
Memory Minimization for Tensor Contractions using Integer Linear Programming 

A. Allam
1
, J. Ramanujam

1
, G. Baumgartner

2
, and P. Sadayappan

3

1
 Department of Electrical and Computer Engineering, Louisiana State University, USA 

2
 Department of Computer Science, Louisiana State University, USA 

3
 Department of Computer Science and Engineering, The Ohio State University, USA 

{atef,jxr}@ece.lsu.edu, {gb,saday}@cse.ohio-state.edu 

Abstract

This paper presents a technique for memory 

optimization for a class of computations that arises 

in the field of correlated electronic structure 

methods such as coupled cluster and configuration 

interaction methods in quantum chemistry. In this 

class of computations, loop computations perform a 

multi-dimensional sum of product of input arrays. 

There are many different ways to get the same final 

results that differ in the required number of 

arithmetic operations required. In addition, for a 

given number of arithmetic operations, different 

expressions of the loop have different memory 

requirements. Loop fusion is a plausible solution for 

reducing memory usage. By fusing loops between 

producer loop nest and consumer loop nest, the 

required storage of intermediate array is reduced by 

the range of the fused loop. Because resultant loops 

have to be legal after fusion, some loops can not be 

fused at the same time. In this paper, we have 

developed a novel integer linear programming (ILP) 

formulation that is shown to be highly effective on a 

number of test cases producing the optimal solutions 

using very small execution times. The main idea in 

the ILP formulation is the encoding of legality rules 

for loop fusion of a special class of loops using 

logical constraints over binary decision variables 

and a highly effective approximation of memory 

usage. 

1.  Introduction

The class of computations considered in this 

work arises in the field of correlated electronic 

structure methods such as coupled cluster and 

configuration interaction methods in quantum 

chemistry [Aul96, Hyb86, Roj95]. In this class of 

computations, loop computations are specified as 

multi-dimensional integrals of products of many 

input arrays. These computations can be expressed 

numerically as multi-dimensional sums of products 

of input arrays. There are many different ways to get 

the same final results; the different ways require 

differing number of arithmetic operations, due to 

operator properties such as commutativity, 

associativity and distributivity. Lam et al. [Lam97] 

have devised an optimization procedure to do loop 

computations using the minimum number of 

floating point operations through determining an 

equivalent sequence of multiplication and 

summation formulas; the resulting optimal sequence 

of formulas is called an operation-count-optimal

formula sequence. The intermediate result from each 

formula is stored in an intermediate array that can be 

used many times without the need for re-computing 

these results. 

Resulting formulas can be implemented as 

separate sets of perfectly nested loops, one set for 

each formula. In this way, intermediate arrays have 

to be stored in full; in most cases they are huge and 

often exceed the available memory on most 

machines. Loop fusion [Gao92, Ken93, Lam97, 

Lam99a, Lam02, Man95, Sin96] is a candidate 

solution for reducing memory usage. By fusing 

loops between producer loop nest and consumer 

loop nest, the required storage of intermediate arrays 

is reduced by the range of the fused loop. Because 

resultant loops have to be legal after fusion, fusing 

some loops precludes fusing others. The problem of 

deciding which loops are to be fused to achieve 

minimal memory usage is called the optimal 

memory usage problem, which is what we are 

considering in this work. 

2.  Problem Definition and Formulation 

Figure 1 is an example of a multi-dimensional 

integral; Figure 1(a) shows a multi-dimensional 

integral expressed as a sum of product of arrays. 

Figure 1(b) shows the resultant operation-count-

optimal formula sequence and Figure 1(c) is its 

graph representation. This graph representation is 

the same as the one presented in [Lam02] except 

that the multiplication and summation nodes are 

combined together in one node.  

1-4244-0054-6/06/$20.00  ©2006 IEEE



2.1  Modified Fusion Graph 

Another graph representation of the problem 

called the fusion graph FG = (V, E, Inds, N) is 

extracted from the original problem graph, which is 

suitable for formulating the fusion problem at hand 

and it is a modified version of the one presented in 

[Lam02] in order to decrease the number of 

variables used. In the fusion graph FG,  

V is the set of nodes where each node represents 

an array (intermediate, input, or output array),  

E is the set of potential fusion edges as 

described below,  

Inds are the sets of loop indices associated with 

each node, and  

N is the set of loop ranges.  

