An Optimal Architecture for a DDC

Tjerk Bijlsma, Pascal T. Wolkotte, Gerard J.M. Smit
University of Twente, Department of EEMCS
P.O. Box 217, 7500 AE Enschede, The Netherlands
{Bijlsma, Wolkottept, Smit} @cs.utwente.nl

Abstract

Digital Down Conversion (DDC) is an algorithm, used
to lower the amount of samples per second by selecting a
limited frequency band out of a stream of samples. A pos-
sible DDC algorithm consists of two simple Cascading In-
tegrating Comb (CIC) filters and a Finite Input Response
(FIR) filter preceded by a modulator that is controlled with
a Numeric Controlled Oscillator (NCO). Implementations
of the algorithm have been made for five architectures, two
Application Specific Integrated Circuits (ASIC), a General
Purpose Processor (GPP), a Field Programmable Gate Ar-
ray (FPGA), and the Montium Tile Processor (TP). All ar-
chitectures are functionally capable of performing the algo-
rithm. The differences between the architectures are their
performance, flexibility and energy consumption. In this
paper we compared the energy consumption of the archi-
tectures when performing the DDC algorithm. The ASIC is
the best solution if digital down conversion is constantly re-
quired. When digital down conversion is needed only parts
of the time, the Altera Cyclone Il is the best solution due to
its smaller technology size. In the spare time the reconfig-
urable architectures can be reconfigured for other tasks of
today’s multimedia devices.

1 Introduction

Modern mobile multimedia devices need to deliver top
performance. The user requires adequate functionality,
adaptive behaviour and energy-efficiency. As in all designs
a trade off needs to be found for the optimal solution.

With the growing popularity of mobile multimedia de-
vices, the demand for energy-efficient wireless communica-
tion increases. A key part of wireless communication is the
Digital Down Converter (DDC) [8]. Like most algorithms,
it can be performed by dedicated hardware or executed on
a kind of processor. Which solution is preferred, depends
on the desired adaptive behaviour, processing performance
and energy-efficiency.
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In a multimedia device like a PDA it is possible that the
digital down conversion is only needed occasionally. For
example, when the GSM module is activated, to connect to
the internet via WLAN, or when the user wants to listen to
digital radio via Digital Radio Mondiale (DRM) [10] [11]
or Digital Audio Broadcasting (DAB) [9]. It can be useful
to reconfigure that part of the chip, which is used for the
DDC, to execute other tasks, instead of going to its standby
modus. In this case the hardware has a higher utilization
factor.

When a DDC is needed in a device like a mobile phone
or a single mode digital radio, it has to perform a dedicated
task. The algorithm has to be performed continuous and
only the parameter settings might be changed. Adaptability
and spare performance will not be used in this situation.

In this paper the realization of a DDC on five architec-
tures are compared, two ASICs, an FPGA, a GPP and the
Montium Tile Processor. The objective of this paper is to
find an energy-efficient solution for a DDC. Therefore the
report starts with discussing how the DDC algorithm works
in section 2. The sections 3 till 6 discuss the results of map-
ping the DDC algorithm on the five architectures. In the
conclusion of this report the results are summarized and the
optimal implementation is suggested.

2 The Digital Down Converter

The Digital Down Converter (DDC) is typically used in
mobile communication [13]. The DDC processes the sam-
ples from the AD-converter in such a way that it selects a
small band of the total frequency range. After selecting the
desired frequency band the signal is processed by a concate-
nation of filters. By attenuating the unwanted frequencies
the signal can be resampled at a lower rate. The reduced
sample rate relaxes the processing after the DDC. Depend-
ing on the selected frequency range, sample rate, and de-
sired quality, different filter combinations can be used to
perform the DDC.

