the problem is
trivial since there is no concurrency in process execu-
tion.)

Although we adopt process identifiers for priority
scheme in this paper, we can adopt various priority
(weighting) scheme, e.g., stability of a mobile node
based on battery power and quality of wireless commu-
nication. Especially, a safely converging self-stabilizing
system has a noble property in a situation such that
process priorities dynamically changes. Consider a mo-
bile ad hoc network in which stability of each node
dynamically changes, and suppose that we adopt sta-
bility for priority scheme. Despite such a dynamic sit-
uation, configuration gracefully moves to optimal one
with keeping a safety property.

1.2. Related works

Safety and stabilization
There are many works on extensions of self-

stabilization for quick convergence and guarantee of
safety property. In [3], concept of superstabilization
is proposed for dynamic network. When a topology
changes (e.g., a process joins or leaves a network) and
the system is in a legitimate configuration, the system
gracefully and quickly converges to a configuration. In

[6], concept of fault-containment is proposed. Suppose
that states of f processes are corrupted when a sys-
tem is in a legitimate configuration. Then, a fault-
containing system converges in O(f) steps.

In [9, 8], the maximum flow routing on tree networks
is proposed with the root process. The algorithm dy-
namically maintains the maximum flow route from each
process to the route based on the current connection
that dynamically change. In this sense, it maintains
a safety after it stabilizes. The algorithm executes,
in turn, a round for computing the correct flow and
a round for updating a maximum flow tree. The root
process controls execution of rounds so that each round
is executed for enough long period of time to stabilize.

Unfortunately, above works consider only keeping
safety in the event of faults or changes of system pa-
rameters in a legitimate configuration. That is, safety
in converging configurations is not considered.

In [5], a concept safe stabilization is proposed. A
safe self-stabilizing system guarantees that, for some
given constant k, any k faults in a safe configuration
does not lead to an unsafe configuration. Although
a safe stabilizing system guarantees safety in conver-
gence and thus very interesting, execution of such a
system has a large overhead. It requires Ω(D) steps so
that each process makes a single move, where D is the
diameter of a network.

On the other hand, our framework does not guaran-
tee safety when faults occur in legitimate configuration,
i.e., our framework does not mask faults in legitimate
configuration. By this property, our framework pro-
posed in this paper does not require any overhead, and
implementation is much easier. Thus we believe that
our framework is worth investigating.

The most related works to our current paper are [1]
and [12]. In [1], a stabilizing loop-free routing proto-
col is proposed. Starting from illegitimate configura-
tion, eventually configuration reaches a safe configura-
tion in which routes contains no loops. Then, config-
uration reaches, with maintaining loop-less property,
a configuration in which routes with maximal metric.
The work in [12] also proposes a stabilizing routing al-
gorithm with route preserving property such that any
message sent to the root node is guaranteed to be deliv-
ered within a finite time regardless continuous changes
of link costs. Starting from illegitimate configuration,
configuration eventually reaches one with route pre-
serving property. Then, with keeping this as a safety
property, the protocol obtains the shortest path. In
this paper, we formulate a concept implicit in these
papers.

The minimal dominating set (MDS) problem

Because the MDS problem is a fundamental prob-

lem on network topology, many self-stabilizing algo-
rithms have been proposed so far. As a closely related
problem, the maximal independent set (MIS) problem
has been studied well. In [13], a self-stabilizing MIS
algorithm under a serial scheduler (c-daemon)1 is pre-
sented. In [11], a space-optimal self-stabilizing MIS
algorithm under a distributed scheduler (d-daemon)2

is presented. In [14], a self-stabilizing MDS algorithm
under a synchronized scheduler is proposed. In [7],
a self-stabilizing MIS algorithm under a synchronized
scheduler is proposed. In [10] self-stabilizing MIS and
MDS algorithms under a serial scheduler are proposed.

1.3. Organization of this paper

This paper is organized as follows. In section
2, we formally describe system model and safe self-
stabilization. In section 3, we propose a safely self-
stabilizing algorithm for the dominating set problem.
In section 4, we show proof of correctness of the pro-
posed algorithm, and show performance analysis. In
section 5, we give conclusion of this paper and discuss
future works.

