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Abstract— The major drawback of partial dynamic reconfigu-
ration is the reconfiguration delay overhead. To reduce the recon-
figuration bitstream between two consecutive implementations,
design components are reused. However, this incurs additional
physical constraints to design which can lead to unroutability
and congestion in design. In this paper, we propose a physically-
aware component reuse strategy. We propose a floorplanning
algorithm to support two-dimensional partial reconfiguration.
The proposed floorplanning tool enables a wide design space
exploration for component reuse. Key features are selection of
the fixed modules, location of the fixed modules, mapping to the
fixed modules, and interconnect planning between the fixed and
reconfigurable modules. We implemented a sequence of dataflow
graphs on Xilinx Virtex 4 devices using our tool for component
reuse. When reuse is exploited, the experimental results report
more than 50% reduction in the number of reconfiguration
frames compared to the flow during which component reuse is
not applied. Our proposed floorplan-aware matching technique
(to map the modules to fixed components) can reduce the recon-
figuration frames by 10% on average compared to dependency-
based matching algorithm. In addition, we show that by different
placement of the modules for two consecutive tasks, the variation
in the number of reconfiguration frames can be between 25%-
60% or it may even lead to unroutability of the circuits. The
results imply that there is a need to tune the physical design
tools for minimizing runtime reconfiguration delay overhead.

I. INTRODUCTION

Partial dynamic reconfiguration enables modification of the
design during execution. This feature can bring flexibility to
embedded systems for enhanced adaptivity and tolerance to
variations and uncertainties. Xilinx Virtex FPGAs are exam-
ples of such devices. However, the flexibility brought by these
devices comes with the cost of runtime reconfiguration delay.
Xilinx Virtex 4 devices provide a much faster reconfiguration
rate compared to Virtex II series and allow 2-D reconfiguration
as opposed to Virtex II devices in which configuration is
columnar-based. Along with advances in architectural features
for reconfiguration, development of CAD tool support for
reconfiguration is required. The size of the bitstream for
reconfiguration is proportional to the size of the resources
being reconfigured. Hence, reconfiguration delay is determined
by the number of resources being reconfigured on the chip.

In order to reduce this delay overhead, component reuse be-
tween two consecutive implementations can reduce the size of
the reconfiguration bitstream. In Figure 1, the notion T1 → T2

means that task T2 will be reconfigured and executed after T1

right where T1 is located on the chip. As shown in Figure 1, T1

and T2 have two common modules (c and a). Modules a and
c can be reused in T2. Modules c and a are referred to as fixed
modules. The location and configuration of the fixed modules
remain unchanged. The rest of the modules in both tasks are
referred to as reconfigurable modules. By component reuse,
the number of reconfiguration frames between the consecutive
tasks in a sequence can be reduced significantly.
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Fig. 1. Improving runtime reconfiguration delay by enhancement of potential
reuse correlation among a sequence of applications.

There are several related work which define the gain in
reconfiguration between the two given tasks by looking at
functionality of the tasks [1], [2]. However, there is a lack of
physical planning in this flow. On the other hand, some other
related work focuses on the bitstreams of two tasks regardless
of their functionality which is too low level [3], [4]. Given
data flow graph representation of two tasks, the components
are mainly basic arithmetic operations and registers. The
functionality of the blocks in the tasks is similar, hence
there is a great opportunity for component reuse. However,
the connectivity in two designs is different. The question is
that if they are placed and routed carefully, i.e., considering
connectivity of the modules, whether several operations can
overlap in the two tasks or not. In order to achieve this goal,
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there is a need for physical planning for component re-use.
In this paper, we focus on placement-driven component reuse
on target devices with two-dimensional partial reconfiguration
support (e.g. Xilinx Virtex 4). Once a set of components are
observed between the two tasks, there is a need to make
decision on which can be fixed and where they are placed.
In Figure 1, two different implementations locate the fixed
modules a and c at different locations (Designs I and II). The
main challenges in component reuse are the incurred physical
constraints as well as interface of the fixed components with
reconfigurable components. Connectivity between the fixed
module and reconfigurable components from one task to
another can be so different that fixing the placement of the
fixed blocks may lead to unacceptable congestion in the other
design and hence lead to increase in reconfiguration overhead.