In this report several architectures are compared on their
performance of the DDC algorithm. To make a fair compar-



Comp t Clock/sample rate | Decimation (D)
NCO 64.512 MHz B

CIC? 64.512 MHz 16

CIC® 4.032 MHz 21

125 taps FIR | 192 kHz 3

Output 24 kHz -

Table 1. Clock speed and decimation in a DDC

cic? cic® 125 taps FIR
Inphase Inphase Inphase
decimation : 16 deciamtion : 21 deciamtion : 8

Output(24 kHz)

cic? cic® 125 taps FIR
Qi Q Q
decimation : 16 deciamtion : 21 deciamtion : 8
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Figure 1. DDC algorithm

ison, the architectures should perform similar algorithms.
The configurations should also be similar. A configuration
for a DDC to select a DRM band has been found and used
to compare the architectures. The filter and its configuration
are depicted in Figure 1 and Table 1. The desired configura-
tion of the DDC is discussed at the end of this section. First
the operations of the algorithm are explained.

2.1 Parts of the DDC algorithm

The first part of the DDC algorithm is the Numerical
Controlled Oscillator (NCO) (see Figure 1). This compo-
nent produces a sine and cosine signal. The NCO calculates
these values, e.g. by Taylor series, or reading from a look-
up table. The signals from the NCO are used to shift the
frequencies. To generate an in-phase (I) signal the input
signal is multiplied with the cosine signal. The quadrature
part (Q) is derived by multiplying the input signal with the
sine signal.

The next step is to filter the shifted signal with a Cas-
cading Integrating Comb (CIC) filter. The CIC filter is used
in the parts with the highest sample rates. The high sample
rates can be handled by using only additions and no multi-
plications. The filter consists of a cascaded set of integrating
and comb filters [7]. An example of the algorithm is given
in Figure 2. This is a CIC?, which means it has two integra-
tors and two comb filters. The CIC® has five integrators and
five comb filters.

The integration is done in the first part of the CIC2. This
part adds the previous calculated value ;,,:[n — 1] to the
input signal x[n] and stores the result x;,¢[n] for the next
input sample. The comb filter is a special kind of FIR filter
with fixed coefficients. The filter subtracts the previous in-
put value from its current input. The result is given to the
next comb filter that delivers the result. The decimation in
the CIC? is to reduce the sampling rate. According to the
decimation factor D, it only sends 1 out of D samples to the
comb part of the filter. Where D is the decimation rate.
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Figure 3. Polyphase FIR filter with 5 taps and
a decimation of 5

The drawback of the CIC filters is their sub-optimal fre-
quency attenuation. Therefore an additional Finite Input
Response (FIR) filter is added to the filter chain, which has
125 taps. After the FIR filter a final decimation step deter-
mines the output sampling rate. Performance can be gained
by using a polyphase FIR filter, which combines a FIR fil-
ter with the sampling rate reduction. An example of a 5 taps
polyphase FIR filter is given in Figure 3. A normal FIR filter
stores the input values x[n]...z[n— M — 1], where M is the
number of taps, in a chain of registers. Every clock cycle,
the values x[m] from the registers are read and multiplied
with a coefficient 2[m]. The sum of all multiplied values
is calculated and delivered as one output sample y[n]. Af-
ter each clock cycle, the oldest value is dropped and all the
other values are shifted one position to the right. Due to the
decimation 1 out of D output samples is actually used. The
polyphase FIR filter writes the input values to the correct
registers at the input sample rate. But it reads, multiplies
and calculates the sum only every D cycles for an output
sample. In Figure 3 the decimator/control writes the values
to the correct registers. In case the decimation of this filter
would be five, it would have to calculate the sum once every
five clock cycles. The next input value is stored in the right
most register. The second value will be stored in the regis-
ter one from the right and so on. At the fifth clock cycle all
registers will be updated, so the summation can be done. To
implement a 125-taps polyphase FIR filter, the FIR filter in
Figure 3 should be increased with a factor 25.