2. Preliminary

2.1. System model

Let V = (P1, P2, ..., Pn) be a set of processes and
E ⊆ V × V be a set of bidirectional communication
links in a distributed system. The number of pro-
cesses is denoted by n. Then, the topology of the dis-
tributed system is represented as a undirected graph
G = (V, E). We assume that the graph is connected
and simple. In this paper, we use “graphs” and “dis-
tributed systems” interchangeably.

A set of local variables defines local state of a pro-
cess. By Qi, we denote local state of process Pi ∈ V .
A tuple of local state of each process (Q1, Q2, ..., Qn)
forms a configuration of a distributed system. Let Γ
be a set of all configurations.

As communication model, we assume that each pro-
cess can read local states of neighbor processes with-
out delay. This model is called the state-reading model.
Each process can update its own local state only, but
each process can read local state of neighbor processes.

An algorithm of each process Pi is given as a set of
guarded commands (GCs):

1At each step, a serial scheduler selects a process arbitrarily

from a set of eligible processes.
2At each step, a distributed scheduler selects a non-empty set

of processes arbitrarily from a set of eligible processes.

∗[Guard1 → Act1 � Guard2 → Act2
� Guard3 → Act3 � · · ·]

Each Guardj (j = 1, 2, ...) is called a guard, and it
is a predicate on Pi’s local state and local states of
its neighbors. Each Actj is called a action, and it up-
dates local state of Pi; next local state is computed
from current local states of Pi and its neighbors. For
each process Pi, process identifier and a set of neigh-
bor processes Ni are given as a constant. We say that
Pi is privileged in a configuration γ if and only if at
least one guard of Pi is true in γ. An atomic step of
each process Pi consists of the following three sub-steps
(1) read local states of neighbor processes and evaluate
guards, (2) execute a command that is associated to a
true guard, and (3) update its local state. In this pa-
per, we that assume the synchronized model for process
execution such that every privileged process executes
atomic steps in parallel.

2.2. Self-stabilization and safe convergence

For any configuration γ, let γ ′ be any configuration
that follows γ. Then, we denote this transition relation
by γ → γ ′. For any configuration γ0, a computation
E starting from γ0 is a maximal (possibly infinite) se-
quence of configurations E = γ0, γ1, γ2, ... such that
γt → γt+1 for each t ≥ 0.

Definition 1 (Self-stabilization) Let Γ be the set of
all configurations. A system S is self-stabilizing with
respect to Λ such that Λ ⊆ Γ if and only if it satisfies
the following two conditions:

• Convergence: Starting from an arbitrary configu-
ration, a configuration eventually becomes one in
Λ, and

• Closure: For any configuration λ ∈ Λ, any config-
uration γ that follows λ is also in Λ.

Each λ ∈ Λ is called a legitimate configuration. �

Definition 2 (Safely converging self-
stabilization) Let Γ be the set of all configurations,
and let ΛO ⊆ ΛF ⊆ Γ. A self-stabilizing system S is
safely converging with respect to (ΛF , ΛO) if and only
if it satisfies the following three conditions:

• S is self-stabilizing with respect to ΛF .

• Safe Convergence: For any execution starting
from configuration in ΛF , configuration eventually
reaches one in ΛO.

• S is self-stabilizing with respect to ΛO.

 Γ

 Λ O

 Λ F

Figure 1. Safely converging self-stabilization:
Γ, ΛF and ΛO

Each γ ∈ ΛF is called a feasibly legitimate config-
uration, and each γ ∈ ΛO is called a optimally legiti-
mate configuration. �

Concept of safe converging self-stabilization is de-
picted in Figure 1. Time complexity of a safe self-
stabilizing algorithm is measured by the time to reach
ΛF and the time to reach ΛO. Formal definition is as
follows.