The main objective of this work is to explore the maximum
potential overlap between the two given task graph with a set
of common components such that runtime reconfiguration de-
lay can decrease. We first develop a floorplanning tool FFPR,
in which planning for two-dimensional runtime reconfigura-
tion is considered. We adapted state-of-the-art ASIC floorplan-
ning tool, Parquet [5] and modified the tool for this objective.
During floorplanning, we allow sufficient routing area around
each fixed component such that the interconnect between the
components does not interfere with the reconfiguration frames
for the fixed region (white space allocation). We also integrate
a mapping algorithm to decide which components should be
mapped on the fixed components. Our tool enables a wide
systematic design space exploration on component reuse for
partial dynamic reconfiguration.

Designers can use Xilinx CAD tool in guide mode to define
the fixed components and their location on the device. Then
the rest of the second design gets placed and routed with
regards to the fixed blocks. There is a lack of physical planning
in this flow. Hence, we feed our tool to this flow so that
the implementation of the second task can more physically-
aware overlap with the implementation of the first task to
reduce the difference in the two configuration bitstreams. We
applied this flow to a set of data flow graphs from MediaBench
benchmark suite [6] on Xilinx Virtex 4 devices. When reuse
is exploited, the experimental results report more than 50%
reduction in the number of reconfiguration frames compared
to the flow during which component reuse is not applied.
Our proposed floorplan-aware matching technique can reduce
the reconfiguration frames by 10% on average compared to
dependency-based matching algorithm. In addition, we show
that by different placement of the modules in two consecutive
tasks, the variation in the number of reconfiguration frames
can be between 25%-60% or it may even lead to unroutability
of the circuits.

The outline of the paper is as follows: In Section II, the
related work is presented. Key features in FPGA floorplanning
are outlined in Section III followed by an outline of Parquet
tool in Section IV. Our tool and design methodology for
component reuse is described in section V. The experimental
results are presented in Section VI.

II. RELATED WORK

Despite the advantages of component reuse, many proposed
scheduling algorithms with dynamic reconfiguration support
(e.g. [2], [7]) do not consider reuse for simplicity. Researchers
in [8] have proposed a linear placement technique with re-use
on FPGAs with column-based partial reconfiguration support.
However, the interface model between the tasks and crossing
the fixed components cannot be applied to 2-D reconfiguration
scheme. In [9], the authors present placement of bus macros
on the boundaries of the device for devices like Virtex 2.

The work in [10] describes merging of two or more
configuration sequences to avoid reconfiguration overhead.
Consecutive sequences are matched and merged. The paper,
however, does not deal with partial reconfiguration and consid-
ers full reconfiguration of device if the modules in the current
sequence do not cover the next sequence. In [11], an algorithm
for merging the two or more dataflow graphs is presented. The
merging of interconnects is done by adding MUX trees. The
algorithm minimizes hardware area and MUX area. However,
different connectivity between a sequence of several dfgs can
make the interconnect and MUX tree very complex and make
the routing congested.

In [3], [12], it is shown that on average less than 3% of
the reconfiguration bits are different between configuration
of given two designs. However, due to frame-based archi-
tectural feature for configuration, the difference is larger in
practice. The proposed method in [4] reduces the amount of
reconfiguration data that needs to be transferred to the device
by making use of configurations that are already present in
the configuration memory. In their method, placement and
alignment of the frames are studied after implementation at
configuration bit level. Whereas in our approach, the physical
planning is considered earlier in design flow.

In [13], a graph matching technique is proposed to optimize
for reconfigurable sequence of designs on Xilinx 6000 series.
The matching is applied mostly at gate level. In [14], the
goal is to match the common hardware among different
execution sequences on a proposed reconfigurable architecture
model. The experiments were done using modular flow in
Virtex 2. Since Virtex 4 supports frame-based reconfiguration
rather than column-based reconfiguration, the complexity of
reconfiguration is different in Virtex 4 from Virtex 2 devices.
Moreover, authors in [14] did not consider placement and wire
transfer.

In order to minimize the number of reconfigurations by
reuse on a sequence of tasks, the authors in [1], [15], have
developed replacement heuristics based on a well-known
memory-page replacement strategy (LFD). In both approaches,
it is assumed that the tasks with reuse are identical in func-
tionality and no interconnection overhead is considered.

