A Pattern Selection Algorithm for
Multi-Pattern Scheduling

Yuanqging Guo

Cornelis Hoede

Gerard J.M. Smit

Faculty of EEMCS, University of Twente
P.O. Box 217, 7500AE Enschede, The Netherlands
E-mail: {y.guo, c.hoede, g.j.m.smit}@Qutwente.nl

Abstract

The multi-pattern scheduling algorithm is designed
to schedule a graph onto a coarse-grained reconfigurable
architecture, the result of which depends highly on the
used patterns. This paper presents a method to select
a near-optimal set of patterns. By using these pat-
terns, the multi-pattern scheduling will result in a better
schedule in the sense that the schedule will have fewer
clock cycles.

1 Introduction

The most commonly used computer system architec-
tures in data processing nowadays can be divided into
three categories: General Purpose Processors (GPPs),
application specific architectures and reconfigurable ar-
chitectures. GPPs are flexible, but inefficient and for
some applications with not enough performance. Ap-
plication specific architectures are efficient and with
good performance, but inflexible. Recently reconfig-
urable systems have drawn more and more attention
due to their combination of flexibility and efficiency.
Reconfigurable architectures limit their flexibility to a
particular algorithm domain. A Montium tile [2] is a
coarse-grained reconfigurable system (see Figure 1), de-
signed at the University of Twente. In the Montium,
the functions of Arithmetic and Logic Units (ALUs)
can be changed by reconfigurations. One Montium tile
has five ALUs which, for instance, can be configured to
compute two additions and three multiplications dur-
ing the first clock cycle, and one addition, two sub-
tractions and two bit-or operations during the second
clock cycle. The combination of concurrent functions
that can be performed on the parallel reconfigurable
ALUs in one clock cycle is called a pattern.

The programmability of reconfigurable architectures

1-4244-0054-6/06/$20.00 ©2006 IEEE

MEM1MEM2 MEM1MEM2 MEM1MEM2 MEM1 MEM2

Tile

LB Control
\\\\\ RaRaRIRTl RaRaRIRTl (ARSRRT EAEREREE]
[RalRo[RelRd| [RalRolRelRd| [RalRblRelRd| [RalRolRelRd| [RelrolRelRd|
T T T T T T T T T T T T T T T T T T T T

ALU ALU ALU ALU ALU

Figure 1. Montium processor tile

differs considerably from that of GPPs. In a GPP, the
ALU can be programmed many times and to any of
its possible functions. However, in the Montium, al-
though the five ALUs can execute thousands of differ-
ent possible patterns, or efficiency reasons during one
application, it is only allowed to use up to 32 of them.

To automate the design process and achieve optimal
exploitation of the architectural features of the Mon-
tium, a high level entry compiler for the MONTIUM ar-
chitecture is currently being implemented [3]. This ap-
proach consists of four phases: Transformation, Clus-
tering, Scheduling and Allocation. In this paper, we
only concentrate on the scheduling phase.

In [1], a multi-pattern scheduling algorithm is pre-
sented, which is to schedule the nodes of a graph as-
suming that a fixed number Py.; of patterns are given.
The experimental results of the multi-pattern schedul-
ing algorithm showed that it is very sensitive to the
selected patterns. In this paper we present a method
to choose Pycy patterns.

The rest of the paper is organized as follows: Some
related work is given in Section 2; In Section 3, some
definitions are given; Since the result of the pattern se-
lection algorithm is used by the multi-pattern schedul-
ing, we will give a short description of the latter in
Section 4; The proposed pattern selection algorithm is
described in Section 5; Finally the experimental results

and conclusions are presented in Section 6 and Section
7.

2 Related work

Scheduling is a well defined and studied problem
in the research area of high-level synthesis [4]. Most
scheduling problems are NP-complete problems [5]. To
solve the scheduling problems heuristic algorithms have
been used to find feasible (possibly sub-optimal) solu-
tions. Two commonly used heuristic algorithms are:
list scheduling [6][7] and force-directed scheduling|8].

As far as we know, none of the existing scheduling
methods can be used for the Montium, a coarse-grained
reconfigurable architecture. The number of patterns
is restricted for the scheduling problem in the Mon-
tium, which has never been considered in the tradi-
tional scheduling methods.

3 Definitions

Figure 2. Multi-pattern scheduling example:
3DFT algorithm

On a Data Flow Graph (DFG) a node n represents
a function/operation and a directed edge denotes a de-
pendency between two operations. If there is an edge
directing from node nj to ng, nq is called a predecessor
of ngy, and ny is called a successor of ny. Pred(n) rep-
resents the set formed by all the predecessors of node
n and Succ(n) represents the set formed by all the
successors of node n. We call n a follower of m, if
there exists a sequence ng,...,n; of nodes such that
ng =m, ni =n, and n,; is a predecessor of n;;, for all
1€{0,....,k—1}.