Definition 3 Let S be a safely converging self-
stabilizing system with respect to (ΛF , ΛO). The first
convergence time is the number of steps to reach a con-
figuration in ΛF for any starting configuration in Γ.
The second convergence time is the number of steps to
reach a configuration in ΛO for any starting configura-
tion in ΛF . �

2.3. Minimal independent dominating set

Minimal dominating set (MDS) is formally defined
as follows.

Definition 4 A dominating set of a graph G = (V, E)
is a subset V ′ ⊆ V such that, for any u ∈ V \V ′, there
exists v ∈ V ′ such that (u, v) ∈ E. A dominating set
V ′ of G is minimal if no proper subset of V ′ is a dom-
inating set of G. �

Maximal independent set (MIS) is defined as follows.

Definition 5 An independent set of a graph G =
(V, E) is a subset V ′ ⊆ V such that, for any u, v ∈ V ′,
(u, v) �∈ E. An independent set V ′ of G is maximal if
no proper superset of V ′ is an independent set of G. �

It is clear that any MIS is also a MDS. Minimal in-
dependent dominating set (MIDS) is defined as follows.

Definition 6 An minimal independent dominating
set of a graph G = (V, E) is a subset V ′ ⊆ V such
that V ′ is a minimal dominating set, and V ′ is an in-
dependent set. �

3. Proposed Algorithm

Figure 2 shows a minimal independent dominating
set algorithm we propose. In the proposed algorithm,
each process Pi uses two variables di and mi as de-
scribed as follows.

• di ∈ {0, 1}: — This value is 1 (resp. 0) if Pi is a
dominator (resp. dominatee).

• mi ∈ Ni ∪ {Pi}: — When Pi is a dominatee, it
uses this variable to designate a neighbor process
to dominate Pi by assignment mi = Pj(∈ Ni).

Assignment mi := Pj(∈ Ni) does not imply that
Pi is a dominatee. We have mi = Pj(∈ Ni) and
di = 1 when Pi wants to turn to be a dominatee
from a dominator. This is for safety, and details
will be explained later.

Let us explain idea of the proposed algorithm which
is shown in Figure 2. As shown in Figure 2, we use a
macro IndDomi(Pj) for each process Pi and its neigh-
bor Pj ∈ Ni. It is defined to be true if and only if
(dj = 1) ∧ (mj = Pj) is true. That is, Pj is a domina-
tor and it does not designate its neighbor to dominate
Pj . We say that such a process Pj is an independent
dominator, and IndDomi(Pj) is true.

Each process Pi changes its local variables according
to the following rules.

• Rule 1. When identifier of Pi is the largest among
those of its neighbors, Pi becomes an independent
dominator.

• Rule 2. When Pi has no independent domina-
tors in its neighbors, Pi becomes an independent
dominator.

• Rule 3. When identifier of Pi is the largest among
those of independent dominators in its neighbors,
Pi becomes an independent dominator.

• Rule 4. When identifier of Pi is not the largest
among those of independent dominators in its
neighbors, the value of mi is maintained to be
the largest among them. For safety, Pi becomes
a dominator.

external variable

process set Ni; — a dynamic set of neighbor processes (read only and automatically updated).
variables

int di ∈ {0, 1}; — Pi is a dominator (resp. dominatee) if di = 1 (resp. 0).
process name mi ∈ Ni ∪ {Pi}; — a dominator process that Pi depends on. The value can be Pi itself.

macro

MaxLocallyi ≡ ∀Pj ∈ Ni : Pi > Pj — True iff the process identifier is the maxmimum among neighbors.
IndDomi(Pj) ≡ (dj = 1) ∧ (mj = Pj) — True iff a neighbor Pj is an independent dominator.
ExNeighIndDomi ≡ ∃Pj ∈ Ni : IndDomi(Pj) — True iff there exists an independent dominator.
MaxNeighIndDomi ≡ max{Pj ∈ Ni : IndDomi(Pj)} — The maximum independent dominator in neighbors.
NoneDependsi ≡ ∀Pj ∈ Ni : mj �= Pi — True iff no neighbor depends on Pi.

actions

∗ [
Rule 1: If identifier of Pi is the locally largest, Pi becomes an independent dominator.