The fusion graph is constructed as follows: 

Each node v V in the original graph is 

converted to a set of vertices, one for each loop 

i, where i is a loop index of node v (i Inds(v)).

For each common loop index between a node 

and its parent, an edge e E is introduced called 

a potential fusion edge; the common loop index 

in this case is said to be a candidate for fusion. 

If the common loop between a node and its 

parent is fused, the potential fusion edge is 

called a fusion edge.

Figure 2(a) shows the potential fusion graph 

for the original graph in Figure 1(c). The potential 

fusion edges are dotted edges and the fusion edges 

are shown as solid edges in a fusion graph. In a 

fusion graph, each connected component of fusion 

edges forms a fusion chain, which corresponds to a 

fused loop in the loop structure. In Figure 2(b), there 

are three fusion chains, one for each of the j-, k-, and 

the l-loops. The set of nodes between and including 

nodes a and b, in which all the i-vertices of these 

nodes are connected through potential fusion edges 

is called the potential fusion scope of an i-loop 

between the two nodes, a and b, written as 

pfscope(a ,b, i). Similarly, the fusion scope of the i-
loop between two nodes, a and b, written as 

fscope(a ,b, i), is defined as the set of nodes between 

and including a and b, in which all the i-vertices of 

these nodes are connected through fusion edges. 

Again, in Figure 2(b), fscope(B, W, j) = <B,  f2, W>.

Figure 1: An example of multi-dimensional integral. (a) A multi-dimensional integral; (b) A 
formula sequence for computing (a); (c) Graph representation of (b) 

f1 [j]     = i  A[i,j]

f2 [j, k]  = l  B[j, k, l]  C[k, l]

W [k]    = j f1 [j] f2 [j, k]

(b)

(c)

A(i j) 
C(k l) B(j k l) 

f2

W

f1

W [k] = i,j,l  A[i,j]  B[j, k, l]  C[k, l]

(a)  

Figure 2: Fusion graph for operation-minimal sequence in Figure 1. 
               (a) Potential fusion graph; (b) Resulting fusion graph 

(a)

i  j 

k  l j  k  l 

A

f2

C
B

W

f1

(b)

i  j 

k  l j  k  l 

A

f2

C
B

W

f1



Lam et al. [Lam 02] describe the effect of 

fusion as follows: “In general, fusing a t-loop 

between a node v and its parent eliminates the t-

dimension of the array v and reduces the array size 

by a factor of Nt. In other words, the size of an array 

after loop fusions equals the product of the ranges of 

the loops that are not fused with its parent. We only 

consider fusions of loops among nodes that are all 

transitively related by (i.e., form a transitive closure 

over) parent-child relations. Fusing loops between 

unrelated nodes (such as fusing siblings without 

fusing their parent) has no effect on array sizes. We 

also restrict our attention to loop fusion 

configurations that do not increase the operation 

count. In the class of loops considered, the only 

dependence relations are those between children and 

parents, and array subscripts are simply loop index 

variables. Loop permutations, loop nests reordering, 

and loop fusions are, therefore, always legal as long 

as child nodes are evaluated before their parents. 

This freedom allows the loops to be permuted, 

reordered, and fused in a large number of ways that 

differ in memory usage.” [Lam02].
We have proposed a mathematical formulation 

for the optimal memory usage problem in which the 

objective is to minimize the total memory usage 

(static memory allocation model) for the given 

operation-count-optimal formula sequence. 

Constraints to assure legality for the resultant fusion 

graph are developed in a form of a set of linear 

inequalities. Because of the nature of the problem, 

the objective is formulated as a nonlinear function. 

Then, an efficient linearization technique has been 

developed that transforms the objective function to 

be linear and thus the memory usage problem is 

formulated as an integer linear programming (ILP) 

problem. Although the linearized objective function 

does not guarantee optimality, the solution is found 

to match the optimal one in several cases because 

the linearization we have devised is an effective 

approximation of the nonlinear objective function. 

