
Dynamic Performance Prediction of an Adaptive Mesh Application

Mark M. Mathis and Darren J. Kerbyson

Performance and Architecture Laboratory (PAL)

CCS-3, Computer and Computational Sciences (CCS-3)

Los Alamos National Laboratory

{mmathis,djk}@lanl.gov

Abstract

While it is possible to accurately predict the execution

time of a given iteration of an adaptive application, it is

not generally possible to predict the data-dependent
adaptive behavior the application will take and therefore

to predict the total execution time for a given execution.

To remedy this situation we have developed an executable

performance model that can be utilized dynamically at

runtime directly from the application of interest. In this

manner, the application itself can rapidly predict the
expected execution time for its next iteration based on

current information on the data layout and level of

adaptivity. This enables the application itself to

determine: if an optimum level of performance is being

achieved (i.e. by comparing measured and predicted

times); when to perform a checkpoint (if the next iteration
will exceed a predefined time limit between checkpoints);

or when to terminate (if the next iteration will exceed the

application's system time allocation for instance). The

dynamic model is shown to have high accuracy over a

number of test cases, even in the presence of interference
(system activities that are not a part of application

activities).

1. Introduction

Performance modeling is an important tool that can be

used by a performance analyst to provide insight into the

achievable performance of a system and/or an application.

It is only through knowledge of the workload for the

system that a meaningful performance comparison can be

made. It has been recognized that performance modeling

can be used throughout the life-cycle of a system, or of an

application, from first design through to maintenance [7]

including procurement and system installation.

Recent work at Los Alamos National Laboratory

(LANL) has demonstrated the use of performance

modeling in many situations, for instance: in the early

design of systems; during the procurement of new

systems; in exploring possible optimizations in

applications prior to implementation [6]; and in verifying

the performance of ASCI Q system during installation [9]

– which lead to optimizing the performance of the system

by a factor of two [14]. Models have also been used to

compare the performance of large-scale systems including

several of the highest peak-rated terascale systems such as

the Earth Simulator and ASCI Q [8].

One of the large-scale applications used in these

studies is SAGE (SAIC's Adaptive Grid Eulerian

hydrocode). It is a multi-dimensional (1-D, 2-D, & 3-D),

multi-material, Eulerian hydrodynamics code with

adaptive mesh refinement (AMR). SAGE has been

applied to a variety of problems in many areas of science

and engineering including water shock, energy coupling,

cratering and ground shock, stemming and containment,

and hydrodynamic instability problems. SAGE is

representative of part of the ASC (Accelerated Strategic

Computing) workload at Los Alamos that routinely runs

on thousands of processors. An overview of SAGE and its

sister code, RAGE, is given in [4].

A performance model of SAGE has been previously

developed and validated on a number of systems [6].

What makes SAGE interesting for our current work is its

adaptivity. That is, as the application progresses from

cycle to cycle, individual spatial cells can be divided or

combined to provide greater calculation resolution in

areas of interest. Unfortunately, the adaptation taken over

the course of an execution cannot be predicted from initial

conditions. This means that it is not generally possible to

predict the total execution time (i.e. for all cycles) of

SAGE. So, the question we seek to answer is, “Can the

time for the next cycle be dynamically predicted?'”.

There are a number of uses for this type of dynamic

modeling (e.g. [1,10]). One is to make runtime decisions

about the execution of the application. For example, the

predicted time could be used to decide when to

checkpoint (e.g. [3,19]). That is, if the next cycle will

exceed a predefined limit of accumulated time plus the

optimal checkpoint interval, then a checkpoint should be

done before the next cycle. Alternatively, the predicted

time could be used to dynamically determine the number

of cycles for a particular execution. For example, in a

batch system, it can be determined (to a relatively high

1-4244-0054-6/06/$20.00 ©2006 IEEE

degree of accuracy) whether or not another cycle can be

completed before the time allocation runs out. This could

be particularly useful if the scheduler is not very forgiving

of programs that run over their time limits.