MaxLocallyi

∧((di �= 1) ∨ (mi �= Pi))
→ di := 1; mi := Pi;

Rule 2: If there is no independent dominator in neighbors, Pi becomes an independent dominator
� ¬MaxLocallyi ∧ ¬ExNeighIndDomi

∧((di �= 1) ∨ (mi �= Pi))
→ di := 1; mi := Pi;

Rule 3: If identifier of Pi is the largest among independent dominators in neighbor,
Pi becomes an independent dominator.

� ¬MaxLocallyi ∧ ExNeighIndDomi ∧ (Pi > MaxNeighIndDomi)
∧((di �= 1) ∨ (mi �= Pi))

→ di := 1; mi := Pi;
Rule 4: If identifier of Pi is not the largest among independent dominators in neighbor, Pi depends on

the process with the largest identifier among them, and (for safety) Pi becomes a dominator.
� ¬MaxLocallyi ∧ ExNeighIndDomi ∧ (Pi < MaxNeighIndDomi) ∧ (mi �= MaxNeighIndDomi)

∧((di �= 1) ∨ (mi �= MaxNeighIndDomi))
→ di := 1; mi := MaxNeighIndDomi;

Rule 5: Pi turns to be a dominatee only when (1) identifier is not the largest among independent dominators
in neighbors, (2) Pi depends on the process with the largest identifier among them, and
(3) (for safety) no neighbor depends on Pi.

� ¬MaxLocallyi ∧ ExNeighIndDomi ∧ (Pi < MaxNeighIndDomi) ∧ (mi = MaxNeighIndDomi) ∧ NoneDependsi

∧(di �= 0)
→ di := 0;

]

Figure 2. SC-MIDS: A safely converging self-stabilizing algorithm for MIDS

• Rule 5. Pi turns to be a dominatee if there ex-
ists an independent dominator in its neighbor, pro-
vided that the value of mi is property maintained
by Rule 4 and, for safety, no neighbor Pj ∈ Ni

designates Pi to dominate Pj .

Let Γ be a set of all configurations. First, we define
Doms as follows.

Definition 7 For each configuration γ ∈ Γ, we define
Doms(γ) ≡ {Pi ∈ V : di = 1}, which is called a set of
dominator processes in γ. �

Sets of legitimate configurations ΛF and ΛO of the
proposed algorithm are defined as follows.

Definition 8 A set of feasibly legitimate configura-
tions ΛF ⊆ Γ is defined as follows.

ΛF = {γ ∈ Γ : ∀Pi ∈ V : (di = 0) ⇒ (mi ∈ Ni

∧ dj = 1, where Pj = mi in γ)}

A set of optimally legitimate configurations ΛO ⊆ ΛF

is defined as follows.

ΛO = {γ ∈ ΛF : Doms(γ) is the lexicographically

first minimal independent dominating set

of G} �

Note: Although ΛO is called optimal, a configuration
in the set is not the minimum independent dominating
set, but it is minimal.

By definition of ΛF , it is clear that Doms(γ) is a
dominating set of G for any γ ∈ ΛF . Further, ΛF

is a set of configuration in which a dominating set is
computed, and for each dominatee Pi, its dominator
Pj designated by mi is a dominator. Because ΛO is
the lexicographically first minimal dominating set of
G, it contains only one configuration. For simplicity of
notation in the proof, we say that “a configuration γ is
a dominating set” if Doms(γ) = {Pi ∈ V : di = 1} is a
dominating set of G.

4. Proof of Correctness

In this section, we show proof of correctness of the
proposed algorithm. In the proof we use Ii for each
Pi ∈ V which is defined as follows.

Ii ≡ (di = 0) ⇒ (mi ∈ Ni ∧ dj = 1, where Pj = mi)

The relation of Ii and ΛF is as follows.

γ ∈ ΛF ⇔ ∀Pi ∈ V : Ii in γ

Lemma 1 (One step convergence to ΛF) Let γ be
any configuration in Γ, and γ ′ be a configuration such
that γ → γ′. Then, we have γ′ ∈ ΛF .