3 ASIC implementation of a DDC

The implementation of a DDC on an Application Spe-
cific Integrated Circuit (ASIC) is the fastest solution, but
also the least flexible. In this section, two ASIC imple-
mentations are discussed. The implementation of Texas
Instruments is commercial available as a single chip solu-
tion. This is in contrast to the second DDC implementation,
which is not commercial available and is optimised for low-



Parameter Value

Input speed of filter Up to 100 MSPS

Input size of filter 14 (4ch.) or 16-bit (3ch.)
Decimation of a channel 32to 16.384

Output size of filter 12,16,20 or 24-Bit

Energy consumption for a GSM channel 115mW (80 MHz & 2.5 V)

Table 2. Configuration of a TI Quad DDC

cic® 21 taps CFIR 63 taps PFIR
Inphase Inphase Inphase
deciamtion : 64 decimation : 2 decimation : 2

cic® 21taps CFIR | | 63 taps PFIR
Quadrature Quadrature Quadarture
deciamtion : 64 decimation : 2 decimation : 2

Output
(270,83kHz)

Input signal
(69,33 MHz)

Figure 4. Channel of the TI GC4016

power consumption.
3.1 Texas Instrument’s Quad DDC-chip

Texas Instruments (TI) provides a "GC4016 Multi-
standard quad DDC-chip” as ASIC solution for a DDC [17].
First the design of this chip will be discussed. At the end
of this section we try to generalize the performance of this
chip.

3.1.1 Design and specifications

The schematic drawing for one of the four channels of the
Quad receiver chip is given in Figure 4. In Table 2, a part of
the specifications can be found. Each channel can perform
an independent DDC on a 14-bit input. The chip can be
configured to use one or more channels. When the input
width of 16 bits is chosen for the DDCs, only three channels
are available. The results of the channels can be combined
at the output using either a multiplexer or an adder.

The four DDC filters in the chip all have the same design,
but have their own parameter settings. The DDCs consist of
a 5-stage CIC filter, followed by a 21 taps Complex Finite
Input Response (CFIR) filter and a 63 taps Programmable
Finite Input Response (PFIR) filter. All the filters perform
decimation. The decimation of the CIC® can be set to a
value ranging from 8 to 4096, the CFIR and the PFIR both
decimate by 2 leading to a decimation range from 32 to
16384.

As can be seen in the Table 2, the ASIC is capable of
performing digital down conversion on four 14 bits inputs,
which are fed with 100 MSPS to the DDCs. The chip is
clocked at the speed at which the samples are fed to the
chip.

A specification that is missing is the technology size.
Since the chip is available from the beginning of 2001
and using 2.5 V internally, it is probably developed with
0.25 pm technology.

3.1.2 Power estimation

The documentation of the GC4016 DDC [17] comes with an
example in which digital down conversion is performed for
a GSM channel. This example uses a different configuration
compared to the reference DDC of section 2.

The example DDC for a GSM channel runs at S0MHz
and uses 115mW for a channel. The input rate of the chip
is 69.333 MHz and the output rate is 270.833 kHz, which
is roughly ten times the required sample rate for a DRM
receiver. Because the FIR filters can only decimate with 2,
the CIC® performs a decimation of 64. The FIR filters are
configured to use 68 taps.

When the filter for this example is compared to the lay-
out in section 2, a few things are different. The CIC? is
not present, the DDC in the example decimates with 256 in
stead of 2688, the combination of the two FIR filters pro-
vide up to 84 taps instead of 125, the output sample rate is
270.833 kHz instead of 24 kHz. This makes it difficult to
compare the reference configuration and the GSM example.
Nonetheless, the example is interesting. Reasons are that
the DDC is commercially available as a single chip solution
and the example has approximately the same amount of in-
put MSPS. The first stages of the DDC consume most of the
energy, because this part is working with the highest sample
rate.

The main technology size in this paper is 0.13 pum at
1.2 V, while this ASIC is made with 0.25 pm at 2.5 V. The
larger transistors and higher voltage can clarify the differ-
ence in energy consumption of this chip and the customized
low power DDC of section 3.2. According to [14] it is pos-
sible to estimate the energy consumption for a smaller tech-
nology. The common dependency of the dynamic power
consumption is that it is linear related to the total capaci-
tance (C) and frequency and quadratic related to the voltage
(V). With reduction from 0.25 pm to 0.13 pm the capacity
goes down with a factor 0.25/0.13. The same goes for the
voltage that drops with a factor 2.5/1.2. This makes it rea-
sonable that the power consumption decreases with a factor
(25)2. 025 This would lead to 13.8 mW when the DDC

1.2 0.13*
was made in 0.13 pm technology.