Equally important is in determining if the predicted

performance is actually being realized. For instance, is the

machine working at an optimum level or is it being

perturbed by external factors (e.g. operating-system noise

[14] or a transient hardware failure such as an un-seated

cable in the network). A dynamic performance model is

able to identify when the expected performance is not

being achieved.

Dynamic performance models are also useful for

scheduling in grid environments (e.g. [2]) perhaps in

conjunction with network monitoring tools (e.g. [18]).

This approach allows long-running applications to be re-

allocated as resources wax and wane. The models

previously used in these applications are often very high-

level or statistical in nature (e.g. [16,17]). Our approach is

to apply the detailed analytical modeling approach

developed at LANL to these interesting applications of

performance analysis.

In order to provide dynamic predictions, one must

have an executable version of the performance model. To

accomplish this we utilize a modified version of a

performance specification language called CHIP
3
S [13].

This is intended to provide predictions through a discrete

event simulation of the performance characteristics of the

application code. For our current work, since a high level

model is known a priori, we can express the model

directly in the specification language. This greatly

increases the efficiency of the evaluation and therefore the

viability of runtime use.

The rest of this paper is organized as follows. In

Section 2 we briefly describe key features of the model

and its implementation. In Section 3 we validate the

dynamic model using a 64 node HP AlphaServer system

and a 32 node Itanium-2 cluster. The techniques

developed here for dynamic performance prediction are

shown to have reasonable accuracy in all test cases. In

Section 4 we further test the accuracy of the performance

model under dynamic conditions and use the model to

determine optimal checkpoint intervals.

2. Dynamic Model Implementation

A performance model can be implemented in a number

of ways including a straightforward coding in which all

the analytical details of the performance model form the

basis for the evaluation, and inputs represent

characteristics of the system (e.g. communication

performance, node size, topology etc.) as well as

characteristics of the current data-set being processed

(e.g. number of cells, level of adaption etc.). These inputs

are dynamic and, in the case of the application parameters

change from cycle to cycle.

In this work we implemented the performance model

of SAGE using a performance specification language

(PSL). A modified version of the CHIP
3
S language was

utilized for this purpose [13]. A CHIP
3
S model consists of

a hardware specification (i.e., a system model) and a

parallel template which implements a task graph

representation of the application. The nodes of the task

graph are then specified by an application model. This

results with several input files that together form a

program that can then be compiled and executed to

produce performance predictions. Importantly for this

work is that the executable may be linked with, and hence

used by, another application using a runtime evaluation

interface.

By default a CHIP
3
S application model is a mapping

from the source code to a performance domain. The

evaluation system can then take this model specification

and predict the performance of the individual tasks.

Although it is perhaps useful to facilitate modeling of

single-processor performance, we wish to focus primarily

on interactions of multiple-processors (and minimize the

evaluation process). In this case, it is more expedient to

measure the single-processor performance, and predict the

performance of the parallel application.

In fact, our approach to performance modeling does

not currently address the modeling of single-processor

performance. In most cases it is sufficient to benchmark

the single-processor time and use the benchmark

measurement in the model. In the case of strong scaling,

where the problem size is fixed, the time per element will

change as the number of elements assigned to each

processor changes largely due to memory hierarchy

effects. That is, the greatest performance will be seen

when each processor's sub-grid fits in cache. In this case a

simple piecewise model obtained from benchmark

measurements is required to capture the single-processor

performance of the application [11].

SAGE, however, normally operates in a weak scaling

mode. That is, a equal number of cells is mapped to each

processor. In this manner, more processors are used to

increase the fidelity of the simulation rather than decrease

the execution time. In general, this would allow a single

value to be used to model the single-processor

performance (since the amount of work per processor

remains constant). However, the adaptive nature of SAGE

means that the number of cells changes throughout the

execution of the application. Although the input-deck

specifies a number of cells per processor at the beginning

of the execution, the number of cells will typically

increase as the mesh is adapted.

To account for this fact, we provide two different

modes of operation for the dynamic model:

online mode: timers in the application are used to extract

a time-per-cell (effectively a grind-time) and by using

a window over previous cycles, a prediction of the

run-time for the next cycle can be made using

knowledge of the number of cells being processed.

offline mode: uses a detailed analytical model of the

application and pre-measured computation

characteristics (application dependent) and

communication characteristics (application in-

dependent). Thus time-per-cell input is pre-measured.