Proof: It is enough to show that Ii holds at each pro-
cess Pi ∈ V in γ′. As a contrary, we assume that there
exists a process Pi in γ′ such that ¬Ii.

• In case Pi is not executed in γ:

Since Pi is not executed and Ii can be false only
when di = 0, guards of Rules 1–4 must be false
and di = 0 in γ. (Note that a process that has a
true guard is executed by assumption of the exe-
cution model.) Since di = 0 in γ′, the following
conditions hold in γ:

– ¬MaxLocallyi (by Rule 1)

– ExNeighIndDomi (by Rule 2)

– Pi < MaxNeighIndDomi (by Rule 3)

– mi = MaxNeighIndDomi (by Rule 4)

Then, mi ∈ Ni holds in γ, and thus we have dj =
1, where Pj = mi. This implies Ii in γ′ and a
contradiction.

• In case Pi is executed in γ:

Because di = 0 in γ′, Pi is executed Rule 5 in γ.
(Otherwise, any other rule results in di = 1.) Then
mi = MaxNeighIndDomi is true in γ because it is
a part of the condition of Rule 5. This implies that

mi ∈ Ni in γ. Since Rule 5 does not change the
value of mi, we have mi ∈ Ni in γ′.

Let Pj be a process given by the value of mi. By
definition of MaxNeighIndDomi, dj = 1∧mj = Pj

holds in γ. Because NoneDependsj is a part of the
condition of Rule 5, Pj never execute Rule 5 in γ,
and thus dj = 1 in γ′. This implies Ii holds in γ′

and a contradiction.

Since there exists no Pi such that ¬Ii in γ′, we have
γ′ ∈ ΛF . �

Lemma 2 (Closure of ΛF) Let γ be any configu-
ration in ΛF , and γ′ be any configuration such that
γ → γ′. Then, we have γ′ ∈ ΛF .

Proof: By Lemma 1, this lemma trivially holds. �

Lemma 3 (Convergence to ΛO) Let γ be any con-
figuration in ΛF . For any execution starting from γ,
configuration γ′ reaches one such that γ ′ ∈ ΛO, and
configuration never changes thereafter.

Proof: Let γ0 = γ, and for each t ≥ 1, let γt be the
t-th configuration in a computation starting from γ.
Note that γt be the configuration by execution of the
t-th step. For simplicity of explanation, for each integer
x ≥ 1, we call four steps from the 4x− 3-th step to the
4x-th step as the x-th phase.

1. The first phase (i.e., from the 1st to the 4th steps).

• The 1st step: We focus on the process, say
PM , with the maximum process identifier in
the network G. We have dM = 1∧mM = PM

by Rule 1 in γ1. Note that PM may or may
not execute Rule 1 in γ0. If dM = 1 ∧ mM =
PM is false, PM executes Rule 1, and other-
wise, it updates none of these variables. Since
Rule 1 is the only rule that PM may execute,
PM never execute thereafter, and the variable
values of PM are fixed in this configuration.

• The 2nd step: We focus on neighbor pro-
cesses of PM . Since MaxNeighIndDomj =
PM and Pj < PM for each Pj ∈ NM , by
Rule 4, we have Pj = 1 and mj = PM in γ2.
Since PM has the maximum process identi-
fier, each Pj ∈ NM never change the value of
mj thereafter.

• The 3rd step: We focus on neighbor Pk of
each neighbor of PM . Since mj �= Pj for each
Pj ∈ NM , each Pk ∈ (Nj\NM\{PM}) selects
some P� not in NM by Rule 3 and 4.

• The 4th step: Again we focus on neighbors
of PM . Let Pj be any neighbor of PM . Then,
by executions of processes in the 3rd step, we
have mk �= Pj for each process Pk ∈ Pj . Thus
Pj executes Rule 5. Since PM has the maxi-
mum process identifier, each Pj never change
the values of dj and mj thereafter. Note that
the value of dj (resp. mj) is 0 (resp. PM).

In the first phase, the process with the maximum
process identifier and its neighbors decide their
variable values, and they never change their local
variables thereafter.