3.2 Customised Low Power DDC

The second ASIC implementation is one that can be con-
figured to the chosen filter layout from section 2 [15]. The
DDC can perform a maximum decimation of 65536, and a
minimum of 2. It has been realized in 0.18 pm technology
with a V4 of 1.8 V. The size of the core is 1.7 mm?.

When performing the digital down conversion at
64.512 MHz, with the configuration of section 2, it con-
sumes 27 mW. The power consumption is based on gate
count and activity rate estimation. The power consump-
tion is based on 0.18 pum technology. As described in the



Part of filter Clock speed | Percentage of clock cycles
NCO 64.512MHz | 50 %

CIC?-integrating 40 %

CICZ-cascading 4.032 MHz 32%

CIC” -integrating 4.4 %

CIC? -cascading 192 kHz <05%
FIR125-poly-phase < 0.5%
FIR125-summation | 24 kHz 1.6 %

Table 3. Division of the DDC code for an ARM

previous section we estimated the energy consumption for
a 0.13 pum design at 1.2 V. The energy consumption for

. 1.8\2 . 0.18) _
the smaller technology size would be 27/((15)% - 575) =
8.7 mW.

4 Mapping a DDC on a GPP

In this section the program written for a General Pur-
pose Processor (GPP) is discussed. The DDC was written
in C-code. This code was compiled for an ARM 9 [5]. This
section starts with a short discussion on the ARM 9, fol-
lowed by a discussion on the implementation. The section
finishes with power estimation for the ARM 9.

4.1 The ARM 9

The company ARM is known for the GPP and Digital
Signal Processors (DSP) IP-cores that it develops. One of
their series is the ARM 9 series, which is quite energy-
efficient [5]. These GPPs are developed for the 0.13 pm
process and can perform up to 250 MIPS. The design is
sold as an IP-core that can be embedded in a SOC. The
ARMO922T core has two small caches of 8 KB. It can
handle 32-bit and 16-bit instructions and 32-bit operands.
A multiply-accumulate (MAC) instruction requires several
clock cycles. The ARM can fetch and write data from/to the
memory in one cycle.

4.2 DDC algorithm on a GPP

4.2.1 The implementation

To see how an ARM GPP would perform a DDC algorithm,
the algorithm of section 2 is written in C. For simplicity rea-
sons, the code only performs the in-phase transformation,
so the result has to be doubled for the whole DDC. It is as-
sumed that the values for the cosines and the sinus function
are fetched from a look-up table. The C-code is compiled
to assembler for the ARM processor.

The resulting assembler code is simulated and profiled
with the ARM source-level debugger. The profiling re-
sults showed that the ARM needs to perform 2865 Mega
instructions per second, to perform the inphase transforma-
tion. These instructions require 4.870 * 10° clock cycles
per second. The I part of the algorithm is equal in size to

the Q part, so the amount of instructions and clock cycles
per second has to be doubled. To perform the DDC algo-
rithm real-time, the ARM should have a clock frequency of
4870*%2=9740 MHz.

4.2.2 Energy consumption

The energy consumption of the ARM can also be calcu-
lated. The ARM922T is used with its caches enabled, which
reduces the communication with the memory for the DDC
algorithm. The lowest power consumption is obtained if
the biggest part of the algorithm is loaded in the cache. The
documentation states that the core and activated caches con-
sume 0.25 mW/MHz [5](memory access not included). To
perform a DDC, the ARM requires 9740 MHz. Multiplying
9740 MHz with 0.25 mW/MHz results in 2.435 Watt to per-
form the DDC algorithm. This value does not include the
memory or the memory access.