The As Soon As Possible level (ASAP(n)) attribute
indicates the earliest time that the node n may be
scheduled. It is computed as:

ASAP(n)
if Pred(n) = ¢;

otherwise.

0
= { max (ASAP(n;)+1)
Vni;€Pred(n)

(1)

The As Late As Possible level (ALAP(n)) attribute

determines the latest clock cycle the node n may be
scheduled. It is computed using the following:

ALAP(n)
ASAP,,0x if Suce(n) = ¢;
= min (ALAP(n;) —1) otherwise,
Vn;€Suce(n)

(2)
where ASAP,,4. = max (ASAP(n;)).
Vn, N

The Height (Height(n)) of a node is the maximum
distance between this node and a node without
successors. It is calculated as follows:

Height(n)
if Suce(n) = ¢;

1
= { max (Height(n;) +1) otherwise.
Vn;€Succ(n)

3)
The ASAP level, ALAP level and Height of all nodes
are listed in TABLE 1.

Table 1. ASAP level, ALAP level and Height

asap | alap | meigny asap | alap | meigns
b3 |0 0 5 b6 |0 0 5
bl |0 1 4 b5 | 0 1 4
ad 0 1 4 a2 0 1 4
a8 1 1 4 a7 1 1 4
c9 1 2 3 cl3 | 1 2 3
cll | 1 2 3 clo |1 2 3
a24 | 1 4 1 al6 | 1 4 1
alb | 2 3 2 al8 | 2 3 2
a20 | 3 3 2 al7 | 3 3 2
al9 | 3 4 1 a22 | 3 4 1
a23 | 4 4 1 a2l | 4 4 1

The type of the function of a node n is called a
color of m, written as [(n). The scheduling objective is
to associate each node of a DFG to a clock cycle such
that certain constraints are met.

In a system with a fixed number (denoted by C,
which is 5 in the Montium architecture) of reconfig-
urable resources, C' functions that can be run by the
C reconfigurable resources in parallel are called a pat-
tern. A pattern is therefore a bag ! of C' elements. A

LA bag, or multi-set, is an unordered collection of values that
may have duplicates.

pattern might have less than C colors. The undefined
elements are represented by dummies.

On a DFG, two nodes n; and no are called paral-
lelizable if neither n; is a follower of ng nor ng is a
follower of ny. If A is a set of one node or pairwise
parallelizable nodes we say that A is an antichain (this
concept is borrowed from the theory of posets, i.e. par-
tially ordered sets. (Please refer to [9] for more infor-
mation.) If the size of an antichain A is smaller than
or equal to C, we say that A is executable. In Fig. 2,
set Al = {bl,a4,b3,b6,al6,cl0} is an antichain, while
A2 = {bl,a4,b3,b6,al16,al7} is not because al7 is a
follower of b6. When C' = 5, Al is not executable and
A3 = {bl,a4,b3,b6,al6} is executable.

4 A multi-pattern
rithm

scheduling algo-

1. Compute the priority function for each node
in the graph.

2. Get the candidate list.

3. Sort the nodes in the candidate list according
to their priority functions.

4. Schedule the nodes in the candidate list from
high priority to low priority according to all given
patterns.

5. Compute the pattern priority function for each
pattern and keep the pattern with highest pattern
priority value.

6. Update the candidate list.

7. If the candidate list is not empty, go back to
3; else end the program.

Figure 3. Multi-Pattern List Scheduling Algo-
rithm

Given a set of patterns pi1,p2,- - Pp,,.,, the objec-
tive of the multi-pattern scheduling problem is to as-
sign nodes of a DFG to a clock cycle such that (1) the
dependencies between nodes are satisfied, (2) within
each clock cycle the needed resources are determined
by the resources defined by one of the given patterns
and, (3) the number of clock cycles is minimized.

A list based algorithm maintains a candidate list C'L
of candidate nodes, i.e., nodes whose predecessors have
already been scheduled. The candidate list is sorted
according to a priority function of these nodes. In each
iteration, nodes with higher priority are scheduled first
and lower priority nodes are deferred to a later clock
cycle. Scheduling a node within a clock cycle makes its
successor nodes candidates, which will then be added
to the candidate list.

For multi-pattern scheduling, for one clock cycle, not
only nodes but also a pattern should be selected. The
selected nodes should not use more resources than the
resources presented in the selected pattern. For a spe-
cific candidate list CL and a pattern p;, a selected set
S(pi, CL) is defined as the set of nodes from C'L that
will be scheduled provided the resources are given by
Di-

The multi-pattern scheduling algorithm is given in
Fig. 3. In total two types of priority functions are
defined here, the node priority and the pattern priority.
The former is for each node in the graph and the latter
is for scheduling elements from a candidate list by one
specific pattern.