3. Legality of Fusion 

The following theorem states the basic 

definitions and the sufficient conditions for a fusion 

to be legal. And based on that theorem, fusion 

legality constraints are generated. 

Theorem 1: Let FG = (V, E, Inds, N) be a fusion 

graph, and let a and b be any two nodes in FG. For 

any two loop-indices j and k, fusion is legal if one 

of the following conditions is satisfied:

1. fscope(a, b, j)  fscope(a, b, k) = .

2. fscope(a ,b, j)  fscope(a, b, k). 

3. fscope(a, b, j)  fscope(a, b, k).
Proof: Since loops are not allowed to overlap (they 

must either be nested or separate), fusion is legal if 

the chains of any two loops in a fusion graph are not 

partially overlapped, i.e., they must be either disjoint 

or a subset/superset of each other, which can be 

mathematically rewritten as the conditions (1)-(3) 

above.

Figure 3 shows different cases of illegal fusion 

and Figure 4 shows different configurations of legal 

fusion. 

Figure 3: Illegal Fusion configurations. 

(a)

(d)(c)

(b)

j k
a

b

c

k

 j 

d

a

b

c

e

j k
a

b

c

j k

b

c

d

ea

Figure 4: Legal Fusion configurations. 

(a)

(d)(c)

(b)

j k
a

b

c

k

 j 

d

a

b

c

e

j k
a

b

c

j k

b

c

d

ea



( , )
:

( ) ( ) 1 (1 )

( , ) ,
and ( ) ( ) 1 (1 ) (1)

( , ) ,
which can be rewritten as:

(

for each path P s t and
for each candidate pair of loop indices j and k

x x x x x
sj tk sk tj ak

a P s t s t
x x x x x
sk tj sj tk aj

a P s t s t

x
sj

) 1

( , ) ,

( ) 1 (2)

( , ) ,
where is the number of intermediate nodes in the path ( , ).

x x x x m
tj sk kj ak

a P s t s t

and x x x x x m
sk tk sj tj aj

a P s t s t
m P s t

To capture the legality of fusion in a set of 

linear inequalities, we introduce a 0-1 unknown 

variable, xai, to denote the fusion edge between node 

a and its parent. The unknown variable xai takes a 

value 1 if the i-loop is fused between node a and its 

parent, and 0 otherwise. 

Fusion legality described by Theorem 1 can be 

posed as constraints in form of linear inequalities 

using Equation (1) shown below. That simply says: 

for each path P(s,t) that starts at node s and ends at 

node t, and for any two loop indices j and k in the 

fusion graph, a constraint in the form of Equation (1) 

is generated as long as  

1. both of these two loops are candidates for 

fusion (i.e., there are potential fusion edges 

between each intermediate node that belongs to 

that path and its parent for both j- and k-loop), 

and

2. at least one potential fusion edge for node s and 

node t where the two loop indices are different, 

i.e., one node has potential fusion edge for the  

j-loop and the other for the k-loop.

Although the first term in the right-hand side of 

Equations (1) and (2) is enough to guarantee legality 

for most of the fusion configurations, the second 

term is needed to take care of some legal 

configurations such as the one in Figure 4(d); 

without the second term, the configuration in Figure 

4(d) appears to be illegal even though it is legal. 

A depth-first search algorithm is used for path 

construction for generating fusion legality 

constraints. The fusion graph is treated as an 

undirected acyclic graph during path traversal, i.e., 

the notion of parent or child is no longer considered 

during path traversal. At the same time, the fusion 

edge definition is still as it is in the original graph. 

For example, consider the fusion graph shown in 

Figure 2(d) where node c is the parent of both node 

b and node d. In constructing the path P(b,e) = <b, c, 

d, e> that originates at node b and ends at node e for 

loop indices j and k, the unknown variable 

corresponding to the candidate fusion edge (e,d) is 

xek.