Three notes have to be made. First, one ARM is not able
to perform the algorithm at the required speed. The cal-
culations are used as an indication of the performance of a
general purpose processor. The second note is that the code
was not optimized. It should be possible to speed up the al-
gorithm when it is completely optimized for the ARM922T.
The last note is that ARM provides an extra DSP instruction
set, which is for example available in an ARM946. Using
this core did not show a major speed improvement and re-
sulted in an even higher power consumption.

5 Mapping a DDC on an FPGA

The commercial market is offering a wide range of DDC
IP-cores that can be used on an FPGA [4], [6], [16]. Since
these solutions are not open source and differ from the de-
sired DDC, a custom implementation is made. This sec-
tion starts with a short discussion about the FPGA used,
followed by a discussion about the implementation and the
performed power estimation.

5.1 Altera Cyclone FPGA

For the development of the DDC, the Altera Cyclone I
[2] and Cyclone II [3] FPGAs are chosen. The Cyclone I is
chosen because it is made with 0.13 pm technology, which
compares with the technology of the other solutions. The
Cyclone II is chosen because it is a state of the art FPGA
that is energy efficient realized in 0.09 m technology. Both
FPGAs contain high densities of Logical Elements (LE),
ranging from 2,910 to 20,060 LEs for the Cyclone I and
from 4,608 to 68,416 LEs for the Cyclone II. The Cyclone I
is equipped with 13 to 64 RAM blocks and the Cyclone 11
with 26 to 250. Each RAM block provides a storage space
of 512 bytes. It is also possible to use a Phase Locked Loop
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Figure 5. Schema of polyphase FIR

in both FPGAs. Beside this the Cyclone II is equiped with
embedded 9-bit multipliers, ranging from 26 to 300.

5.2 DDC algorithm on an FPGA

The implementation corresponds with the DDC dis-
cussed in section 2. The DCC was aimed to fit in an Al-
tera Cyclone I EP1C3T100C6 and an Altera Cyclone II
EP2C5T144C6, which are both the smallest FPGAs in their
series. The implementation is discussed in the following
section. This section concludes with a power estimation.

5.2.1 The implementation

For the implementation, the DDC is divided into parts. The
DDC consists of a NCO, CIC filters divided in integrat-
ing and comb parts and a polyphase FIR filter. The parts
are interconnected with a data bus of 12 bits and an output
data valid line. For the implementation the decimation val-
ues and the amount of taps are read from generics, so they
can be altered at design time. The polyphase FIR is imple-
mented with 124 taps, this is done to make the sequential
filter run a little more efficiently.

The NCO and the CIC filters have to work at the input
sample rate, so they are implemented as explained in section
2. The integrating part of the CIC filter has a counter to
register the number of processed inputs. If this part should
deliver a value to the comb part, it makes its output valid
signal high for one clock cycle. The comb component reads
the signal and processes it. This way the comb part of the
CIC filters receives decimated information.

The polyphase FIR, however, is receiving information at
192kHz and delivering results at 24kHz. It has been de-
cided to implement the filter as a sequential algorithm. The
other option would have been in parallel at a lower clock
frequency. This would require a lot of extra hardware that
would be idle most of the time. The sequential implemen-
tation makes the logic cells run at the full clock speed of
64.512 MHz. The input sample rate of 192ksps and a deci-
mation factor of 8, results in 2688 clock cycles to calculate
one single output sample.

Cyclone I Cyclone II

EP1C3T100C6 EP2C5T144C6

Total logic elements 1,656 /2,910 (56 %) 906 / 4,608 (20 %)
Total pins 41765 (63 %) 41789 (46 %)
Total memory bits 6780/59,904 (12 %) | 7,686/ 119,808 (6 %)
Embedded 9-bit Multiplier 0/0 (0 %) 8726 (30 %)
Total PLLs 0/1(0 %) 0/2(0 %)

Table 4. Synthesis results for Cyclone | and Il

Figure 5 depicts the schematic drawing of the polyphase
FIR filter. The filter has a RAM block to store the previ-
ous inputs and a ROM from which the coefficients can be
read. When valid, the new input (inp) is stored at the correct
position in the RAM. The filter calculates its result, once it
has received D samples from the CICP, where D is the dec-
imation rate of the FIR filter. For the 124 taps, this is done
in 125 clock cycles. Every cycle a coefficient and the corre-
sponding input are read from the ROM and the RAM. These
values are multiplied with each other and the result is added
to the intermediate result. When all inputs are processed,
the result is delivered on the output and valid becomes ac-
tive for one clock cycle.