The online model works well when the goal is to make

dynamic decisions at runtime based on current system

performance. However, it is not a good approach to take

when verifying the health of the system (i.e., "Are we

getting the best, expected, performance?"). The time-per-

cell input to the offline model can be obtained by varying

the number of cells on a single processor benchmark. One

way to accomplish this is to run a number of cycles on a

single processor with adaption turned on. This will give

several performance values which can described by a

piecewise linear (or logarithmic) curve (e.g., Figure 1). In

this manner, a baseline single processor performance can

be obtained that (with high confidence) represents the best

achievable performance.

The prediction accuracy of both the online and offline

models is compared in Section 3. In section 4 the

effectiveness of both models is examined on a system

which may be perturbed by un-expected activities.

3. Model Validation

It is not our goal here to validate the SAGE

performance model itself as it has been previously

validated on many systems [6]. Rather, our overall goal is

to demonstrate how a performance model can be used

dynamically at runtime. To that end, we do need to

validate the executable version of the model and show

that it can be used with a minimum perturbation to the

existing code. We do this using three input-decks

(timing_a, timing_b, and timing_c) for SAGE, that are

often used to access its performance for a large number of

cycles, on several different system configurations. A

summary of the input-decks is given in Table 1 in terms

of the initial number of cells assigned to each processor

(which can change due to adaption), and the type of

calculation performed (hydro and/or heat).

Table 1. SAGE input-decks

 Timing_a Timing_b Timing_c

Initial cells per PE 4,000 4,000 80,000

Hydo Y Y Y

Heat N Y Y

For our experiments, we utilize up to 16 processors of

a 32 node Itanium-2 Cluster (IA64) and a 64 node

AlphaServer ES40 Cluster. The Itanium-2 cluster consists

of two processors per node running at 1.3GHz each with a

256K L1 cache, 3MB L2 cache, and 2GB main memory.

The AlphaServer cluster consists of four processors per

node running at 833MHz each with an 8MB L2 cache and

2GB main memory. The nodes in both clusters are

interconnected using the Quadrics QSnet-I high speed

network with Elan3 switching technology.

The MPI uni-directional bandwidth and latency

characteristics measured from a micro-benchmark for

inter-node communications are listed in Table 2. The

performance is considered as a set of tuples in which the

latency characterizes the message start-up component and

the time per byte characterizes the bandwidth component

for given message sizes. It should be noted that even

though the same network is used in both clusters, the

communication performance can vary due to differences

in the node design. Bi-directional MPI characteristics as

well as NIC contention are actually used in the model of

SAGE [6].

The measured performance as well as a piece-wise

performance model for single-processor and single-node

performance for one of the input-decks (timing_a) is

shown in Figure 1(a) for an AlphaServer ES40 node, and

in Figure 1(b) for an Itanium-2 node.

It is worth noting that we obtained single-node models

for several cases on each system. This is done in order to

capture memory contention effects. The maximum

memory contention will be seen when all processors

within a node are used. Since, it is possible to use 1-, or 2-

processors-per-node (and 4 on the AlphaServer), we

provide models for each case. However, we use all

processors within a node when the processor-count

exceeds the node-size.

Measured and predicted times versus cycle number (up

to 200 cycles) are shown in Figure 2 for the AlphaServer

cluster and in Figure 3 for the Itanium Cluster. Note that

only 1 and 16 processor runs are shown. On each graph

the three curves depict: measured time, online predicted

time (using internal application timers for the single-

processor time), and offline predicted time (using the

piece-wise logarithmic models as shown in Figure 1).

