
Multisite Co-allocation Algorithms for Computational Grid

Weizhe Zhanga, Albert M. K. Chengb, Mingzeng Hu a
a
School of Computer Science and Technology, Harbin Institute of Technology, P.R.China

{zwz , mzh}@pact518.hit.edu.cn
b
Real-Time Systems Laboratory, Department of Computer Science, University of Houston,

Houston, TX 77204-3010, USA
 cheng@cs.uh.edu

Abstract

Efficient multisite job scheduling facilitates the
cooperation of multi-domain massively parallel
processor systems in a computing grid environment.
However, co-allocation, heterogeneity, adaptability,
and scalability emerge as tough challenges for the
design of multisite job scheduling models and
algorithms. This paper presents a new multisite job
scheduling schema based on the multisite job
scheduling model and the performance model for a
heterogeneous grid environment. There are three key
components: resource selection, reservation, and
backfilling. The optimal and greedy-heuristic adaptive
resource selection strategies are introduced. The
conservative and easy backfilling are incorporated into
the backfilling procedure. Experiments indicate that
the scheduler and the algorithm are effective and
perform better than a non-adaptive algorithm.

1. Introduction

In the last few years, the trends in parallel
processing system design and deployment have been to
move away from single isolated powerful
supercomputers to cooperative networked distributed
systems, so called the grid [1]. The name grid has been
chosen as an analogy to the electric power grid where
several power plants provide numerous consumers
with electric power that the consumer is not aware of
its origin. Similar, it is the goal of the grid to allow
scientists and engineers to solve their large-scale
challenging applications [2].

Currently, grid systems are classified as
computational, data, and service grids [3]. The
computational grid category denotes systems that have
a higher aggregate computational capacity available for
applications than the capacity of any constituent

resource in the system. Clearly, a computational grid is
mainly of interest for large computational jobs or jobs
using a large data set as smaller jobs would usually run
locally. It has the potential to provide low average
response time for computational jobs and high utility
for computational resources. This potential can be
realized, however, only if the resources are managed
effectively, and especially the computational jobs are
scheduled well.

Recent advances in creating the grid resource
management infrastructure (e.g., Globus, Legion,
Condor-G, and UNICORE), facilitate the deployment
of the grid scheduler to schedule jobs onto multiple
heterogeneous sites, and promote the investigation of
the grid scheduling algorithms. Research into
scheduling for the grid environment can be broadly
classified into two categories: 1) application-level
scheduling: the focus is on approaches to optimize the
performance of a single job in a grid environment, and
2) job-level scheduling: the focus is on the
performance optimization across a collection of
independent jobs. In this paper, we put the emphasis
upon the second branch----independent parallel job
scheduling in a real-world computational grid scenario.

Parallel Job scheduling is a complex problem, even
in a single parallel computer. However, grid computing
systems, compared to the classical parallel computers,
pose several technical challenges that introduce an
additional degree of complexity to the scheduling
problem while amplifying the existing ones. Therefore,
it is necessary to point out the intrinsic nature of grid
job scheduling that is different from parallel computer
scheduling as follows:

1) Co-allocation or multisite scheduling: a
computational grid is typically composed of several
sites from geographically distributed organizations
(such as TeraGrid [4], E-science [5] and DAS [6]).
Parallel jobs should be scheduled to spread to more
than one sites in order to run simultaneously on several

1-4244-0054-6/06/$20.00 ©2006 IEEE

sites without considering the resource limitation from
one single site. The grid scheduling algorithm should
be capable of coordinating these resources from
different sites;

2) Heterogeneity: in a real-world grid scenario,
hardware and software resources from different sites
may have a rich diversity. Heterogeneous scheduling
issues are highlighted which simply do not occur in
"single-chassis" sequential or parallel machines;

3) Adaptability: though co-allocation can decrease
the response time and the utilization, the makespan of
some communication-intensive multisite applications
is increased sharply because of the low bandwidth and
high latency between the sites. Thus, the scheduling
algorithm must adapt to the network performance and
determine which parallel jobs should be mapped to
single sites or multiple sites;

4) Scalability: the scheduler for a single parallel
machine has a limited number of resources to control.
In comparison, the grid is intended to span over a very
large number of systems. Therefore, the scheduling
algorithms should avoid the explosion in
computational complexity.

