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Abstract

The BLAST algorithm is the prevalent tool that is used by
molecular biologists for DNA Sequence Matching and
Database Search. In this work we demonstrate that with
an appropriate reconfigurable architecture, BLAST
performance can be improved with a single-chip solution
5 times over a specialized and optimized computer
cluster, or 37 times over a single computer. These initial
results account for I/O and are very encouraging for the
development of a large scale, reconfigurable BLAST
engine.

1. Introduction

DNA Sequence Matching and DNA Database Search
are two computationally demanding problems. These
problems are addressed since the early 1970’s and still
occupy substantial computational resources to date. One
of the first applications of Field Programmable Gate
Arrays (FPGAs) in the early 90s was in this area [10][11].
Several algorithms have been developed and a lot of
computational power has been devoted for this problem.
Previous reconfigurable (i.e. based on FPGA logic)
platforms for boosting DNA Sequence Matching and
Database Search have wused primarily dynamic
programming algorithms. This paper presents a new
architecture for effective use of reconfigurable logic for
BLAST algorithm speedup over general-purpose
computers. The new architecture is described in [20]. The
contributions of the present work vs. [20] are:

I. A detailed description of how the elements of the
BLAST algorithm can be speeded up by using
reconfigurable computing

II. Detailed performance results and comparisons of the
new architecture vs. conventional computing

1-4244-0054-6/06/$20.00 ©2006 IEEE

platforms (single computers or clusters), even highly
optimized ones for BLAST execution
Limited information from [20] has been included in this
work for readability purposes, and is indicated
accordingly.

1.1 Previous Work

The genome of many organisms has been sequenced to
date but the process is due to be performed for many
others. Databanks with sets of genome information have
been created and categorized according to their contents
(DNA or proteins). Major databanks are GenBank [1] at
NCBI which maintains all DNA sequences that are made
public; and EMBL [2] which is a large DNA archive in
Europe. In addition, important DNA archives are kept in
DDBJ [3], and GSDB [4]. Regarding protein archives,
PIR [5] in the USA and Swiss-Prot [6] in Europe are the
most important databases. This process started over the
last two decades and continues to date, with an
exponential growth over the entire period. In 1982 the
first 606 sequences and 680,338 base pairs were added to
GenBank. The total number of sequences at 2004 was
40,604,319 and of base pairs 44,575,745,176, giving an
average annual growth rate of 65.71% for sequences and
65.54% for base pairs.

It has been calculated [8] that NCBI databank size
grows at a more rapid rate than Moore’s law indicates for
the transistor number in a chip, and consequently than the
growth in single-processor computer power. For that
reason, and despite the increasing efforts of many
institutions, DNA Sequence Comparison and Database
Search remains a challenging problem. The BLAST
algorithm [9] is considered to be the basic tool for
molecular biologists, and its acceleration is a worthwhile
endeavor.



2. The BLAST Algorithm

This section includes information from [20] and has
been included for purposes of readability of this work.
BLAST is the acronym for Basic Local Alignment Search
Tool and was first presented in [9]. A family of
implementations has been developed, depending on the
nature of data to be processed. Depending on query and
database data types, each BLAST implementation is
named BLASTp when the query is an amino acid and the
database is a protein, BLASTn when both the query and
the database are nucleotides, BLASTx when the query is
nucleotide translated and the database is protein,
tBLASTn when the query is an amino acid and the
database is a nucleotide translated, and finally tBLASTx
when the query and the database are nucleotides
translated. The inputs of the algorithm are the genetic
sequence database (or a part of it such as the human
genome) and a query which tries to find areas of
similarity in the database. The outputs of the algorithm
are the positions of the areas of these two strings that have
similarity, as well the score of these similarities. Each of
these pairs, comprising of a database area and a query
area, is called a High Score Pair (HSP). The score has
significant value for biologists because it is used to
compute several variables, of which the e-value is the
most important.

The algorithm consists of three steps. In the first step
the query is compiled to form a list of length w substrings.
These substrings are called W-mers and are all the
contiguous substrings of length w of the query sequence.
The Second step is the search of the database for “hits”.
After the word list generation, the database sequences are
searched for an exact match between any substring of the
w-mers list and the database sequence. Every word of the
word list found in the database is called hit and it is
possible to be part of a High Score Pair (HSP). The list of
the generated “hits” is processed to the third step. Each
substring, which made a match in the second step, is
extended locally in both directions as long as the score of
this substring no longer gets improved following the
scoring rules.

3. Reconfigurable Computing for DNA
Sequence Comparison and Database Search

Reconfigurable logic has been used for well over a
decade as a means for solving computationally intensive
problems. FPGA devices vary according to the
manufacturing, but invariably each device consists of
several programmable resources such as I/O blocks, a
core of configurable logic (e.g. configurable logic blocks -
CLBs) and their interconnection. In addition there may be
resources such as memory, or even embedded processors.