Table 2. Uni-directional MPI communication
characteristics (QSnet-1)

 Message

Size (B)

Latency

(s)

Time per

byte (ns)

AlphaServer

ES40 Cluster

 32

>32 & <512

 512

5.6

5.9

8.1

0.0

18.7

5.0

Itanium-2

Cluster

 32

>32 & <512

 512

5.0

7.6

11.0

0.0

8.9

4.6

y = 22.5Ln(x) - 158.1

y = 25.9(x) - 186.1

y = 23.9Ln(x) - 148.3

80

90

100

110

120

130

140

150

0 50000 100000 150000 200000 250000 300000

Cells/Processor

T
im

e
/

C
e
ll

 (
µ

s
)

PEs=1

PEs=2

PEs=4

(a) AlphaServer ES40 node.

y = 18.4Ln(x) - 138.8

y = 6.8Ln(x) - 25.9

40

45

50

55

60

65

70

75

80

85

90

0 50000 100000 150000 200000 250000 300000

Cells/Processor

T
im

e
/

C
e
ll
 (

µ
s
)

PEs=1

PEs=2

y = 55.3

y = 78.7

(b) Itanium-2 node.
Figure 1. Time per cell vs. cell count (timing_a)

The average errors across all cases when using the

online and offline model are summarized in Table 2 for

the AlpaServer cluster and in Table 3 for the Itanium-2

cluster. More configurations than shown in Figures 2-3

are considered in this summary. In general, the predicted

time tracks the measured time very well. The average

error varies from 3.4% to 11.0%. It is also worth noting

that the predictions change in discrete steps, although this

distinction diminishes as the processor-count increases.

This is due to the fact that the predicted time changes

when adaption takes place. In fact, it can be inferred from

the model predictions precisely when adaption occurred.

4. Model Run-time Use

Once we are confident in the capability of the model, it

can be used to explore diverse performance scenarios. For

the following experiments the first input-deck to SAGE

Table 3. Average prediction error, AlphaServer

 timing_a (%) timing_b (%) timing_c (%)

PEs online offline online offline online offline

1 5.6 5.0 3.4 4.2 3.6 4.8

2 5.5 3.4 4.9 3.0 4.3 4.6

4 5.4 3.4 4.6 3.7 6.4 5.1

8 4.7 4.7 3.9 5.5 5.65 6.6

16 4.5 9.1 3.9 7.7 5.4 10.6

Table 4. Average prediction error, Itanium-2

 timing_a (%) timing_b (%) timing_c (%)

PEs online offline online offline online offline

1 5.9 11.0 3.8 5.9 4.9 5.0

2 8.0 9.6 6.7 7.2 5.7 5.9

4 8.3 5.3 6.8 3.5 8.3 6.2

8 8.1 4.7 6.0 3.3 7.45 7.6

16 8.4 8.6 5.8 6.0 10.2 8.4

(timing_a) is used on 16 Itanium-2 processors (8 nodes),

although the results are applicable to other configurations.

The model is first used to determine the optimal

checkpoint interval using Young's equation [19].

Mδτ 2= (1)

where is the time required to perform a checkpoint and

M is the mean time between failures.

In our case, we want the checkpoint interval to be an

integral number of cycles. That is, at each cycle, we check

to see if the predicted time for the next cycle will exceed

. The optimal checkpoint intervals calculated using this

approach are shown against the accumulated time in

Figure 4. For demonstration purposes we have assumed

M=10 min. Note that this is a much lower value (i.e.,

higher failure rate) than we can reasonably be expected

for most systems, where M is more likely expressed in

terms of days. For this analysis we have also chosen =

10 sec, largely based on the analysis in [15].

It is not surprising that the number of cycles between

suggested checkpoints decreases as the cycle number

increases. That is, the first checkpoint occurs after cycle

27, but the next one follows cycle 43. This is because the

time per cycle steadily increases, as can be seen in Figure

3(b) (which is the same run). For this example, we have

assumed a constant value for . However, as with the

single-processor time, will also increase as the number

of cells-per-processor increases [15].