Xilinx also provides CAD tool support for partial recon-
figuration on such devices. Guide mode of the tool tries
to maximize the overlap between two implementations once
the fixed components are defined by user. Recently, Xilinx
floorplanning tool, Planahead has been modified to support
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Fig. 2. A Virtex device

partial reconfiguration. In the next sections, the restrictions of
the tools are explained in more details.

III. KEY FEATURES IN FPGA FLOORPLANNING

The target architecture is a two-dimensional partial recon-
figurable architecture. Xilinx Virtex 4 devices are examples of
such architectures. Figure 2 shows the architecture of a Virtex
4 device. The basic unit of reconfiguration is a frame spanning
n columns. Every module implementation spans a contiguous
set of frames horizontally and vertically. Hence, implementa-
tion consists of macro-based placement (or floorplanning) and
interconnect between the modules (global wires) given that
the connectivity in each module (local wires) lies inside the
module configuration. Xilinx CoreGen tool followed by Xilinx
floorplanner provides such a layout. However, the global wires
can go inside the modules as well.

The partial reconfiguration poses a stricter constraint on
the routing of global wires. The global wires which are not
reconfigured should not use the area of modules that will be
reconfigured, as that area will not be usable during reconfigu-
ration and hence, will affect the operation of the wire during
that time. The global wires, which will be reconfigured, should
not use the area of modules that will not be reconfigured, oth-
erwise these wires will require reconfiguration of the fixed (not
reconfigured) modules as well. Thus, providing whitespace
becomes an important requirement for floorplanning to support
effective partial reconfiguration. The global wires should be
routed over the global modules or the whitespace, as the
switches over the area of local modules are occupied by the
internal wires. However, in FPGAs, due to the presence of
long wires, it is also possible that some wires can pass through
the local modules without using any switch. Further, though
internal wires use the switches present in the routing area
of local modules, there may be some switches available for
the global wires to pass through. Hence, in FPGA, the local
modules have limited capacity to allow the global wires to
pass through.

The current Xilinx floorplanner does not guarantee enough
whitespace between the modules for global wires. Some wires
thus pass through the modules, forcing the fixed components
to be reconfigured. If the global wires are not allowed to pass
through the modules, then there may not be enough space for

the nets to be routed and the design may not be routable.
Recently, Xilinx Planahead tool has been modified to support
partial reconfiguration. It provides easy interface to specify
placement of some components (known as pblocks) and find a
placement of the remaining components (pblocks). However,
currently, Planahead placement becomes very slow with large
number of pblocks and does not guarantee that global wires
do not cross the pblocks.

Whitespace allocation is applied to reduce congestion and
buffer insertion for ASIC designs as well. Hence, ASIC
floorplanning tools can be adjusted for FPGA floorplanning.
However, for partial reconfiguration support, white space allo-
cation around the fixed modules should be planned carefully.
In the next section, the outline of ASIC floorplanner tool,
Parquet, is presented. Then, we describe how we modify
the tool for FPGA floorplanning with partial reconfiguration
support.

IV. PARQUET FLOORPLANNER TOOL

The Parquet floorplanner tool [16] is a simulated-annealing
based floorplanner for wirelength and area minimization. The
Parquet floorplanner is a fixed outline floorplanner, meaning
that it can constrain the design in rectangular shapes of fixed
aspect ratio. The cost function of simulated annealing has
three components: area, wirelength, and aspect ratio. The
main moves of simulated annealing are swappings in sequence
pair (or b-tree) representation of floorplan, and changing
orientation of blocks. The floorplanner uses half-bounding box
for computing the wire length. The floorplanner is fast and is
widely used in academia for fixed outline floorplanning.

Parquet floorplanner, however, assumes that the wires are
routed in the metal layers above the silicon die and hence,
does not consider the congestion caused due to the presence
of other components in the design. Further, it does not add
the whitespace to allow the routing of global wires. On the
other hand, it finds the most compact floorplan and tries to
remove any existing whitespace in the placement. This makes
the tool unsuitable for floorplanning for partial reconfiguration
in FPGA.