Based on the above essences of the grid, this paper
concentrates on the heterogeneous multisite job
scheduling in real-world computational grid systems -
a homogeneous cluster of processors at each site and
different sites have different performance
characteristics. We propose a multisite scheduling
scheme which has been extended from the practically
effective, backfilling-based parallel job scheduling
strategies. A novel adaptive, multisite, and scalable
scheduling algorithm is introduced and performance
evaluations which include the average response time,
average wait time, and utility are provided.

The organization of this paper is as follows. We
introduce related works and clarify our motivation in
section 2. Section 3 presents the multisite computing
system model and multisite job performance model.
The adaptive multisite scheduling schema and
algorithms are discussed in detail in section 4. Section
5 defines the performance metrics used for evaluation.
Initial performance comparison under different
scenarios is presented in section 6. Finally, we
conclude this paper and give a discussion in section 7.

2. Related works and our motivation

In this section, we will introduce recent advances in
computational grid scheduling. First, in section 2.1 job-
level scheduling is described in detail. Our motivation
for adaptive, heterogeneous, multisite grid job
scheduling is clarified in section 2.2.

2.1 Job-level grid scheduling

Considerable research has been conducted over the
last decade on the topic of job scheduling for parallel
systems. Much of this research has been presented at
the annual Workshops on Job Scheduling Strategies for
Parallel Processing [7] and the International
Heterogeneous Computing Workshop [8]. Moreover,
Feitelson, Rudolph and Schwiegelshohn have written a
couple of surveys [9. 10] to report the current art and
state for parallel job scheduling on the supercomputer.
Recent trends for parallel job scheduling in
workstation clusters and the computational grid are
summarized in [11], where the grid job scheduling is
classified into singlesite (non-co-allocation) and
multisite (co-allocation). Section 2.2,1 presents some
remarkable works on singlesite grid job scheduling.
Also, some important researches on multisite grid job
scheduling are introduced in section 2.2.2.

2.2.1. Singlesite job scheduling. As a continuation of
metacomputing ideas, singlesite job scheduling permits
the jobs to run on the sites from different domains, but
it is not allowed for a single job to share the machines
by crossing the site boundaries. Abawajy and
Dandamudi [12] propose an on-line dynamic scheduling
policy that manages multiple job streams on
multicluster computing systems with the objectives of
improving the mean response time and system
utilization. Also, Sabin, Kettimuthu, Rajan and
Sadayappan [13] present the idea of multiple
simultaneous requests for allocating jobs to the
heterogeneous environment. The basic idea is to
submit each job to multiple sites, and cancel redundant
submissions when one of the sites is able to start the
job.

More recently, Ernemann, Hamscher and Yahyapour
[14] perform simulations to evaluate the effects of a
global grid constituted by the compute centers located
in different time zones with a simple two-step job
scheduling strategy (Bestfit and Backfilling). Their
results show that the average weighted response time
of all submitted jobs decrease up to about 30% for a
global grid with different time zone distributions
comparing with closed Grids in a single country. Also,
the benefits of load sharing of parallel jobs in the
homogeneous and heterogeneous grid are investigated
and a simple scheduling heuristic to select the target
machines of migrated jobs is provided [15]. In addition
some works on the usage of the genetic algorithm to
improve the quality of the grid scheduling are
discussed in [16, 17].

2.2.2. Multisite job scheduling. The described
restriction of singlesite job scheduling is lifted in a
multisite scenario and a job can be executed in more
than one site in parallel. In [18, 19], the authors analyzed
the problem of executing a parallel application on a
multi-cluster environment. They presented some
simulations where multisite execution was beneficial
compared with job-sharing, even for an additional
communication overhead of about 25%. Later, the
same authors improved the previous scheduling
process by applying constraints for the fragmentation
of jobs [20]. Finally, they presented results showing that
the use of partitioned configuration did not necessarily
imply a performance drawback [21].

Another important research about co-allocation or
multisite site scheduling is presented in [22-31]. Bucur
and Epema [22-24] assess the influence on the mean
response time of the job structure and size, the sizes of
the clusters in the system, the ratio of the speeds of
local and wide-area communications, and of the
presence of a single or of multiple queues in the
system. Also, they evaluated different scheduling
policies for co-allocation, with unordered requests, in
multicluster systems with space sharing for rigid multi-
component jobs [25-28]. Furthermore, they use the
measure-based trace to evaluate the performance of the
scheduling policies, design a dynamic co-allocation
service and implement multiple components for a real-
world wide-area computer system consisting of five
clusters [29-31]. Some other works are performed under
different assumptions and constraints. A new
scheduling model that permits job migrations is
considered to share the dynamic grid environment [32-

34]. Snell, Clement, Jackson and Gregory [35] propose
advanced reservation strategies for co-allocation.