The adaptability of the model is exercised through

imposing intentional interference. Interference in this case

is an external activity on the system that impacts on the

application performance. We accomplish this by

bypassing the job control system and logging in directly

to one of the compute nodes in the cluster. A memory

intensive kernel is then executed on one processor in the

compute node to perturb, or slow-down, the application.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(a) timing_a (1 PE)

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(c) timing_b (1 PE)

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(e) timing_c (1 PE)

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(b) timing_a (16 PEs)

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(d) timing_b (16 PEs)

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(f) timing_c (16 PEs)
Figure 2. Measured and predicted performance of SAGE on the AlphaServer ES40 cluster on 1
and 16 processors.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(a) timing_a (1 PE)

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(c) timing_b (1 PE)

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(a) timing_c (1 PE)

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(b) timing_a (16 PEs)

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

(d) timing_b (16 PEs)

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

Cycle

T
im

e
 (

s
)

measured

online

offline

(f) timing_c (16 PEs)
Figure 3. Measured and predicted performance of SAGE on the Itanium-2 Cluster on 1 and 16
processors.

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160 180 200

Cycle

A
c
c
u

m
u

la
te

d
 T

im
e
 (

s
)

measured

online

offline

checkpoint

Figure 4. Accumulated run-time and
optimal checkpoint intervals.

As we see in Figure 5(a) the measured time

approximately doubles after the start of the interference

from cycle 50 – this is what would be expected since the

system is now effectively running two jobs rather than

just one. The interference is shown by the two-value

curve in the upper part of the graph. As expected the

offline model continues to predict the non-perturbed

execution time (using pre-measured timing information).

The online model, on the other hand, gradually catches up

with the measured time. The reason that the online model

does not immediately change is that a large window size

is used to estimate the time-per-cell. In this case a

window that extends back to the first cycle is used.

In Figure 5(b) a similar experiment is undertaken, with

interference that consists of multiple phases with a delay

between the phases in which the interference is switched

on and off. In this case, the online model again gradually

catches up to the measured time and is not significantly

affected by the periodic return to the non-perturbed state.

The measured time oscillates between the online (with

interference) and offline (without interference) models.

Finally, we illustrate the effect of the window size on the

online model in Figure 5(c). Here we have reduced the

window size such that only the previous cycle is used to

estimate the current time-per-cell. In this case the online

model tracks the measured time closely and returns to the

non-perturbed execution time (and the offline prediction)

once the interference is terminated.

These experiments illustrate that an online model will

adapt to changes in the system, and indeed with a small

window, will not recognize when the system is not

achieving a good performance level. The offline model

conversely can be used to recognize when the system is

not achieving its optimal performance level and hence be

used as part of a diagnostic process in order to determine

what part of the system is not performing as expected.

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

Interference

(a) interference (large window size)

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

Interference

(b) intermittent interference (large window size)

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Cycle

T
im

e
 (

s
)

measured

online

offline

Interference

(c) interference (small window size)
Figure 5. Measured and predicted times
for a system with interference.

5. Summary

In this work we have presented a method by which a

performance model can be used to dynamically predict

the individual cycles of an adaptive mesh refinement

hydrodynamics code. The dynamic model is shown to

perform with high accuracy and has low overhead. We

have shown how the dynamic model can be used to

determine optimal checkpoint intervals and further

demonstrate the adaptability of the model by introducing

interference during the application run.

We believe performance modeling is key to building

performance engineered applications and architectures.

The techniques presented here are general and can be

easily retargeted to use other performance models such as

our work on structured grid particle transport modeling

[5], unstructured mesh particle transport [11], and Monte-

Carlo simulation [12]. In particular, an executable model

could be used at the beginning of these applications to

determine optimal or near optimal partitioning strategies

or to configure input parameters. For example, given a set

number of processors the Monte-Carlo model could be

used to determine the number of particles to simulate.

Acknowledgements

This work was funded in part by the WSR component

of the Accelerated Strategic Computing (ASC) program

of the Department of Energy, and by the DARPA High

Productivity Computing Systems program in. Los Alamos

National Laboratory is operated by the University of

California for the U.S. Department of Energy under

contract W-7405-ENG-36.

References

[1] A. M. Alkindi, D. J. Kerbyson, E. Papaefstathiou and G. R.

Nudd. Dynamic Optimisation of Application Execution on

Distributed Systems. Future Generation Computing

Systems, 17(8):941–949, June 2001.

[2] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M.

Faerman, S. Figueira, J. Hayes, O. Obertelli, J. Schopf, G.