We have created a floorplanner based on Parquet floorplan-
ner tool to support the implementation of partial dynamic
reconfiguration on FPGAs. The floorplanner, which we call
Floorplanner for Partial Reconfiguration (FFPR), adds the
whitespace between modules to avoid congestion and overlap
of fixed and reconfigurable part. It also tries to minimize the
number of frames used by the design.

V. PROPOSED FLOORPLANNER FOR PARTIAL

RECONFIGURATION

Our floorplanner for partial reconfiguration is built from
Parquet floorplanner and optimizes congestion, whitespace and
frames. We add the total routing congestion and total frames to
the total cost in the simulated annealing stage of floorplanning.
The following subsections discuss the various components of
cost in the simulated annealing of our floorplanner tool.



A. Congestion Model

We use the probability congestion model given in [17] to
find the congestion of wires. The wires between any two pins
are assumed to take only L and Z shaped routes within the
bounding box. The L-shaped paths have higher probability
than the Z-shaped paths. If there is an obstacle in path due
to presence of either the two components containing pins or
due to a third component, then that path is not taken. An
obstacle corresponds to presence of logic that should not be
reconfigured. A wire passing through a fixed logic can lead
to reconfiguration in the fixed component. The floorplanner
should, therefore, avoid occurence of such routes in the design
and give higher weights to other paths in the design. The total
probability of all L and Z shaped routes is 1. Hence, if there
are n number of paths for a net, the probability of each path
is 1/n. For weighted paths (L-shaped paths), the weighted
summation is used for finding probabilities.

Multi-terminal nets are taken as multiple two-pin nets from
source to each destination and the individual probabilities for
each path of each net are found. This assumption simplifies the
computation of probabilities and makes simulated annealing
stage more efficient. The final shape of multi-terminal net is
also not easily predictable until the routing stage.

To find the congestion in the device, the device is partitioned
into two-dimensional array of bins. These bins will correspond
to CLBs (configuration logic blocks) in Virtex 4 FPGAs. A
pin lies in only one bin and a bin may contain multiple pins.
We assume that all pins in a bin lie in the center of the bin.
A bin may contain logic as well as wires just as a CLB in
FPGA device contains some slices and routing.

Figure 2 shows a sample virtex architecture. The device
consists of CLBs, block RAMs, and multipliers. In this work,
we do not model BRAMs and special multipliers and assume
that the device consists of only CLBs. This assumption makes
sure that any block can be placed anywhere in the device.

With these assumptions, we calculate the congestion of each
bin as the sum of probabilities of all the paths that pass
through the bin. A bin is congested if its congestion exceeds
a threshold. The congestion of floorplan is, then, calculated as
sum of excess congestion of each bin.

In our congestion model, we are using L-shaped and Z-
shaped for the wires between modules, rather than a staircase
shape. We think that it is a reasonable assumption as the L and
Z shapes are the most common shapes of nets in the FPGA.
The wires between modules may span long distance and can
be timing critical. The delay of switches make the use of other
shapes for these wires rare in timing critical applications. This
simplistic assumption leads to faster computation of various
paths between any two pins during iterations of simulated
annealing of floorplanning.

Unrouteable Nets: There are some nets which cannot be
routed using L and Z shapes only, due to presence of ob-
structions. If such nets exist in a floorplan, then they have
to be routed using higher delays (more number of switches).
Further, it has been observed that these nets usually go inside
the obstruction which in our case are fixed components. This
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Fig. 3. Frames in Virtex 4 FPGA

can cause the fixed components to be reconfigured. For those
nets we add a very high constant value to the congestion of
bins containing two pins. This ensures that the floorplanner
tries to minimize the number of such nets (it is very hard to
remove all such nets).

B. Total Reconfiguration Frames

The reconfiguration overhead is measured in terms of
number of frames that are needed to configure a design. As
explained earlier, the minimum granularity of reconfiguration
on Virtex devices is frames. While in VirtexE and Virtex 2
devices, a frame spans the whole column of a device, in Virtex
4 devices, a frame has a fixed height of 16 CLBs. A frame
on Virtex 4 FPGA consists of a fixed number of bytes for all
the devices. The time taken to reconfigure a device is a linear
function of the number of frames that are reconfigured.