2.3 Our motivation

Most of the scheduling algorithms described above
cover only part of the nature of the grid mentioned in
section 1. For example, many singlesite scheduling
algorithms in section 2.2.1 are extended from the
traditional heterogeneous computing systems in the
same domain, which neglects the possibility of co-
allocation or multisite computing jobs across the
boundary of sites [12-17]. Although many papers in
multisite job scheduling have addressed the co-
allocation problem indeed, all the sites from different
domains are assumed to be homogenous without taking
the heterogeneity in a real-world grid scenario into
consideration [18-31]. Moreover, less attention is paid on
the adaptability and some algorithms lack scalability
[16, 17]. Our motivation is to design grid job scheduling

algorithms which allow co-allocation, and are adaptive
and scalable in a heterogeneous computational grid.

3 Models for multisite job scheduling

In this section, we introduce our model of a multisite
computing system for the computational grid. The
section is organized as follows. Section 3.1 shows our
model of multisite computing system and the
constraints for its components. In section 3.2, the
performance models for jobs across the multisite are
discussed.

3.1 Models for multisite computing systems

Models for multisite computing systems can be
divided into four parts: sites, jobs and job queue, local
scheduler, and grid scheduler as showed in figure 1.

Fig.1. Model for multisite computing system

3.2 Multisite job performance model

An accurate performance prediction model is the
foundation of scheduling algorithms’ design and
evaluation. In this subsection, we introduce the
multisite job performance model in a heterogeneous
computational grid.

Assume the number of sites is N. Let Ti represent the
predicated execution time of parallel jobs on the local,
single site i, which is normally provided by grid users;
Ti ->j denotes the time when the job is submitted at the

site i but runs at the remote, single site j; Ti -> j k…..m

means the job is submitted at the site i but executes
simultaneously at sits j, k….m, where 1 i, j, k, m N.

The heterogeneity of different sites is denoted by a
heterogeneous factor hi, where 0<hi. The penalty of
multisite execution is denoted by a multisite factor p (j,

k…m), where 1 p (j, k…m). The heterogeneity and penalty
of multisite execution in a real system scenario highly
depend on the architecture of the sites, nodes’

performance, job communication patterns, and the
network configuration between the sites. In our model,
we do not consider these effects. All mentioned
heterogeneity and multisite penalty are summarized in
the heterogeneous and multisite factor, respectively.

When a job is submitted at the site i and transferred
to the remote site j, the transport of data requires
additional time ttrans(i, j)= s/bi, j + li, j, where s is the data
size, bi, j and li, j are network bandwidth and latency,
respectively. Now the performance prediction model of
Ti ->j is presented as follows:

Ti->j= Ti•hj/hi+ ttrans(i, j) (1)
Consider the job models of the multisite scenerio in

section 3.2.2, all the tasks of a job are terminated at the

same time. Thus, the predicted execution time Ti -> j

k…..m should be determined by the worst performance

site as follows:
 Ti->(j, k…m)= Ti•p(j, k…m)•max(hj, hk,...., hm)/hi +

max(ttrans(i, j), ttrans(i, k),...., ttrans(i, m)) (2)

4 Multisite scheduling algorithms

This section introduces the scheme of multisite
scheduling algorithms. We will discuss the complexity
of the algorithms in a future paper.

4.1 Multisite scheduling algorithm scheme

In the online scheduling scenario of grid jobs, most
job-level grid scheduling algorithms use the First-
Come-First-Served (FCFS) policy as the basic
scheduling scheme. FCFS provides some kinds of
fairness, is easy to implement, and requires very little
computational effort [36]. Thus, we employ the FCFS
priority strategy in our global job queue. However,
FCFS can result in poor scheduling quality such as low
system utilization [37] when job requests with large
node requirements are submitted. Backfilling [38, 39] is
proposed to improve the system utilization and by
identifying idle nodes and moving forward smaller
jobs that fit into those nodes, without delaying any job
with future reservations. Therefore, we use Backfilling
to reinforce the FCFS scheme.