Shao, S. Smallen, N. Spring, A. Su and Z. Zagorodnov.

Adaptive computing on the Grid using AppLeS. IEEE

Transactions on Parallel and Distributed Systems,

14(4):369–382, April 2003.

[3] J. Daly. A strategy for running large scale applications

based on a model that optimizes the checkpoint interval for

restart dumps. In ICSE Software Engineering for High

Performance Computing System Applications Workshop,

pages 70–74, May 2004.

[4] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne,

R. Stefan and D. Ranta. The RAGE Radiation-

hydrodynamic code. To appear in Journal of

Computational Physics, 2006.

[5] A. Hoisie, O. Lubeck and H. Wasserman. Performance and

Scalability Analysis of Teraflop-Scale Parallel

Architectures Using Multidimensional Wavefront

Applications. International Journal of High Performance

Computing Applications, 14(4):330–346, Winter 2000.

[6] D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.

Wasserman and M.L. Gittings. Predictive Performance and

Scalability Modeling of a Large-scale Application. In

IEEE/ACM Supercomputing (SC’01), Nov. 2001.

[7] D.J. Kerbyson, A. Hoisie and H.J. Wasserman. Modeling

the Performance of Large-Scale Systems. IEE Proceedings

(Software), 150(4):214–221, Aug. 2003.

[8] D.J. Kerbyson, A. Hoisie and H.J. Wasserman. A

Performance Comparison between the Earth Simulator and

other Terascale Systems on a Characteristic ASCI

Workload. Concurrency and Computation, Practice and

Experience, 17(10):1219-1238, Aug. 2005.

[9] D.J. Kerbyson, A. Hoisie and H.J. Wasserman. Use of

Predictive Performance Modeling During Large-Scale

System Installation. Parallel Processing Letters, 15(4):

387-395, Dec. 2005.

[10] D.J. Kerbyson, E. Papaefstathiou and G.R. Nudd.

Application Execution Steering using On-the-Fly

Performance Prediction. High Performance Computing and

Networking. In High-Performance Computing and

Networking, Lecture Notes in Computer Science,

1401:718–727, Apr. 1998.

[11] M.M. Mathis and D.J. Kerbyson. A General Performance

Modeling of Structured and Unstructured Mesh Particle

Transport Computations. Journal of Supercomputing,

34:181-199, 2005.

[12] M.M. Mathis, D.J. Kerbyson and A. Hoisie. A Performance

Model of non-Deterministic Particle Transport on Large-

Scale Systems. In Computational Science (ICCS), Lecture

Notes in Computer Science 2659:905-915, June 2003.

[13] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry,

J. S. Harper and D. V. Wilcox. PACE: A Toolset for the

Performance Prediction of Parallel and Distributed

Systems. International Journal of High Performance

Computing Applications, 14(3):228–251, Fall 2000.

[14] F. Petrini, D.J. Kerbyson and S. Pakin. The case of the

Missing Supercomputer Performance: Achieving Optimal

Performance on the 8,192 Processors of ASCI Q. In

IEEE/ACM Supercomputing (SC’03), Nov. 2003.

[15] J.C. Sancho, F. Petrini, G. Johnson, J. Fernandez and E.

Frachtenberg. On the Feasibility of Incremental

Checkpointing for Scientific Computing. In IEEE/ACM

International Parallel and Distributed Processing

Symposium (IPDPS), Apr. 2004.

[16] J. M. Schopf and F. Berman. Performance prediction in

production environments. In Merged 12th International

Parallel Processing Symposium & 9th Symposium on

Parallel and Distributed Processing (IPPS/SPDP’98),

pages 647-653, Apr. 1998.

[17] J.M. Schopf and F. Berman. Performance prediction using

intervals. Technical report CS97-541, UCSD, 1997.

[18] R. Wolski, N.T. Spring and J. Hayes. The network weather

service: a distributed resource performance forecasting

service for metacomputing. Future Generation Computer

Systems, 15(5–6):757– 768, 1999.

[19] J.W. Young. A first order approximation to the optimum

checkpoint interval. Communications of the ACM,

17(9):530–531, Sep. 1974.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