Figure 3 show the frames in Virtex 4 FPGA devices. The
frames are vertical and span 16 CLBs. Each CLB contains
around 22 frames. To minimize the number of frames that are
reconfigured, a floorplanner should place the fixed and recon-
figured part in separate frames. Presence of a reconfigured part
in a frame requires the frame to be reconfigured. A floorplan-
ner should also avoid putting inter-modular connections in the
frames containing fixed part. We estimate the total number of
reconfigured frames in the device and add a normalized factor
of it in the total cost of the simulated annealing.

C. Whitespace allocation

The Parquet tool uses sequence pair representation to make
random moves of placement. In sequence pair representation,
two permutations (orderings) of the blocks are maintained. The
two permutations capture geometric relations betweeen each
pair of blocks. Every two blocks constrain each other in either
vertical or horizontal direction. The following relationships
hold for sequence pairs:

(< ..., a, .., b, .. >, < ..., a, .., b, .. >) ⇒ a is to the left of b

(< ..., a, .., b, .. >, < ..., b, .., a, .. >) ⇒ a is above b.

The sequence pair representation is shift-invariant since it
only encodes pairwise relative placements of modules. Ac-
tual placements are produced by aligning from horizontal
and vertical axes, starting from x = 0 and y = 0. All
neighboring blocks are placed adjacent to each other. This
representation automatically does compaction of the floorplan,
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as no whitespace is added and blocks are placed as close
to each other as possible. While this feature is good for
finding minimum area floorplans, it is not desirable for finding
congestion and modules-wire overlap free floorplans. Some
extra whitespace is required in such floorplans for wires to
pass through. However, sequence pair representation has many
advantages. It is a simple structure to allow random moves in
placement. By a theorem given in [18], at least one minimal-
area placement is representable with any sequence pair.

In order to use the sequence pair representation for finding
a congestion and module-wire overlap free placement, we add
four new offsets to each block. The four new integral offsets,
n, s, w, and e, represent the whitespace region on all four
sides of blocks. The total width of the block is, therefore,
increased by w + e and total height is increased by n+ s. The
original block is placed inside this expanded block and the
remaining space is occupied as whitespace. For this work, we
only consider rectangular blocks for FPGA placements, though
this technique can be easily extended for any rectilinear shape
by keeping four or more offsets.

These additional offsets also give the ability to make whites-
pace moves. For our floorplanner, we start with initial value of
1 for each offset. During simulated annealing, we allow moves
that change one offset of any random block randomly. The
range of each offset is a fixed range starting from 0 (currently
the maximum value of any offset is 5). The probability
distribution of the offsets has very high probabilities for values
1 and 2 and very low probabilities for 0, 4 and 5.

The sequence pair representation stores only the relative
placement of blocks and is not affected by the size of the
modules. The only change required for using the offsets is
that while finding placement from sequence pairs, the sizes of
the blocks are computed adding the the current offsets.

Figure 4 explains the allocation of whitespace through
addition of offsets. The size of the colored block is increased to
the size of shaded box. Note that the offsets are not generally
comparable to the area of the modules, as shown in the figure,
and are smaller in practice to avoid area overhead.

D. Simulated Annealing

In this section, we discuss the simulated annealing of FFPR.
The simulated annealing of FFPR has been derived from
simulated annealing of Parquet floorplanner with changes to
incorporate whitespace, congestion and total frames cost. We

also increased the number of iterations of simulated annealing
in order to get better results, as the tool has to optimize more
number of objectives.

1) Total Cost: In simulated annealing, a random move is
generated, and the cost of new system is computed. This cost
is then subtracted to the current cost of system. If the change
in cost, ∆, is negative, the move is accepted. If the cost of
new system is more than the previous cost, the move is only
accepted with a temperature based probability.

Our FFPR tool uses the cost of congestion and total frames
in the system, as explained in previous section. The traditional
Parquet floorplanner has three cost components - area, aspect
ratio and wire length. These cost components are incorporated
in the FFPR as well. The change in cost ∆total of a system
in FFPR is given by

∆total = α∆area + β∆aspect−ratio + γ∆wire−length

+ δ∆congestion + θ∆frames

The variables, α, β, γ, δ, and θ, are the respective weights
of area, aspect ratio, wirelength, congestion and frames; their
sum is equal to 1. The various ∆s represents the change in cost
of the respective components. We reduced the weights of all
three components present in Parquet floorplanner to include
our own components. The weight of wirelength cost was
reduced considerably as the congestion cost of Section V-A
also includes wirelength component. Congestion of the system
will be higher (the sum of congestion of congested bins)
when there are long wires in the systems. Longer wires pass
through more number of bins than shorter wires. However,
since congestion is not directly proportional to wirelength, we
still keep the wirelength cost in FFPR.