Though we use the FCFS plus Backfilling in the
scheduling scheme as a traditional parallel
supercomputer has done, there are two remarkably
different challenges on the design of heterogeneous,
multisite job scheduling algorithms: a) The
heterogeneity of the sites makes the scheduling
decision more complex. If all the nodes of the sites are
homogeneous, the execution time of a job in the
submitted single site remains best compared with
transporting the job to a remote single site or multisite

because of the transportation and synchronization
penalty. However, the penalty resulting from network
communications can be remedied when the remote
sites or multisite have better computing ability than the
submitted sites. Therefore, the execution time of a job
may decreases when the job executes on the remote
sites or multisite in a heterogeneous grid. b) Multisite
reservation makes it possible to reduce the execution
time of a job. Traditionally, the scheduler reserves
nodes only if the quantity of node requests can not be
satisfied. In the heterogeneous, multisite grid, a job can
be reserved in order to acquire better execution time
even if it can run immediately. Based on the above
consideration, we present a multisite scheduling
algorithm scheme as follows:

Algorithm 1. Multisite scheduling algorithm
scheme

Input: (1) Job queue (2) Sites aggregate
Output: (1) Mapping results
Variables: t∆ inter-schedule interval

Currentjob first unmapped job in the job
queue

Status indicate two kinds results of
resource selection, instant and reservation execution

1. (Initialization) If the job queue is empty, then
wait t∆ interval and recheck the status of the job

queue; Otherwise, collect the sites’ state from the local
schedulers and the job requests from the job queue.

2. (Mapping) For each unmapped job request in the
current job queue

(a) CurrentJob the first unmapped job in the
current job queue

(b) Status ResourceSelection (CurrentJob)
//return the mapped status and resources for current job

(c) If the mapped Status suggests CurrentJob should
run immediately in the single site or multisite, inform
the local schedulers to transport and execute the job;
otherwise, call the function Reserve (CurrentJob) and
Backfill (CurrentJob) sequentially.

(d) Update the information for job queue and sits
status

3. (Return) Return the mapping results and go back
to step 1.

4.1.1. Resource selection. In this section, we propose
two adaptive, multisite resource selection sub-
algorithms – optimal and greedy adaptive multisite
resource selection.

The common ideas of these two algorithms is as
follows: First, if the node requests of a current job
can’t be satisfied or the predicted job execution time of
immediate running is longer than by reservation, the
current job is reserved. Second, both are adaptive to
different resources whether it is local, remote single

site, or multisite. To the end, better resource allocation
and mapping is selected and returned.

However, the difference between the algorithms is
remarkable. Optimal resource selection enumerates all
the resource combinations for best job performance but
lacks scalability while the greedy resource selection
employs the greedy heuristic based on the node
performance. It is more scalable subject to some kinds
of performance penalty.

Algorithm 2. Optimal adaptive multisite resource
selection algorithm

Input: (1) CurrentJob (2) Sites status
Output:(1) Status of instant or reservation execution

(2) Mapping results of the best resource
allocation

Variables: Ti->j predicted execution time when job
submitted at site i but run at site j

Ti->(j, k…m) predicted execution time when
job submitted at site i but run at site j, k,...m

T ‘
i->j predicted execution time when

job submitted at site i but run at site j by reservation
T ’

i->(j, k…m) predicted execution time when
job submitted at site i but run at site j, k,..m by
reservation

Ti, available the earliest available time of site i
1. (Check resources limitation) If the node request

of Currentjob exceeds the total node number from all
sits, then drop the job and procedure return. Otherwise,
if the node request of Currentjob exceeds all the idle
node number, then Status reservation flag and
procedure return; else, go to step 2

2. (Compute instant execution time) Enumerate all
the combination on single sites or multisite.

(a) For each single site which the idle nodes are
larger than the Currentjob’s request, computing Ti->j

 (b) For all the multisite combination that the idle
nodes are larger than the Currentjob’s request,
computing Ti->(j, k…m)

3. (Compute reservation execution time) Enumerate
all the combination in single sites or multisite by
reserve.