4.  ILP formulation 

4.1  Fusion Constraints 

The fusion legality constraints in inequalities (1) 

and (2) work as the set of constraints in the ILP 

formulations; the objective function developed 

below completes the formulation. The number of 

fusion legality constraints may appear to be large, 

but in practice our experience with several 

benchmark expressions from computational 

chemistry indicates that most of the candidate pairs 

of loop indices do not exist in all nodes in the fusion 

graphs; this renders constraint (1) inapplicable to 

most of the paths and hence these constraints are not 

generated in the ILP formulation. Moreover, as 

shown in inequality (1), the coefficients of the 

constraint matrices are 1’s or 0’s, which plays a 

substantial role in decreasing the solution time from 

the ILP models as demonstrated in our experimental 

results. 

4.2  Fusion Objective Function 

Since the objective is to minimize memory 

usage, an expression for memory usage of an array 

needs to be developed. Equation (3) shows the 

memory usage for a multidimensional array ‘A’ 

assuming that the fused loops and unfused loops are 

known. The memory requirement for array ‘A’ is 

the product of the sizes along the unfused 

dimensions of array ‘A’. Using the associated 0-1 

variables introduced in the ILP formulation, in the 

expression as a trial to get a mathematical formula 

eligible to be used in an objective function, Equation 

(4) results. Summing over all the arrays (nodes in 

the fusion graph), the total-memory usage can be 



used as an objective function as shown in Equation 

(6). 

( )

( )

( )

( ) (3)

( ) (1 ) (4)

:

(1 ) (5)

i

i Inds A
and i is unfused

Ai i

i Inds A
and i is unfused

Ai i

A i Inds A
and i is unfused

mem A N

mem A x N

Minimize

total memory x N

Equation (5) is not a suitable form for a 

mathematical formulation to express an objective 

function to be minimized. This is because the 

unfused loops are not known apriori to restrict the 

memory expression to include only the unfused 

loops. Also, taking off the restriction and including 

all the loop indices in the memory expression 

creates another problem, in that only one loop to be 

fused in a multi-dimensional array is enough to 

make the memory contribution of this array in the 

objective function to be zero. In this way, the effect 

of fusing one loop in a multi-dimensional array has 

the same effect as fusing two or more loops, which 

is not the optimal solution. For example, consider a 

three-dimensional array A with loop indices i, j, and 

k; mem(A) = (1-xAi)(1-xAj)(1-xAk)NiNjNk. Fusing only 

loop i results in the same objective function value as 

fusing loops i and j. But in the first case mem(A) = 

NjNk, and in the second case mem(A) = Nk.

The accurate memory expression of a multi-

dimensional array should include the different 

combinations of resulting memory after fusion 

including all its loops as shown in Equation (6). 

Consider again the three-dimensional array A above, 

its memory expression is as in Equation (7). 

     

Using the memory expression in (6) in the 

objective function results in a nonlinear objective 

function that needs a nonlinear solver which is 

expensive and inefficient (in terms of solution time). 

Thus we resort to linearization. 

4.3  Objective Function Linearization 

A direct way to linearize Equation (6) is by 

summing over all the complements of the 0-1

variables xAi’s weighted by the corresponding loop-

ranges Ni’s, as shown in Equation (8). Since the 

objective is minimization, a maximum number of 

loops are fused as long as the fusion legality is 

satisfied giving more preference to the loops with 

larger dimensions. 

Minimize: 
( )

(1 )Ai i

A i Inds A

x N   (8)

This can be rewritten as: 

Maximize:
( )

Ai i

A i Inds A

x N .                 (9) 

Linearization as defined in Equation (9) is 

exact only when all the arrays are one-dimensional 

arrays but this is not the general case. For example, 

consider a two-dimensional array A, and loop 

indices i and j in A with loop-ranges 10 and 15 

respectively, and a one-dimensional array B that has 

loop index k with loop-range 20 and assume that the 

solver has to choose between j- and k-loops to fuse 

because of legality constraints. Applying Equation 

(9), the objective function fobj will be: fobj = 10xAi + 

15xAj + 20xBk. Because the objective in (9) is a 

maximization problem, the ILP solver will set xBk to 

1 and xAj to 0, which results in fobj = 30 and the total 

memory for this case is 150 + 1 = 151. On the other 

hand, if had set xAj to 1 and xBk to 0, fobj = 15 (which 

is less than the other case), but this will result in an 

optimal memory usage with total memory = 10 + 20 

= 30. This is the key idea used in the efficient 

linearization of the objective function given by the 

following function 

Maximize:
( )