2) Moves: The moves made by FFPR during any iteration
of simulated annealing are following:

1) Offset-based Moves: Change in offset of a single block
for allocating whitespace;

2) Placement Moves: Swapping of two random blocks in
sequence pairs;

3) Orientation Moves: Random change in orientation of
single blocks;

4) Soft Block Moves: Change in shape of a soft block;
5) Matching Moves: Discussed in next subsection;

The first move is explained in Section V-C. The next three
moves are explained in [16] and [5].

E. Component Matching

Once designer has identified a fixed component in the first
design (fixed components are components that exist in the
second design after partial reconfiguration), it is possible that
the second design has multiple components of the type of
the fixed component. So out of these multiple components,
designer has to then find an appropriate matching of the fixed
block in the first design to a block of same type in the second
design. For example, if there are 4 multipliers in the first
design and 5 multipliers in the second design, then designer
can match all the four multipliers of the first design to 4 out of



5 multipliers in the second design. There can be many number
of permutations of these matchings. Component matching is
referred to the task of assigning mappings of components of a
type in one design to components of same type in other design.
An effective matching of components from the first design to
similar components in the second design is important to reduce
congestion due to routing.

Our FFPR tool can run in a second mode to find component
matching. The FFPR tool takes the second design and place-
ment of the first design as input. It also takes information
about the fixed common components of same type. It then
uses the technique mentioned in work of [16] to place fixed
components in the design. It is done by adding extra nets
and extra terminals to the fixed components. We then modify
the simulated annealing of FFPR to make swap moves of
fixed components. In each swap move, two fixed components
of same type swap their respective position. For example, if
memory blocks A and B are originally mapped to locations
L1 and L2 respectively, then after the swap move, blocks A
and B will be mapped to locations L2 and L1, respectively. In
this way, swapping changes the mapping of fixed components.

The matching thus found by FFPR tool is placement-aware
matching. The FFPR computes a matching that minimizes
congestion, wirelength and area for that placement. Thus,
this matching is more accurate and placement aware than a
matching that looks at graph dependency and edge weights.

If there is a sequence of N tasks for reconfiguration, then
our technique can be used iteratively for each consecutive
pair of tasks. That is, FFPR tool can be used to compute the
placement and matching of second task from first task, third
task from second task, and so on.

VI. EXPERIMENTS

In this section, we explore the effects of matching and place-
ment on reconfigurable designs. We analyse how placement-
aware matching can improve the results. The following sec-
tions discuss various aspects of partial reconfiguration in a
design.

A. Experimental Setup

In order to analyse component reuse for partial reconfigura-
tion, we are using difference-based reconfiguration technique
available for Xilinx Virtex 4. The difference based technique
compares bitstreams of two implementations and then creates
another bitstream consisting of differences between the two
implementations only. The new bitstream can be used to trans-
form the first design into the second design during runtime
using least number of frames. The Xilinx bitgen application
is used to find the difference bitstream.

A more sophisticated technique for reconfiguration is
module-based reconfiguration, which is available in Xilinx
Virtex II devices but is not currently available in Xilinx Virtex
4. The components are divided into modules and bitstream of
each module is computed separately. Final design merges bit-
streams of all the modules. The module-based flow offers more
savings compared to difference based flow as bitstream of

TABLE I

BENCHMARK DESCRIPTIONS.

Pair Design 1 Design 2
Description No. of Description No. of

slices slices
P1 Invert matrix 1 1459 Substitution 1 1538

from Mesa from Rjindael
P2 Invert matrix 2 3176 Invert matrix 3 3613

from Mesa from Mesa
P3 Key Schedule 1 2686 Shift Row 2332

from Rjindael from Rjindael
P4 Invert matrix 4 8392 IDCT Float 1 6857

from Mesa from JPEG
P5 IDCT 2 5394 Matmul 1 4934

from JPEG from Mesa

fixed modules is not changed and only non-fixed components
are reconfigured, resulting in better separation of the fixed and
non-fixed components. The module based flow in Virtex 4, if
provided in future, will still require proper placement of fixed
components and proper whitespace allocation for connecting
wires.