(a) For each site, compute Ti, available

(b) For each single site which the total nodes are
larger than the Currentjob’s request, T ‘

i->j Ti, available

+ Ti->j

(c) For all the multisite combination which the total
nodes are larger than the Currentjob’s request, T ’

i->(j,

k…m) Ti->(j, k…m) + max(Tj, available, Tk, available, Tm, available)
4. (Return) If the shortest predicted execution time

belongs to the Ti->j or Ti->(j, k…m), then Status instant
flag and return the resource allocation; Otherwise,
Status reservation flag and return.

4.1.2. Job reservation and backfilling. The job
reservation procedure also can be classified into

optimal and greedy. Both algorithms are almost
identical with the step 3 of the algorithm 2, so that we
do not present the algorithms in detail. Actually, in a
real-implementation the multisite job scheduling
requires more advanced resource reservation than in
traditional supercomputing. Traditional parallel
computers are normally in the same domain with
identical management policies. Nevertheless, in a
multisite grid scenario, the different resources belong
to different owners and do not have a common
management infrastructure. Also, it lacks cooperation
between the local schedulers and grid scheduler, and
there is little knowledge about each others policies,
priorities, or workload. As a consequence of these
conditions, it is hard to realize the intention of multisite
co-allocation. Advanced reservation that reserves the
resources on different sites may circumvent this
problem [39]. Once a job is reserved, there are two
common variations to backfilling - easy and
conservative [38, 39].

5 Performance Metrics

We use the following metrics to evaluate the
performance of multisite scheduling algorithms:

1. Average Weighted Response Time (AWRT):

, ,()j j end j submit

j Jobs

j

j Jobs

Cost T T

AWRT
Cost

∈

∈

× −
=

∑
∑

 (3)

2. Average Weighted Wait Time (AWWT):

, ,()j j start j submit

j Jobs

j

j Jobs

Cost T T

AWWT
Cost

∈

∈

× −
=

∑
∑

 (4)

In equations (3) and (4), Tj, end, Tj, start and Tj, submit

represent the end time, start time, and submitted time
of job j, respectively. The resource consumption of a
job Costj = Wi • (Tj, end – Tj, start) is defined as the
product of the job’s runtime and the number of
requested resources, where Wi represents the number of
requested resources. The average weighted response
time is the sum of all weighted response times divided
by the number of all jobs. The wait time of each job is
the difference between the start time and the
submission time. The weights are defined the same
way as for the average weighted response time. AWRT
and AWWT have been used to evaluate the quality of
scheduling algorithms from the system’s and user’s
viewpoint by many other researchers [14, 18-21, 33].

6 Performance evaluation: adaptive vs.

non-adaptive

In this section, we evaluate the performance of
multisite job scheduling algorithms and several aspects
which would impact the performance are investigated.
In particular, we study the performance of the adaptive
resource selection against the non-adaptive version.
The non-adaptive algorithm assigns strict priorities for
site combination selection in order to avoid the penalty
of job transfer and multisite communication. Namely,
jobs prefer the submitted local site with the highest
priority, then remote single sites, and multisites as the
lowest one. The experimental results in Figures 2 and 3
show that no matter how small (NISAC 1.0, HIT 1.0,
UC 1.0) or large (NISAC 1.4, UC 1.0, HIT 0.6)
heterogeneity difference, adaptive site selection
significantly outperforms the non-adaptive one. We
configure the network bandwidth between sites as
100Kbps, the conservative algorithm is used for
backfilling and the revised original trace
(JobWorkload1) is adapted as input.

1.0 1.1 1.2 1.3 1.4 1.5 1.6

60000

80000

100000

120000

140000

160000

A
W

R
T

 (
s
e

c
o
n

d
s)

Multi-site overhead factor

 Adaptive-Optimal

 Adaptive-Heuristic

 Non-Adaptive

1.0 1.1 1.2 1.3 1.4 1.5 1.6

20000

40000

60000

80000

100000

120000

A
W

W
T

(s

e
c
o

n
d

s
)

Multi-site overhead factor

 Adaptive-Optimal

 Adaptive-Heuristic

 Non-Adaptive

Fig.2. AWRT and AWWT comparisons of
adaptive and non-adaptive algorithms with
small heterogeneity difference

1.0 1.1 1.2 1.3 1.4 1.5 1.6

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

320000

340000

360000

A
W

R
T

(s

e
c
o
n

d
s
)