( ) ( , )Ai

A i Inds A

x size A rsize A i    (10) 

where size(A) is the memory size of array A and 

rsize(A,i) is the reduced memory size of array A if 

the i-loop is fused. The expressions for these turn 

out to be easily expressed as 

( ) ( )

( ) , ( , )i k

i Inds A k Inds A
and k i

size A N rsize A i N

The expression size(A) – rsize(A,i) expresses the 

reduction in memory for array A if the i-loop is 

fused between node A and its parent. From the 

previous example, size(A) - rsize(A,i) = 150 – 15 = 

mem(A) = resultant memory of array A  
                 if none of the loops are fused. 

 + if one  loop is  fused at a time.

 + if two  loops are  fused at a time      (6)

 +  … 

 + if all  loops are fused. 

mem(A) =  

      (1- xAi)(1-xAj)(1-xAk)NiNjNk + 
      (xAi)(1-xAj)(1-xAk)NjNk + (1-xAi)(xAj)(1-xAk)NiNk

+ (1-xAi)(1-xAj)(xAk)NiNj +xAi xAj(1-xAk)Nk

      + xAi(1-xAj)xAkNj + (1- xAi)xAj xAkNi + xAi xAj xAk

                                                                                                                  (7)



135, size(A) - rsize(A,j) = 150 – 10 = 140, and size(B) 

- rsize(B,k) = 20 – 1 = 19. On plugging these values 

in Equation (10), we get fobj = 135xAi + 140xAj + 

19xBk. Because the objective is maximization, the 

ILP solver will pick xAj to be one and xBk to be zero, 

this will result in an optimal memory usage for this 

example with total memory = 10 + 20 = 30.  

5.  Example 

Consider the potential fusion graph in Figure 2(a) 

(assuming that the ranges for loops i, j, k, l are 10, 

10, 12, and 10 respectively). The associated 0-1 

variables for each potential fusion edge is shown in 

Table 1; the complete ILP formulation is as shown 

in Figure 5 below. The associate path and its pair of 

loop indices for each set of constraints in Figure 5 

are as shown in Table 2. The output of the ILP 

solver is shown in Figure 2(b), where the solid lines 

represent the resulting fused edges. 

6.  Experimental Results 

We have tested our ILP formulation on test 

examples taken from [Lam02] that arise in the field 

of correlated electronic structure methods such as 

coupled cluster and configuration interaction 

methods in quantum chemistry. Table 3 shows the 

comparison between the memory usage results from 

the optimal solution and our ILP formulation. It also 

shows that our formulation is efficient where the 

solution time is a fraction of seconds even for large 

test cases. Additional details on the benchmarks can 

be found in the first author’s PhD thesis [All05]. 

Table 1: Potential fusion edges and their associated 0-1 variables 

edge (A,f1) (A,f1) (f1,W) (B,f2) (B,f2) (B,f2) (C,f2) (C,f2) (f2,W) (f2,W)

loop-index i j j j k l k l j k 

variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

Maximize: obj: 90 x1 + 90 x2 + 9 x3 + 1080 x4 + 1100 x5+

           1080 x6 + 110 x7 + 108 x8 + 108 x9 + 110 x10 

Subject To: 