The devices are mostly SRAM based which means that
all the resources (including the logic and the interconnect)
are programmed by means of a protocol that takes
memory contents and maps them to look-up table values
or interconnect control signals. Figure 1 shows the
general architecture of a typical FPGA device.

In the last decade several platforms have been built
with FPGAs to boost performance of algorithms for
DNA, to be described in the next section.
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Figure 1 Generic FPGA Structure

3.1. Reconfigurable Hardware for Bioinformatics

To date, FPGAs have been proved to be a powerful
platform for performance boosting for string matching
types of problems such as Intrusion Detection Systems in
computer networks or data mining. The DNA Sequence
Comparison and Database Search differ from other string
matching problems due to the limited alphabet on one
hand, and the exceptionally long database size on the
other.

In the specific domain of Sequence Comparison and
Database Search Hoang et. al. [10][11] use the FPGAs of
the venerable SPLASH 2 machine to implement the
Needleman Wunsch algorithm [12]. Using JBits S.
Guccione et. al. [13] implement the Smith Waterman [14]
matching algorithm. The same algorithm was
implemented at Virginia Tech. [15] and more recently at
Nanyang Technological University [16]. All these
implementations take advantage of the dynamic
programming algorithm features that can be efficiently
solved with a systolic array processor. In general, FPGA
internal structures are well suited for systolic processor
design. There has been limited work on BLAST using
reconfigurable logic, however. Several efforts towards



BLAST speed up for special cases can be found, with the
latest being miBLAST [24].

Heuristic algorithms FASTA [17] and BLAST don’t
seem do be suitable to FPGAs. Muriki et. al. [18] is the
only detailed bibliographic reference for FPGA BLAST
implementation. Their purpose was to improve
performance of NCBI BLAST implementation with the
use of FPGAs maintaining the open source feature of
NCBI. At their work they profile the execution of NCBI
software and they found at which point (file) of the
software the CPU consumes most of the time. The
detected code was then replaced with a call to a procedure
that was using an FPGA platform for execution boosting.
It was projected that code would run 35 times faster but
actual measurements show almost 5 times slower
execution. This result is not discouraging given the
specifics of the technology that the authors used, but it
does highlight the difficulties in developing high
performance architecture. The contribution of this work
was that there was a detailed study of CPU execution time
distribution during the execution of the BLAST
algorithm, an actual run of BLAST on FPGAs and the
open source feature that this project managed to keep. On
the other hand, the very old FPGA technology that was
used, in combination with limited architectural and design
efforts towards optimum performance led to a poor
system performance, largely due to Input/Output (I/O)
bottlenecks.

One last notable BLAST acceleration system is the
DeCypher commercial product by Time Logic, Inc. The
system is a PCI card that can be attached to a server and it
is based on FPGA technology [22]. Several impressive
but not detailed results of DeCypher have been announced
[23].  Unfortunately, lack of information about the
architecture itself (number of chips, I/O, architecture type,
etc.) as well as how the performance is calculated (types
of queries, size of database, version of BLAST, etc.) do
not allow for comparisons with our present work.

4. The TUC Architecture

The Technical University of Crete (TUC) architecture,
described in more detail in [20] and analyzed in this work,
was designed for BLASTn small query implementation
(1000 letters) regardless of the data base size. NCBI codes
consist of several hundreds of files calculating the
BLAST algorithm and exporting several numbers which
have biological meaning. All these numbers are calculated
based on the score of HSP. These calculations produce
substantial computing load but the most significant part of
the computation power is consumed to find every HSP
and extend it, calculating its score. Previous efforts for
hardware implementation of BLAST using profiling show

that almost 80% of CPU time spend for these calculations
[18].

The TUC architecture is divided into N identical
computing machines, each one of which has two main
components and implements all three steps of the
algorithm. Input data have a width of 2N bits, which are
part of N different channels. Every channel drives one of
the N computing engines. At the first component of each
machine, the W-mer list is created and stored in the
memory. As the data stream of the database passes, a
search for a hit (match) is being performed. Every hit that
is found activates the second component of the
architecture which starts to extend it, implementing the
third step of the algorithm. The general design of the
architecture is shown at Figure 2.