Multi-site overhead factor

 Adaptive-Optimal

 Adaptive-Heuristic

 Non-Adaptive

1.0 1.1 1.2 1.3 1.4 1.5 1.6

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

A
W

W
T

 (
s
e

co
n

d
s
)

Multi-site overhead factor

 Adaptive-Optimal

 Adaptive-Heuristic

 Non-Adaptive

Fig.3 AWRT and AWWT comparisons of
adaptive vs. non-adaptive algorithms with
large heterogeneity difference

Figures 2 and 3 show the AWRT and AWWT of the
optimal adaptive, greedy adaptive, and non-adaptive
algorithms as the multisite factor varies from 1.0 to 1.6
with small and large heterogeneity difference. We find
that the AWRT and AWWT of the optimal and greedy
adaptive algorithms are consistently lower than the
non-adaptive one because not only for the single site
and multisite but also when the immediate and
reservation executions are considered in the adaptive
algorithm. Also, with the increment of the multisite
factor the difference becomes larger. The reason is that
a larger multisite factor provides more possibility of

reservation execution. When the multisite factor is 1.6
in Figure 2, the AWRT of the non-adaptive algorithm
is nearly 100% higher than the optimal one while the
AWWT is nearly 200% higher. Because the greedy
adaptive algorithm is a kind of heuristic favoring the
high performance resources and does not enumerate all
the resource combinations, its AWRT and AWWT are
slightly higher than the optimal one. Nevertheless, the
AWRT and AWWT of the greedy one are still 82%
and 134% lower than the non-adaptive one.
Meanwhile, when the multisite factor is 1.6 in Figure
3, the AWRT of the non-adaptive algorithm is still
30% higher than the greedy one and 70% higher than
the optimal one. We will report experimental results of
the impact of site heterogeneity and network
performance, as well as easy versus conservative
backfilling strategies, on the performance of the
proposed algorithms.

7 Conclusion and future work

In this paper we point out that co-allocation,
heterogeneity, adaptability, and scalability are the
intrinsic nature of grid job scheduling different from
parallel computer scheduling. A multisite computing
(co-allocation) system model is introduced in the real-
world scenario, which allows the jobs to run across site
boundaries. Optimal and greedy multisite scheduling
algorithms are proposed to adaptively select and map
grid jobs to heterogeneous resource combinations. The
greedy multisite scheduling algorithm scales well
while the optimal one does not have polynomial time
complexity. Initial experimental results show that the
adaptability of an algorithm is very important to its
performance, as shown by comparing optimal and
greedy adaptive algorithms with the non-adaptive
version. This work is just a first step to exploit the
nature of grid job scheduling and there are still many
works remaining for further exploration. For example,
many systems are connected to the grid, so the
continuous availability and work must be guaranteed.
Grid scheduling algorithms can keep parallel jobs
running even if some components are impacted by a
network or resource failure.

Acknowledgment This work was supported in part by
the Natural Science Foundation of China under Grant
No.90412001 and the National Grand Fundamental
Research 973 Program of China under Grant
No.G2005CB321806. Albert M. K. Cheng is also
supported by a grant from the Institute for Space
Systems Operations.

References
[1] I. Foster. The grid: A new infrastructure for 21st

century science. Physics Today, 55(2):42 47, 2002.

[2] Ian Foster and Carl Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure (Second
Edition). Morgan Kaufmann, 2004.

[3] Arshad Ali, Ashiq Anjum, Atif Mehmood, Richard
McClatchey, Ian Willers, Julian Bunn, Harvey
Newman, Michael Thomas, Conrad Steenberg A
Taxonomy and Survey of Grid Resource Planning and
Reservation Systems for Grid Enabled Analysis
Environment Proceedings of the 2004 International
Symposium on Distributed Computing and
Applications to Business Engineering and Science

[4] The TeraGrid project. http://www.teragrid.org/
[5] The Europe Data Grid. http://egee-intranet.web.

cern.ch/egee-intranet/gateway.html
[6] The Distributed ASCI Supercomputing’s site.

http://www.cs.vu.nl/das
[7] Workshops on Job Scheduling Strategies for Parallel

Processing, http://www.cs.huji.ac.il/~feit/parsched/
[8] The International Heterogeneous Computing

Workshop.
http://www.cs.umass.edu/~rsnbrg/hcw2005/hcw05_pre
v_workshops.html

[9] D. G. Feitelson, A Survey of Scheduling in
Multiprogrammed Parallel Systems. Research Report
RC 19790 (87657), IBM T. J. Watson Research Center,
Oct 1994.