 c1:  x1 - x2 + x3 <= 1 

 c2:  - x1 + x2 - x3 <= 1 

 c3:  x4 - x5 - x9 + x10 <= 1 

 c4:  - x4 + x5 + x9 - x10 <= 1 

 c5:  - x7 - x9 + x10 <= 1 

 c6:  x7 + x9 - x10 <= 1 

 c7:  x4 - x6 - x9 <= 1 

 c8:  - x4 + x6 + x9 <= 1 

 c9:  - x8 - x9 <= 1 

 c10: x8 + x9 <= 1 

 c11: x5 - x6 - x10 <= 1 

 c12: - x5 + x6 + x10 <= 1 

 c13: x7 - x8 - x10 <= 1 

 c14: - x7 + x8 + x10 <= 1 

 c15: x4 - x5 + x7 <= 1 

 c16: - x4 + x5 - x7 <= 1 

 c17: x3 - x9 + x10 <= 1 

 c18: - x3 + x9 - x10 <= 1 

 c19: x3 - x4 + x5 + x10 <= 2 

 c20: - x3 + x4 - x5 + x9 <= 2 

 c21: x3 + x7 + x10 <= 2 

 c22: - x3 - x7 + x9 <= 2 

 c23: x4 - x6 + x8 <= 1 

 c24: - x4 + x6 - x8 <= 1 

 c25: x5 - x6 - x7 + x8 <= 1 

 c26: - x5 + x6 + x7 - x8 <= 1 

Figure 5: Complete ILP formulation for the fusion graph in Figure 2(a) 



7.  Conclusions 

This paper presented a technique for memory 

optimization for a class of computations that arises 

in the field of correlated electronic structure 

methods such as coupled cluster and configuration 

interaction methods in quantum chemistry. In this 

class of computations, loop computations perform a 

multi-dimensional sum of product of input arrays. 

There are many different ways to get the same final 

results that differ in the required number of 

arithmetic operations required. In addition, for a 

given number of arithmetic operations, different 

expressions of the loop have different memory 

requirements. Loop fusion is a plausible solution for 

reducing memory usage. By fusing loops between 

producer loop nest and consumer loop nest, the 

required storage of intermediate array is reduced by 

the range of the fused loop. Because resultant loops 

have to be legal after fusion, some loops can not be 

fused at the same time. In this paper, we have 

developed a novel integer linear programming (ILP) 

formulation that is shown to be highly effective on a 

number of test cases producing the optimal solutions 

using very small execution times. The main idea in 

the ILP formulation is the encoding of legality rules 

for loop fusion of a special class of loops using 

logical constraints over binary decision variables 

and a highly effective approximation of memory 

usage. Work is in progress in incorporating different 

objective functions to precisely capture memory 

usage. In addition, we plan to explore ways to 

incorporate disk access costs. 

Acknowledgments 

We gratefully acknowledge the support provided in 

part by the US National Science Foundation through 

awards CHE-0121676, CHE-0121706, CCF-

0508245, CNS-0509442, and CNS-0509467. 

Table 2: Associated paths and their pairs of loop indices for the constraints in Figure 5 

constraints associated path loop indices

c1, c2 < A, f1, W> i, j 

c3, c3 <B, f2, W> j, k 

c5, c6 <C, f2, W> j, k 

c7, c8 <B, f2, W> j, l 

c9, c10 <C, f2, W> j, l 

c11, c12 <B, f2, W> k, l 

c13, c14 <C, f2, W> k, l 

c15, c16 <B, f2, C> j, k 

c17, c18 < f1, W, f2> j, k 

c19, c20 < f1, W, f2, B> j, k 

c21, c22 < f1, W, f2, C> j, k 

c23, c24 <B, f2, C> j, l 

c25, c26 <B, f2, C> k, l 

Table 3: Fusion Results on Benchmarks 

Problem Optimal Sol Our ILP time(sec)  

Test 0 23 23 0.01  

Test 1 2.700909300006 e+12 2.700909300006 e+12 0.05  

Test 2 2.700900000206000 e+12 2.700900000206000 e+12 0.17  

Test 3 600008 600008 0.10  

Test 4 1.809003105 e+9 1.809003105 e+9 0.09  

Test 5 1.62027018006003 e+14 1.62027018006003 e+14 0.18  



References 

[All05] A. Allam, Power and Memory Optimization 
Techniques in Embedded Systems. Ph.D. 

Dissertation, Louisiana State University, Baton 

Rouge, LA, August 2005. 

[Aul96] W. Aulbur, Parallel implementation of 

quasi-particle calculations of semiconductors and 
insulators. Ph.D. Dissertation, The Ohio State 

University, Columbus, October 1996. 