When the first phase is finished, each Pj ∈ NM is
not an independent dominator because dj = 0 ∧
mj �= Pj holds.

Let us observe behavior of processes after the first
phase. By Rule 4, when Pi selects the value of mi

from neighbors, it selects an independent domina-
tor with the largest process identifier among in-
dependent dominators in neighbors. By Rule 5,
each process Pi becomes a dominatee only when
it is a dominator, and the value of mi has the
largest process identifier among independent dom-
inators in neighbors. Because of these rules, each
Pk ∈ (V \NM\{PM}) never select Pj ∈ NM and
PM for the value of mk. Therefore, we can ignore
PM and processes in NM in the following execu-
tion.

Let G1 be a graph by deleting processes {PM} ∪
NM and corresponding edges from G. Next, we
consider graph G1.

2. The second phase (i.e., from the 5th to the 8th
steps).

• The 5th step: We focus on the process, say
PM ′ with the maximum process identifier in
G1. By Rule 3, we have dM ′ = 1 ∧ mM ′ =
PM ′ in γ5, because process identifier of PM ′

is larger than any independent dominators in
neighbors in G1. Note that PM (discussed in
the first phase) is not a neighbor of PM ′ in
G. Then, the values of dM ′ and mM ′ never
change thereafter.

• The 6th step: The same as the 2nd step.

• The 7th step: The same as the 3rd step.

• The 8th step: The same as the 4th step.

When the second phase is finished, as in the case
of the first phase, the process with the maximum
process identifier in G1 becomes a dominator, its

neighbors become dominatees, and variables val-
ues of them never change in the following execu-
tion. Let G2 be the graph by deleting these pro-
cesses and corresponding edges.

3. The third and following phases.

We repeatedly apply the same discussion for the
second phase. In each phase t > 2, the process
with the maximum process identifier in Gt−1 be-
comes a dominator and its neighbors become dom-
inatees, and graph Gt is defined. (This discussion
is repeated as long as graph is not empty.)

It is clear that at least one process is eliminated
at each phase, graph becomes empty within n phases.
Let γ′ be the corresponding configuration when a graph
becomes empty. Then, each condition of the rules be-
comes false at each process, and no process makes a
move thereafter.

Since, in γ′, no two dominators are neighbors each
other and each dominatee has a dominator in neigh-
bors, Doms(γ′) is an MIDS of G(V, E). It is clear that
Doms(γ′) is the lexicographically first one by the dis-
cussion above. �

Theorem 1 SC-MIDS is safely converging self-
stabilizing with respect to (ΛF , ΛO), and the first (resp.
second) convergence time is at most 1 (resp. O(D)),
where D is the diameter of network.

Proof: Convergence to ΛF is shown by Lemma 1, and
convergence time to ΛF is one. Closure of to ΛF is
shown by Lemma 2. Hence, SC-MIDS is self-stabilizing
with respect to ΛF . Safe convergence property is shown
by Lemma 3. Convergence to ΛO and closure of to ΛO

are shown by Lemma 3. This fact and Lemma 1 prove
that SC-MIDS is self-stabilizing with respect to ΛF O.

Let us derive convergence time. By Lemma 1,
the first convergence time is one. From the proof of
Lemma 3, we observe that a dominator and at least
one dominatee are eliminated at each phase except the
last one. Thus the second convergence time is trivially
O(n). We show below that the second convergence time
is in fact O(D).

Observe the proof for convergence (Lemma 3). In
each phase, there is at least one process that is elected
as an independent dominator and the values of lo-
cal variables are surely fixed forever. For each t =
1, 2, 3, ..., let Xt ⊆ V be a set of such processes at
phase t. Note that Xt ∩ Xt′ = ∅ for each t and t′ such
that t �= t′, and a set

⋃
t Xt is the lexicographically first

independent dominating set of G.
Let t be any phase such that t > 1. For each process

Pi in Xt to be elected as a dominator, the following
conditions hold.

• Pi is not a process with the locally largest pro-
cess identifier. (Otherwise, Pi would be elected in
phase 1 by Rule 1.)