For the internal values in the polyphase FIR filter, the
bus size is chosen in such a way that overflow cannot occur.
Since the output is 12-bit, the 31-bit intermediate result has
to be quantized before the result can be delivered. The result
consists of the 11 least significant bits of the intermediate
result and a sign bit. In case of saturation, the maximum or
the minimum value is returned.

The synthesis result for the DDC algorithm (both I and
Q part) in the Altera Cyclone I and Cyclone II are shown
in Table 4. The Cyclone I can perform the implementa-
tion at a maximum frequency of 66.08MHz, while the Cy-
clone II can reach 80.87MHz. The final implementation
runs at 64.512 MHz, according to the reference design in
section 2.

5.2.2 Power estimation

Altera provides the program Quartus II [1] and its "Power-
Play Power Analysis” tool. With these a synthesis of the
design and a power estimation of the synthesized design is
performed. The amount of bit toggles of the input and inside
the FPGA determine the amount of energy used. Because
no real input data is available, bit toggling percentages at
the input and internal in the chip are used.

The used input bit toggling is 50%, which corresponds to
random data. Furthermore, we assumed an internal toggle
rate of 10% for both FPGAs. For the Cyclone II, "Power-
Play Power Analysis” estimates the total power consump-
tion is 57.98 mW, which consists of 26.86 mW static and
31.11 mW dynamic power dissipation. The estimations for
the Cyclone I are done with several settings for the inter-
nal bit toggling, see Table 5. For stimuli with a toggle rate
of 50% and an internal toggle rate of 10% the Cyclone I



Internal toggle rate 5% 10% 50% 87.5%
Total Thermal

Power Dissipation 120.9 mW 141.4mW | 3053 mW | 4589 mW
Dynamic Thermal

Power Dissipation 72.9 mW 93.4 mW 2572 mW | 410.8 mW
Static Thermal

Power Dissipation 48.0 mW 48.0 mW 48.0 mW 48.0 mW

Table 5. Power consumption of Cyclone |
(input toggle rate is 50%)
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Figure 6. Montium tile processor
consumes around 141.4 mW in regular use.

6 Mapping a DDC on one Montium TP
6.1 The architecture of a Montium TP

The Montium Tile Processor (TP) is a part of a tiled
System-On-Chip (SOC). The Montium TP has its roots at
the University of Twente and is now commercially available
through Recore Systems [2]. A Montium TP is designed to
be small, fast and coarse grained reconfigurable [12]. Be-
cause a Montium TP can operate independently and com-
municate with other tiles, additional performance can be
gained by adding more Montium tiles to a chip.

Figure 6 depicts the Montium TP with its three major
parts: the sequencer, the decoders and the Processing Part
Array (PPA). The sequencer implements a state machine. It
takes an instruction and sends it to the decoders that give the
PPA their configuration parameters. By walking through the
instructions as a state machine, the sequencer can perform
algorithms. When the decoders receive their parameters
they can activate their part of the PPA. The sequencer also
controls the PPA, by activating it or by stalling it. The PPA
consists of five ALUs, which each has two (small) memo-
ries. The memories can be loaded with external data. The
connections between the memories and the ALUs can be
configured by the interconnect decoder.

The ALU of the Montium is presented in Figure 7. It
has four 16-bit inputs, one 17-bit east input, one 17-bit west
output and two 16-bit outputs. An ALU can send a result to
the ALU west of it via its 17-bit west output. The neighbour
ALU receives this value on its 17-bit east input.