We implemented our design flow using a set of 10 ap-
plications extracted from MediaBench test benchmarks using
SUIF compiler. We divided these 10 applications in 5 pairs,
with each pair consisting of applications of almost same size.
We find the common components in each pair and find the
matching of common components using FFPR tool and a
heuristic matching. The FFPR is run in two modes - floorplan
and matching mode. In floorplan mode, a floorplan of a design
is found that minimizes congestion, wirelength, and area by
adding whitespace. In the matching mode, while the tool still
finds a floorplanning of second design, it swaps position of
common components during simulated annealing so that the
best matching for that placement could be found.

Unless otherwise mentioned, we do reconfiguration from
design 1 to design 2 for each pair. We then find the cost of
configuring from first design to second design for each pair.
The description of each pair is given in the Table I. In order
to ensure that the second design follows the placement of first
design, we use guide file option available in Xilinx ISE 7.1.
Using guide file, the Xilinx place and route tool places the
components having same name and same type in exactly same
locations.

Also, in order to ensure that the external wires of com-
ponents start from fixed locations (and not from arbitrary
region inside the component), we add external wrappers to
each component. These wrappers are implemented as tri-state
buffers which can enable and disable the inputs and outputs
of a component. The wrappers are placed in fixed locations
around the component.

B. Matching Common Components

For reconfiguration, we want to make sure that if two
designs have common components and one has to be recon-
figured on another, the reconfiguration time can be reduced by
not reconfiguring the common components and reconfiguring
only the difference of two designs. However, if two designs are
implemented independent of each other, then there is very little
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TABLE II

NUMBER OF RECONFIGURATION FRAMES WITH AND WITHOUT

MATCHING

Pair With Matching Without Matching
P1 962 1753
P2 2078 2978
P3 1994 2975
P4 3414 7662
P5 886 4329

Average 1869 3939

correlation in the final bitstream of each design. This is due
to differences in routing and placement of the common blocks
in two implementations. There is a very little probability that
same components are placed in exactly same place in the two
designs. This hinders the reuse of common components, and in
turn, requires more reconfiguration bits. Hence, the common
components should be placed at exactly same location in the
two designs.

In Table II, we show the number of frames required to re-
configure for each pair with and without matching of common
blocks. In the first column, we use our FFPR floorplanner to
find the placement of first design with whitespace and then use
FFPR floorplanner to find the matching for second design. For
second column of the table, we implemented the two designs
in each pair independently using Xilinx ISE. We then compute
the cost of reconfiguring from one design to other design using
Xilinx bitgen application.

The Table II shows that if the same placements are used for
components, then on average, we can get savings of more than
50% frames compared to without using component reuse.

C. Extent of Matching

We analyse how many components should be matched to get
the maximum reuse of the bitstream. In maximum matching,
the design which is reconfigured could be excessively con-
strained. Hence, we varied the matching amount, computed
total reconfiguration overhead and then observed the savings.

Figure 5 shows the number of frames required to reconfigure
from first design to second design for various percentages of
matching. For 50% matching, we only matched half of the
common components. That is, we forced the Xilinx place
and route tool to put only half of the fixed components
(like fixed multipliers) in same locations as first design. The

TABLE III

NUMBER OF RECONFIGURATION FRAMES USING OPPOSITE FLOWS

Pair Design 1 → Design 2 Design 2 → Design 1
P1 962 698
P2 2078 821
P3 1994 1491
P4 3414 Unrouteable
P5 886 Unrouteable

remaining components are placed by Xilinx PAR tool without
any location constraint. The first design is placed using our
FFPR floorplanner using floorplanning mode. The matchings
are found using FFPR tool running in the second mode.

The Figure 5 shows that as we increase the matching, the
number of frames required to reconfigure from one design
to other design decreases. The savings of frames are due
to the more number of components that are common in the
design. This shows that we should find maximum overlap
in two designs. In some cases the reconfiguration could not
be improved by increasing matching as expected due to the
congestion of design and routing overhead. This is seen in pair
P1 for 75% matching.