5. Recent Technology FPGA Features for
BLAST Implementation

The Input Output (I/O) of data proved to be the
bottleneck of performance of previous efforts to
implement hardware for BLAST [18]. Present generations
of FPGAs offer an extremely wide I/O bandwidth. To
illustrate, FPGA’s of Xilinx corp. have the so-called
ROCKET 1I/O transceiver which is embedded in the
device families Virtex-II Pro and Virtex-4. Such a
transceiver allows up to 10.3125 Gb/s [19] transfer rates
per transceiver with a maximum number of 20
transceivers on a single device. That feature gives an
aggregate baud rate of 206.25 Gb/s per device. This is the
baud rate of a single chip according to datasheets but the
actual bit rate is lower and estimated to be about 8 Gb/s
per channel or 160 Gb/s per device. These baud rates are
significantly higher than the PCI baud rate which was the
bottleneck in [18] and even the DDR2 baud rate from
main memory to CPU. A typical value for PCI baud rate
is 1 Gb/s and for DDR2 (main memory to CPU) it is 8.5
Gb/s. The significant difference between the baud rates
between a FPGA device and what a conventional
processor can receive from main memory or a PCI-based
co-processor proves that even if the performance
bottleneck of the BLAST algorithm is the I/O, as in [18],
it can be overcome. However, there needs to be proper
use of FPGA technology and the appropriate memory
subsystem architecture, from which the database will be
streamed into the processor, because I/0O is non-trivial.

A very important feature of modern FPGAs is the
existence of embedded Blocks of RAM (BRAM for
Xilinx) which can offer a large amount of RAM with
flexibility, using them in any design as small RAMS of
some Kbits each or as one bigger RAM of some Mbits.
For the BLAST algorithm it is very important to keep
inside the processor the data of the database stream under
examination, and indeed keep it for a time proportional to
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Figure 2 General TUC Architecture

the query length. The BRAMs combined with the
existing distributed RAMs, extend the designers
capabilities to manipulate larger data sets, which is of
very high importance for the BLAST algorithm.
Therefore we have seen that key elements for BLAST
acceleration on present-day FPGAs are the availability of
very fast I/O for streaming the database data into the
processor, and the internal RAM which is sufficient to
hold the entire string of a query. As the entire database
needs to be streamed into the system, we observe that
present-day FPGA’s overcome the problems of previous
generations vis a vis the BLAST algorithm. In addition, a
resource of great importance is the core of a PowerPC
processor that new Xilinx devices have embedded. These
embedded processors have high computational power
and can be used as processing elements that can

manipulate memory and consequently data sets more
efficiently.

6. TUC Architecture Implementation

The TUC Architecture has been coded in VHDL and
exhaustively post place-and-route simulated for the
VIRTEX-4 family using the 4VFX140FF1517-11
device. Such simulations are considered highly accurate
by the computer hardware community and their results
are quite dependable. The simulations were of actual
string matching for existing large sequences, as
described in the next section. In this first generation of
the architecture three different experiments have been
executed. In the first experiment a single computing
machine has been implemented. This machine according



to post place and route simulations runs at 121 MHz and
consumes 1% of the device resources. In the second
experiment, 60 parallel computing machines of the same
design have been placed in a single chip, and the clock
speed was 103 MHz. The consumed resources were 36%
of logic and 86% of BRAMs. In the third experiment the
parallelization came up to 69 and the respective
measurements were 101 MHz clock speed, 42% of logic
resources and 100% of BRAMs. The BRAM is the
critical resource that limits parallelization to 69 in the
first generation of TUC Architecture.

7. TUC performance — Results

In order to evaluate the TUC architecture
performance, measurements of the NCBI software have

been made on conventional computers and on the new
machine, with identical queries.

Runs of blast-2.2.12 were performed on a 2GHz Xeon
with 2GB main memory running SUSE 9.1 Linux and
the CPU usage was profiled. Five NCBI data bases of
several sizes for a small query of 1000 letters were
executed at the 2GHz Xeon and measured.

The same experiment was repeated with a Intel
Pentium M 1,7 GHz with 1 GB main memory running
Windows XP professional and an Intel P4 2,66 GHz with
1 GB main memory running Windows 2000. For
Computers running Windows Intel VTune Performance
Analyzer 7.2 was used and every measurement repeated
5 times. Results of these experiments are respectively on
Tables 1, 2 and 3.

The averages in the tables are arithmetic averages.

DataBase name | Database Run | Throughput
Size Time | (characters/sec)
(characters) | (sec)
ecoli.nt 4,662,239 | 0.024 194.25 10°
drosoph.nt 122,655,632 | 0.482 258.33 10°
month.nt 386,242,580 | 1.753 220.56 10°
env_nt 1,061,221,997 | 1.190 891.63 10°
igSeqNt.ftptemp | 44,419,359 | 1.397 31.77 10°
Average 323,840,361 | 0.968 319.25 10°