Al | B c| | D
v v v v
( Function unit 1 ) ( Function unit 2 )

( Function unit 3 ) ( Function unit 4 )

7777777 J‘_* Level 1 3217777777

Figure 7. ALU as used in a Montium tile

The ALU is separated in two levels (see Figure 7). Level
one has four function units. These can perform logic op-
erations on the incoming data. Examples of these logic
operations are “or”, ”and”, “not” and “addition”. At level
two, a multiplication can be done with the input values of
the ALU or with the output values of level one. The ad-
dition/subtraction at level two can choose its input values
from the east input, function units three and four, ALU in-
puts or the multiplier. The last functionality of level two is
the butterfly structure. This structure provides the possibil-
ity to perform an addition and/or a subtraction of the inputs
of the ALU with the result from the adder/substraction.

The Montium TP can perform many combinations of
operations in parallel with its five ALUs. Each ALU can
perform multiple non-multiply operations and one multi-
plication in one clock cycle. This makes the Montium an
good architecture to for 16-bit digital signal processing al-
gorithms. The possibility to reconfigure the chip makes
it flexible, so it can perform a variety of algorithms. The
Montium is not as flexible in performing its algorithms as
a GPP, but has a higher performance and lower energy con-
sumption in its algorithm domain. When the configuration
is not altered every cycle, the architecture has an energy-
efficiency close to an ASIC. The possibility to add more
Montium tile processors to the chip, to increase the perfor-
mance, makes it a scalable architecture.

6.2 DDC algorithm on a Montium TP

The Montium TP is programmed using an intermediate
level programming language. Implementing the discussed
DDC in this intermediate programming language requires
knowledge of the Montium TP architecture. The combi-
nation of this knowledge and the intermediate level pro-
gramming language allows an optimal solution to be im-
plemented.

6.2.1 Implementation

The most intensive parts of the DDC implementation are the
NCO and the integrating part of the CIC?. The input signal



Algorithm part #ALUs
NCO + CIC? integrating
CIC* cascading

CIC? integrating

CIC® cascading

FIRTZ5

Percentage of time on ALUs
100%

6.3%

25%

0.9%

0.5%

[SSIRISHN SN B S OS]

Table 6. DDC algorithm on a Montium
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Figure 8. NCO and CIC? on a Montium TP ALU

needs to be multiplied with the cosine and sine signal and
integrated according the CIC? algorithm, for both I and Q
part of the algorithm. For this reason two ALUs (one for I
and one for Q) in the Montium TP are needed to perform
this part of the algorithm at 64.512 MSPS (see Table 6),
which leads to a clock frequency of 64.512 MHz. Because
the Montium allows only one clock speed for the tile, all
ALUs will work at this clock speed.

Figure 8 depicts the configuration of one NCO-CIC
ALU. The input signal is placed on input A and the sine
or cosine value on input C. The values for the sine and co-
sine are stored in the local memories, so every clock cycle
the values are fetched from a Look-Up Table (LUT). The
address for the LUT is generated in an extra ALU, which
enables to change the frequency during execution. After the
multiplication, the value is integrated twice. The first inte-
gration is done with the value from register 1 (Reg 1) via
input B. This value is added to the result of the multiplica-
tion. The result is written back to the register for the inte-
gration in the next clock cycle. The addition takes place in
the adder of level two. The second integration of the CIC?
takes place in level one of the ALU. The result is stored in
Reg 2. Both registers (Reg 1 and 2) are mapped on the local
register files of the ALU.

The above described part of the DDC requires three
ALUs, which leaves two remaining ALUs for the rest of the
algorithm. Because that part of the algorithm is not required
to run at the input sample rate we are able to time-multiplex
the successive filters (CIC? (comb-part), CIC® and FIR) on
two ALUs.

The comb-part of the CIC? filter requires two ALUs for
one clock cycle per complex sample. The delayed input is
stored in the register files and the subtractions are performed
in both level 1 and 2 of the ALU. The output of the CIC? fil-
ter is integrated with the CIC? filter that requires two ALUs
for four clock cycles. The intermediate results are stored in
the register files. Due to the decimation with 16, these five
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Figure 9. First 40 clock cycles of the DDC

cycles only have to be executed once every 16 clock cycles.