[10] D. G. Feitelson and L. Rudolph, ``Parallel job
scheduling: issues and approaches''. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (Eds.), pp. 1-18, Springer-Verlag, 1995.
Lecture Notes in Computer Science Vol. 949

[11] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn,
``Parallel job scheduling --- a status report''. In Job
Scheduling Strategies for Parallel Processing, D. G.
Feitelson, L. Rudolph, and U. Schwiegelshohn (Eds.),
pp. 1-16, Springer-Verlag, 2004. Lecture Notes in
Computer Science Vol. 3277.

[12] J. H. Abawajy, S. P. Dandamudi. "Parallel Job
Scheduling on Multicluster Computing Systems,"
cluster, p. 11, IEEE International Conference on
Cluster Computing (CLUSTER'03), 2003.

[13] Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan and P.
Sadayappan, Scheduling of Parallel Jobs in a
Heterogeneous Multisite Environment, Proceedings of
9th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP 2003), June 2003

[14] C. Ernemann, V. Hamscher, R. Yahyapour "Benefits of
Global Grid Computing for Job Scheduling", in 5th
IEEE/ACM International Workshop on Grid
Computing, in Conjunction with SuperComputing
2004, November 8, 2004, Pittsburgh, USA, pp. 374-
379, IEEE press.

[15] Darin England, Jon B. Weissman. Costs and Benefits
of Load Sharing in the Computational Grid. Workshop
on Job Scheduling Strategies for Parallel Processing
with Sigmetrics 2004.

[16] V. Di Martino , M. Mililotti, Sub optimal scheduling in
a grid using genetic algorithms, Parallel Computing,
v.30 n.5-6, p.553-565, May 2004

[17] Yang Gao, Joshua Zhexue Huang, Hongqiang Rong.
Adaptive Grid Job Scheduling with Genetic Algorithm.
Future Generation Computer System. Elsevier Press.
2005.21:151-161.

[18] V.Hamscher, U.Schwiegelshohn, A.Streit,
R.Yahyapour, “Evaluation of Job-Scheduling
Strategies", for Grid Computing (Grid 2000) at 7th
International Conference on High Performance
Computing (HiPC-2000), Bangalore, India, LNCS
1971, pp. 191 - 202

[19] Ernemann C, Hamscher V, Schwiegelshohn U, Streit
A, Yahyapour R. On advantages of Grid computing for
parallel job scheduling. Proceedings 2nd IEEE/ACM
International Symposium on Cluster Computing and
the Grid (CCGrid 2002), May 2002; 39–47.

[20] Ernemann C, Hamscher V, Streit A, Yahyapour R.
Enhanced algorithms for multisite scheduling.
Proceedings 3rd IEEE/ACM International Workshop
on Grid Computing (Grid 2002) at Supercomputing
2002 (Lecture Notes in Computer Science, vol. 2536),
Baltimore, MD, 2002. Springer: Berlin, 2002; 219–231.

[21] Ernemann C, Hamscher V, Streit A, Yahyapour R. On
effects of machine configurations on parallel job
scheduling in computational grids. Proceedings of the
6th Workshop on Parallel Systems and Algorithms.
VDE-Verlag, 2002; 169–179.

[22] Bucur, A., Epema, D.: The Influence of the Structure
and Sizes of Jobs on the Performance of Co-Allocation.
In Feitelson, D., Rudolph, L., eds.: 6th Workshop on
Job Scheduling Strategies for Parallel Processing.
Volume 1911 of LNCS. Springer-Verlag (2000) 154–
173

[23] Bucur, A., Epema, D.: The Influence of
Communication on the Performance of Co-Allocation.
In Feitelson, D., Rudolph, L., eds.: 7th Workshop on
Job Scheduling Strategies for Parallel Processing.
Volume 2221 of LNCS. Springer-Verlag (2001) 66–86

[24] Bucur, A., Epema, D.: Local versus Global Queues
with Processor Co-Allocation in Multicluster Systems.
In Feitelson, D., Rudolph, L., Schwiegelshohn, U.,
eds.: 8th Workshop on Job Scheduling Strategies for
Parallel Processing. Volume 2537 of LNCS. Springer-
Verlag (2002) 184–204

[25] A.I.D. Bucur and D.H.J. Epema, Priorities among
Multiple Queues for Processor Co-Allocation in
Multicluster Systems, 36th Annual Simulation Symp.,
Orlando, Fl., USA, march-april 2003, 15-27, 2003.