[Cha93] S. Chatterjee, J. R. Gilbert, R. Schreiber, 

and S.-H. Teng, “Automatic array alignment in data-

parallel programs,” In Proc. 20th Annual ACM 

SIGACT/SIGPLAN Symposium on Principles of 

Programming Languages, New York, pp. 16–28, 

1993. 

[Cha95] S. Chatterjee, J. R. Gilbert, R. Schreiber, 

and S.-H. Teng, “Optimal evaluation of array 

expressions on massively parallel machines,” ACM

TOPLAS, 17 (1), pp. 123–156, Jan. 1995. 

[Fis91] C. N. Fischer and R. J. LeBlanc Jr., Crafting 

a compiler, Benjamin/Cummings, Menlo Park, CA, 

1991. 

[Gui78] L. J. Guibas and D. K. Wyatt, “Compilation 

and Delayed Evaluation in APL,” Fifth Annual 

ACM Symposium on Principles of Programming 
Languages, Tucson, Arizona, pp. 1–8, Jan. 1978. 

[Gao92] G. Gao, R. Olsen, V. Sarkar, and R. 

Thekkath, “Collective loop fusion for array 

contraction,” Languages and Compilers for Parallel 

Computing, New Haven, CT, August 1992. 

[Hyb86] M. S. Hybertsen and S. G. Louie, 

“Electronic correlation in semiconductors and 

insulators: band gaps and quasiparticle energies,” 

Phys. Rev. B, 34 (1986), pp. 5390. 

[Ken93] K. Kennedy and K. S. McKinley, 

“Maximizing loop parallelism and improving data 

locality via loop fusion and distribution,” Languages 
and Compilers for Parallel Computing, Portland, 

OR, pp. 301–320, August 1993. 

[Lam99] C. Lam, D. Cociorva, G. Baumgartner, and 

P. Sadayappan, “Memory-optimal evaluation of 

expression trees involving large objects,” Technical 

Report OSU-CISRC-5/99-TR13, Dept. of Computer 

and Information Science, The Ohio State University, 

May 1999. 

[Lam97] C. Lam, P. Sadayappan, and R. Wenger, 

“On optimizing a class of multi-dimensional loops 

with reductions for parallel execution,” Parallel 

Processing Letters, Vol. 7 No. 2, pp. 157–168, 1997. 

[Lam97a]C. Lam, P. Sadayappan, and R. Wenger, 

“Optimization of a class of multi-dimensional 

integrals on parallel machines,” Eighth SIAM 

Conference on Parallel Processing for Scientific 

Computing, Minneapolis, MN, March 1997. 

[Lam99] C. Lam, P. Sadayappan, D. Cociorva, M. 

Alouani, and J. Wilkins, “Performance optimization 

of a class of loops involving sums of products of 

sparse arrays,” Ninth SIAM Conference on Parallel 

Processing for Scientific Computing, San Antonio, 

TX, March 1999. 

[Lam99a] C. Lam, Performance optimization of a 

class of loops implementing multi-dimensional 

integrals, PhD thesis, Technical Report OSU-

CISRC-8/99-TR22, Dept. of Computer and 

Information Science, The Ohio State University, 

Columbus, August 1999. 

[Lam02] C. Lam, G. Baumgartner, D. Cociorva, and 

P. Sadayappan, “Memory Minimization for a Class 

of Loops Implementing Multi-Dimensional 

Integrals” manuscript, 2002. 

[Man95] N. Manjikian and T. S. Abdelrahman, 

“Fusion of Loops for Parallelism and Locality,” 

International Conference on Parallel Processing,

pp. II:19–28, Oconomowoc, WI, August 1995. 

[Roj95] H. N. Rojas, R. W. Godby, and R. J. Needs, 

“Space-time method for Ab-initio calculations of 

self-energies and dielectric response functions of 

solids,” Phys. Rev. Lett., 74 (1995), pp. 1827. 

[Sin96] S. Singhai and K. McKinley, “Loop Fusion 

for Data Locality and Parallelism,” Mid-Atlantic 

Student Workshop on Programming Languages and 

Systems, SUNY at New Paltz, April 1996. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