• At least one of Pj ∈ Ni such that Pj > Pi is a dom-
inator at the beginning of phase t − 1, every such
Pj turns to be dominated by some Pk ∈ Xt−1 at
the end of phase t− 1, and each neighbor Pj ∈ Ni

such that Pj > Pi is a dominatee at the beginning
of phase t. (Otherwise, Pi would not be in Xt.)

• Pi is a process with the locally largest process iden-
tifier among independent dominators in neighbors
in phase t. (Otherwise, Pi would not be in Xt.)

Thus, the decision of a process in Xt at phase t

depends on the decisions of processes in Xt−1 and its
neighbors at phase t− 1. It is clear that the number of
phases to converge is determined by the length of such
a dependency which is at most D, the diameter of the
network. Therefore, D phases are enough to converge,
and the second convergence time is O(D). �

5. Conclusion

In this paper, we proposed a concept of safe con-
vergence in self-stabilization and an algorithm for the
minimal independent dominating set (MIDS) problem
that computes the lexically first one. By our algorithm,
a system converges to a configuration of a dominating
set in one step, and it converges to a configuration of a
minimal dominating set in O(D) steps, where D is the
diameter of a network.

We adopted process identifiers as a priority for se-
lecting a dominator for simplicity. In fact, we can
adopt other metrics as a priority, such as the number
of neighbors (i.e., |Ni|), battery power, and computa-
tional power for example. Process identifiers are used
for breaking a tie.

We assumed the synchronized model for execution
and state-reading model for communication in this pa-
per. We believe that our algorithm is correct under the
distributed scheduler in which arbitrary set of processes
is selected to execute. Extension of the algorithm for
the message passing model is left for future task.

References

[1] J. Cobb and M. Gouda. Stabilization of general loop-
free routing. 62:922–944, 2002.

[2] E. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Commun. ACM, 17(11):643–644,
1974.

[3] S. Dolev and T. Herman. Superstabilizing protocols
for dynamic distributed systems. Chicago J. of Theo-

retical Comput. Sci., 3(4), 1997.
[4] F. Gärtner. Fundamentals of fault-tolerant distributed

computing in asynchronous environments. ACM Com-

put. Surv., 31:1–26, 1999.
[5] S. Ghosh and A. Bejan. A framework of safe stabiliza-

tion. In Proceedings of SSS, LNCS 2704, pages 129 –
140, 2003.

[6] S. Ghosh, A. Gupta, T. Herman, and S. Pemmaraju.
Fault-containing self-stabilizing algorithms. In Pro-

ceedings of PODC, pages 45–54, 1996.
[7] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and

P. K. Srimani. Self-stabilizing protocols for maximal
matching and maximal independent sets for ad hoc
networks. In Proceedings of IPDPS APDCM, page
162b, 2003.

[8] M. Gouda and M. Schneider. Stabilization of maxi-
mum flow trees. In Proceedings of the Annual Joint

Conf. on Inform. Sci., pages 178–181, 1994.
[9] M. Gouda and M. Schneider. Maximum flow routing.

In Proceedings of WSS, pages 2.1–2.13, 1995.
[10] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and

P. K. Srimani. Self-stabilizing algorithms for minimal
dominating sets and maximal independent set. Com-

puter Mathematics and Applications, 2003.
[11] M. Ikeda, S. Kamei, and H. Kakugawa. A space-

optimal self-stabilizing algorithm for the maximal in-
dependent set problem. In Proceedings of PDCAT,
pages 70 – 74, 2002.

[12] C. Johnen and S. Tixeuil. Route preserving stabi-
lization. In Proceedings of SSS, LNCS 2704, pages
184–198, 2003.

[13] S. Shukla, D. Rosenkrantz, and S. Ravi. Observa-
tion on self-stabilizing graph algorithms for anony-
mous networks. Proceedings of WSS, 1995.

[14] Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Sri-
mani. A synchronous self-stabilizing minimal domina-
tion protocol in an arbitrary network graph. In Pro-

ceedings of IWDC, LNCS 2918, pages 26 – 32, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