[26] A.I.D. Bucur and D.H.J. Epema, The Maximal
Utilization of Processor Co-Allocation in Multicluster
Systems, Int'l Parallel and Distributed Processing
Symp. (IPDPS 2003), Nice, France, april 2003, 60-69,
2003.

[27] A.I.D. Bucur and D.H.J. Epema, The Performance of
Processor Co-Allocation in Multicluster Systems, 3rd
IEEE/ACM Int'l Symp. on Cluster Computing and the
Grid (CCGrid2003), Tokyo, Japan, may 2003, 302-309,
2003.

[28] A.I.D. Bucur and D.H.J. Epema, Trace-Based
Simulations of Processor Co-Allocation Policies in
Multiclusters, 12th IEEE Int'l Symp. on High
Performance Distributed Computing (HPDC-12),
Seattle, Wa, USA, june 2003, 70-79, 2003.

[29] S. Banen, A.I.D. Bucur, and D.H.J. Epema, A
Measurement-Based Simulation Study of Processor
Co-Allocation in Multicluster Systems, Ninth
Workshop on Job Scheduling Strategies for Parallel
Processing (in conjunction with HPDC-12), D.G.
Feitelson, L. Rudolph and U. Schwiegelshohn (eds),
Seattle, USA, june 2003, LNCS 2862, 105-128, 2003

[30] J.M.P. Sinaga, H.H. Mohamed, and D.H.J. Epema, A
Dynamic Co-Allocation Service in Multicluster
Systems, Tenth Workshop on Job Scheduling
Strategies for Parallel Processing (in conjunction with
Sigmetrics-Performance 2004), D.G. Feitelson, L.
Rudolph and U. Schwiegelshohn (eds), New York,
USA, June 2004, LNCS 3277, 194-209, 2005.

[31] H.H. Mohamed and D.H.J. Epema, The Design and
Implementation of the KOALA Co-Allocating Grid
Scheduler, European Grid Conference, Amsterdam,
February 2005, LNCS 3470, 640-650, 2005.

[32] A. Goldman and C. Queiroz. A model for parallel job
scheduling on dynamical computer grids. Concurrency
and Computation: Practice and Experience, Vol. 16, pp.
461-468, March, 2004.

[33] H. Shan, L. Oliker, R. Biswas, Job Superscheduler
Architecture and Performance in Computational Grid
Environments, SC2003, Phoenix, AZ, Nov 2003.

[34] H. Shan, L. Oliker, W. Smith, R.Biswas, "Scheduling
in Heterogeneous Grid Environments: The Effects of
Data Migration, 12th International Conference on
Advanced Computing and Communication (ADCOM),
Ahmedabad, India, Dec 2004.

[35] Q. Snell, M. Clement, D. Jackson, and C. Gregory,
"The performance impact of advance reservation meta-
scheduling ". In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp.
137--153, Springer Verlag, 2000.

[36] U. Schwiegelshohn and R. Yahyapour. Fairness in
Parallel Job Scheduling. Journal of Scheduling,
3(5):297-320. John Wiley, 2000.

[37] J.P. Jones and B. Nitzberg, “Scheduling for Parallel
Supercomputing: A Historical Perspective of
Achievable Utilization,” 5th Workshop on Job
Scheduling Strategies for Parallel Processing, 1999

[38] J. Skovira, W. Chan, H. Zhou and D. Lifka, “The
EASY-Loadleveller API Project,” Proc. 2nd Workshop
on Job Scheduling Strategies for Parallel Processing,
Honolulu, Apr. 1996, pp. 41- 47. Lecture Notes in
Comp. Sci. Vol. 1162, Springer-Verlag.

[39] D. Feitelson, L. Rudolph, U. Schweigelshohn, K.
Sevcik, and P. Wong. “Theory and Practice in Parallel
Job Scheduling,” 3rd Workshop on Job Scheduling
Strategies for Parallel Processing, Springer-Verlag
Lecture Notes in Computer Science, Vol. 1291, pp. 1-
34, April 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