D. Direction of Matching

To perform reconfiguration, designers implement the origi-
nal design and then try to map the second design on existing
design. This puts the implementation of second design at
disadvantage. It is possible that if we floorplan the second
design and then find a mapping for the first design, the
designs are more optimal. This is due to a better placement of
the second design that also helps reconfiguration to the first
design.

In order to see the effect of direction (from first to second
or from second to first) of floorplanning and matching, we
reversed the direction of reconfiguration and then compared it
with the original direction. We first found a floorplan of second
design using FFPR in floorplanner, find a mapping of second
design to the first design using FFPR matching, implemented
first design and finally see the difference in bitstreams of the
two designs.

It is interesting to observe that even if we are reversing
the flow of reconfiguration, we can still maintain the original
flow. We show this as follows. Let δ1 be the bitstream required
to configure first design and δ2 be the bitstream to configure
second design. Let ∆12 and ∆21 be the difference bitstreams
to configure from design one to design two and configure
from design two to design one, respectively. In simple terms,
δ2 = δ1 + ∆12 and δ1 = δ2 + ∆21, where plus operation
changes/flips the bits of initial bitstream δ to bits represented
by ∆. Hence, ∆12 and ∆21 both contain only the frames that
change between the two designs and thus, |∆12| = |∆12|,
where |∆12| is the size of reconfiguration difference bitstream.
This shows that the savings in a reverse flow of reconfiguation
is same as savings in original flow.

Table III shows the number of frames required for recon-
figuration of each pair in the two opposite directions. While
in some cases, reversing the direction has lead to savings of



TABLE IV

NUMBER OF RECONFIGURATION FRAMES USING DIFFERENT MATCHING

Pair FFPR Matching Dependency based Matching
P1 962 1981
P2 2078 2077
P3 1994 2087
P4 3414 3369
P5 886 964

Average 1869 2095

upto 60% as in the case of pair P2, in some cases, the design
was not routeable in opposite direction. This shows that more
sophisticated strategies are needed to find placements of fixed
components in two designs.

E. FFPR Matching

In this subsection, we discuss the impact of various match-
ings. We compared the FFPR matching with a simple heuristic
matching similar to [13]. In this matching, we matched the
components that are close in one design to components that
are close in second design. The FFPR matching is a place-
ment aware matching which matches the components that are
placed close to each other, whereas the second matching is a
dependency based matching that maps components based on
their connectivity.

Table IV shows the results of the above mentioned match-
ings. It shows the number of frames required to reconfigure
from one design to other design in a pair. The FFPR place-
ments are used for first design and second design uses heuristic
matchings. On average, the FFPR matching requires 9.5% less
number of frames compared to the other matching.

We compared the placement found by our FFPR floorplan-
ner with the commercially available Xilinx ISE 7.1. We find
that, under timing constraints, the Xilinx floorplanner places
connected components close to each other and unconnected
components far from each other. While such placement is good
for the design being placed, it may not be good for second
design with varying connectivity. For example, in pair P5, the
Xilinx floorplanner required 1497 frames to reconfigure while
our tool required 886 frames only. For other pairs, the results
of two floorplanner were comparable.

A floorplanner for partial reconfiguration should thus con-
sider the placements of both designs and consider reuse
of maximum components. Currently, our floorplanner does
not consider placements of both designs at the same time.
However, since FFPR floorplanner tries to compact the whole
design while adding whitespace, it keeps all the components
at optimum distance from each other, so that the placement of
next design is not adversely affected.

VII. CONCLUSIONS AND ONGOING WORK

In this paper, we present physically-aware component reuse
in order to reduce the number of reconfiguration frames
on a sequence of tasks being reconfigured. Our proposed
floorplanning tool enables a wide design space exploration for
component reuse. We implemented multiple pairs of dataflow
graphs on Xilinx Virtex 4 devices using our tool for component

reuse. When reuse is exploited, the experimental results report
more than 50% reduction in the number of reconfiguration
frames compared to the flow during which component reuse
is not applied. We explored features such as selection of
the fixed modules, location of the fixed modules, matching
to the fixed modules, whitespace allocation and interconnect
planning between the fixed and reconfigurable modules. Sys-
tematic approach to find the location of fixed modules and
better management of congestion are the ongoing work in this
project.
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