Table 1 Measurements on XEON 2 GHz / Linux

DataBase name | Database Run | Throughput
Size Time | (characters/sec)
(characters) | (sec)

ecoli.nt 4,662,239 | 0.045 102.85 10°

drosoph.nt 122,655,632 | 0.364 337.32 10°

month.nt 1,303 296.50 10°

386,242,580

env_nt 1,061,221,997 | 3.670 289.19 10°

igSeqNt.ftptemp 44,419,359 | 0.174 255.43 10°

Average 323,840,361 | 1.111 256.26 10°

Table 2 Measurements on Intel M 1,7 GHz / Windows XP



DataBase name Database Run Time(sec) Throughput
Size (characters) (characters/sec)
ecoli.nt 4,662,239 0,039 118.45 10°
drosoph.nt 122,655,632 0.309 396.32 10°
month.nt 386,242,580 1.022 378.10 10°
env_nt 1,061,221,997 3.200 331.63 10°
igSeqNt.ftptemp 44,419,359 0,160 277.40 10°
Average 323,840,361 0.946 300.38 10°
Table 3 Measurements at Intel P4 2,66GHz / Windows 2000
Number of | Type of Time | Database Size | Actual System Actual
Processors Processors (sec) (characters) Throughput Throughput per
(characters/sec) Chip
(characters/sec)
| POWER3 43.63 410° 91.68 10° 91.68 10°
Model 681 1.1 21.32 410° 187.62 10° 187.62 10°
PNOWERR 24 NQ A 109 166 04 106 2 NN 1N6
2 Model 681 1.1 11.39 410° 351.18 10° 175.59 10°
4 POWER3 14.23 410° 281.10 10° 70.27 10°
Model 681 1.1 6.53 410° 612.56 10° 153.14 10°
3 POWER3 9.25 410° 432.43 10° 54.05 10°
Model 681 1.1 4.33 410° 923.79 10° 115.47 10°
16 POWER3 7.56 410° 529.10 10° 33.07 10°
Model 681 1.1 3.33 410° 1201.20 10° 75.07 10°

Table 4 BLASTn Benchmarks with a Small Single Query and Large Database(from [21])

The NCBI software has been used as a benchmark
from IBM for measurement of computing systems such
as IBM 375 MHz POWER3-II multiprocessor (SMP)
and the 1.1 GHz POWER4 pSeries 690 Model 681[21].
In this work several experiments have been made for
several sizes of databases, queries and BLAST version.
Out of these results BLASTn results for small queries
were selected to be compared with all the other
experiments and are presented on Table 4. It can be
shown that the fastest system throughput is achieved
with the 16 processor Model 681 1.1 system, which has a
throughput of 1,201.20 10° characters/sec. However, the
fastest single chip system is the IBM Model 681 1.1 with
187.62 10° characters/sec.

Finally, the TUC architecture performance is
determined according to post place and route timing
information of Xilinx software 7.1.03 which includes
Device speed data version: "ADVANCED 1.54 2005-
05-25" for the specific device. Table 5 has speed
measurements for the three experiments.

Throughputs of all systems are presented at Table 6
and in Table 7 the speedup of TUC architecture against
the other system is presented.

8. Conclusions

The presented results show that reconfigurable logic
with proper technology exploitation can offer a flexible
and effective platform for bioinformatics problems.
BLAST seems to be the most popular tool for biologists
but several other challenging problems still exist.

For BLAST implementation the second generation of
TUC architecture has to be designed for bigger
parallelization and broaderbandwidth, and several data
mining techniques that are used in intrusion detection
systems have to be used for further speed improvement.
The designed architecture needs to be verified in
commercial platforms with fast I/O,.such as ClearSpeed
[25] or CRAY XD1 [26]. For I/0O bandwidth, it still has
to be proved that the Xilinx FPGA device capabilities
can be matched by an external interface at the system



Number of Speed Width of Predicted
Parallel (MHz) Data Stream Throughput
Machines (characters) | (characters/sec)
1 121 1 121.20 10°
60 103 60 6,192.58 10°
69 100 69 6,924.84 10°

Table 5 Speed and throughput of TUC Architecture

System Predicted Throughput
(10° characters/sec)
2GHz Xeon 319.25
1,7 GHz Intel M 256.26
2,66 GHz Intel P4 300.38
TUC Architecture N=1 121.20
TUC Architecture N=60 6,192.58
TUC Architecture N=69 6,924.84
IBM single chip 187.62
IBM System 1,201.20
Table 6 Systems Throughput
SpeedUp of SpeedUp of SpeedUp of
TUC TUC TUC
Architecture Architecture Architecture
N=1 N=60 N=69
2GHz Xeon 0.38 19.39 21.69
1,7 GHz Intel M 0.47 24.16 27.02
2,66 GHz Intel P4 0.40 20.61 23.05
IBM single chip 0.65 33.00 36.90
IBM System (16 chips) 0.10 5.15 5.76

Table 7 TUC Architecture SpeedUp

level. The design of a platform which addresses the I/O
issues is an interesting open problem, which we will
study next. It would be very interesting to create a
flexible platform on which many bioinformatics
problems can be executed and measured.
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