The remaining % part of the clock cycles of the two
ALUs is used for the comb-part of the CIC? filter and the
polyphase FIR filter. The CIC® part is implemented similar
to the CIC? filter and requires 3 clock cycles every 16%21
= 336 cycles. The polyphase FIR filter is a specialization
of a general FIR filter as discussed in [12]. Due to the last
decimation step of 8, the output of the CIC® only needs a
multiplication with [122] out of the 125 filter-coefficients.
The intermediate results are stored in the local memories
and summed with future intermediate results. Once every
2668 clock cycles a sum of intermediate results is presented
at the output of the tile processor.

Figure 9 depicts the first 40 clock cycles of the DDC
implementation, operated at 64.512 MHz. In this figure it
is visible that the NCO and address generation use three
ALUs. The comb part of CIC? filter is repeated every 16
cycles. The period of the comb part CIC® filter and the
polyphase FIR cycles is repeated every 336 cycles, which
is not visible in this figure. Table 6 shows the percentages
of cycles and ALUs that are used for the current implemen-
tation. The implementation compiles to a configuration file
of 1110 bytes.

6.2.2 Power estimation

The power consumption of the Montium is measured to be
0.6 mW/MHz [12] in 0.13 pm technology and a V4 of
1.2 V. This implementation of the Montium has a core size
of 2.2 mm?. Using this, we can estimate that a Montium TP
needs 38.7 mW to perform the DDC algorithm.



Solution Size IFreq[MHz] [V ;4 Power Area

TI GC4016 0.25pm 80.0] 2.5| 115.0 mW n.a.
0.13pm 80.0] 1.2] 13.8 mW n.a.
(estimated)

Customised 0.18um 64.512| 1.8] 27.0mW| 17mm?

Low Power DDC 0.13pm 64512 1.2 8.7 mW n.a.
(estimated)

ARMO922T 0.13um 6697.01.08 2.435W| 3.2mm?

Altera Cyclone I 0.13p4m 64.512| 1.5 93.4mW n.a.

Altera Cyclone IT 0.09pm 64.512| 1.2| 31.11 mW n.a.
0.13um 64512 1.2| 44.94 mW n.a.
(estimated)

Montium TP 0.13m 64.512| 1.2] 387 mW/| 2.2mm>

Table 7. Summary of results
7 Conclusion

In this report, five architectures and their implementa-
tions of the DDC have been highlighted. As noted in the de-
scription of the architectures, the flexibility and the energy
consumptions of the architectures differ considerably. The
implementations are compared on their energy consump-
tion. The results are listed in Table 7. Depending on the
scenario we propose to use different architectures, based on
their energy consumption.

7.1 Static scenario

Devices that need to perform full-time wireless com-
munication need a small and energy-efficient solution. An
ASIC solution seems optimal for this situation. In the dis-
cussed examples this would be the customised low power
DDC, which uses only 27 mW. When scaling the technol-
ogy to 0.13 pum this would even drop to 8.7 mW.

When the device needs multiple dedicated DDCs, the
GC4016 ASIC of Texas Instruments could also be an op-
tion. This ASIC consumes roughly four times more en-
ergy compared to the customised low power DDC solu-
tion and performs a slightly different algorithm. However,
the solution has four DDC channels available on one chip.
When this solution is scaled to 0.13 pm, it would only use
13.8 mW.

7.2 Reconfigurable scenario

As expected, an FPGA consumes more energy compared
to the ASIC solutions. The Cyclone I and Cyclone II so-
lution are interesting for rapid prototyping, to find design
errors. The solution would consume too much energy to be
applied as a static scenario in a radio or a mobile phone.

When a device does not need to perform full-time wire-
less communication, the DDC algorithm would only be ac-
tive a part of the time. During the in-active periods the ar-
chitecture could provide other functionality to the user and
the device. In this case a dynamic reconfigurable architec-
ture can be considered. The best performing architecture at
the reconfigurable area is the Altera Cyclone II due to its

smaller technology size. When all architectures are scaled
to 0.13 pm the Montium has the lowest power consumption
of 38.7 mW.
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