4.1 Node priority

In the algorithm, the following priority function for
graph nodes is used:

fln) =

s X height + t x #direct_successors
+#all_successors

(4)

Here #direct_successors is the number of the successors
that follow the node directly, and #all_successors is the
number of all successors. Parameters s and ¢ are used
to distinguish the importance of the factors. s and ¢
should satisfy the following conditions:

s > max{t x #direct_successors
+#tall_successors} (5)
t > max{#all_successors.}

These conditions guarantee that the node with largest
height will always have the highest priority; For the
nodes with the same height, the one with more direct
successors will have higher priority; For the nodes with
both the same height and the same number of direct
successors, the one with highest number of successors
will have highest priority.

The height of a node reflects its scheduling flexibil-
ity. For a given candidate list, the node with smaller
height is more flexible in the sense that it might be
scheduled at a later clock cycle. Nodes with largest
height are given the preference to be scheduled earlier.
The scheduling of the nodes with more direct successors
will make more nodes go to the candidate list, they are
therefore given higher priority. Furthermore, the node
with more successors is given higher priority since the
delaying of the scheduling of this node will cause the
delaying of the scheduling of more successors.

4.2 Pattern priority

Intuitively for each clock cycle we want to choose the
pattern that can cover most nodes in the candidate list.

Table 2. Scheduling Procedure

clock cycle | candidate list patternl =“aabcec” | pattern2 =“aaacc” | selected pattern
1 a2,a4,b1,b3,b5,b6 a2,a4,b6 a2,a4 1
2 b1l,b3,b5,c11,a24, al6,c10,a7 | a7,a24,b3,c10, cl1 a24,al6,a7,cl1, c10 | 1
3 a8,al16,b1,b5,c12 a8,a16,b5,c12 a8,al6,c12 1
4 bl,cl4,a17,c13 al7,bl,cl13,cl4 al7,c13,cl4 1
5 al8,a20,a21,c9 al8,a20,c9 al8,a20,a21,c9 2
6 alb,a22,a23 alb,a22 alb,a22,a23 2
7 al9 al9 al9 1

This leads to a definition of the priority function for a
pattern p’corresponding to a candidate list C'L.

Fi(p,CL)
(6)
On the other hand, the nodes with higher priorities
should be scheduled before those with lower priorities.
That means that we prefer the pattern that covers more
high priority nodes. Thus we modify the priority of
a pattern as the sum of priorities of all nodes in the
selected set.

Fy(p,CL) =

>, f). (7)

nes(p,CL)
4.3 Example

We explain the algorithm with the help of the 3-
point Fast Fourier Transform (3DFT) algorithm. The
DFG of 3DFT consists of additions, subtractions and
multiplications, as shown in Fig. 2. The first letter
of the name of a node is the color of the node. The
nodes denoted by “a” are additions; while those with
“b” represent subtractions and the nodes with “c” mul-
tiplications. Two patterns are assumed to be given
here: patternl = “aabcc” and pattern2 = “aaacc”.
The scheduling procedure is shown in TABLE 2. Ini-
tially, there are six candidates: {a2, a4, b1, b3, b5, b6}.
If we use patternl {a2, a4, b6} will be scheduled, and
if we use pattern2 {a2, a4} will be scheduled. Because
the priority function of patternl is larger than that of
pattern2, patternl is selected. For the second clock cy-
cle, patternl covers nodes {a7, a24, b3, c10, c11} while
pattern2 covers {a7, al6, a24, c10, c11}. The differ-
ence between the use of the two patterns lies in the
difference between b3 and al6. If we use the pattern
priority function Fy (p, C'L) defined in Equation (6), the
two patterns are equally good. The algorithm will pick
one at random. If we use Fy(p, CL) defined in Equa-
tion (7) as pattern priority function, patternl will be
chosen because the height of b3 is larger than that of
al6.

= number of nodes in selected set S(p, CL).

4.4 Experiment

Table 3. Experimental results: Number of
clock cycles for the final scheduling

patterns clock
cy-
cles

{a,b,c,b,c}, {b,b,b,a,b}, {bbb,c,b}, {bab,aa} || 8

{a7b7c7b7c}7 {b7c7b7c7a}’ {C’b’a7b7a’}7 {b7b7c7c7b} 9

{a,b,c,c,c}, {aa,b,a,c}, {c.c,caal, {ab,abb} 7

We ran the multi-pattern scheduling algorithm on
the 3-Fast Fourier Transform (3DFT) algorithms by
using 4 patterns. The experimental results are given
in TABLE 3 where the number indicates the number
of clock cycles needed. From the experiment we can
see that: The selection of patterns has a very strong
influence on the scheduling results!

5 Pattern selection

We saw in the previous section that the selection of
patterns is very important. In this section we present
a method to choose Py.; patterns.

The requirements to the selected patterns are:

1. The selected patterns cover all the colors that ap-
pear in the DFG;

2. The selected patterns appear frequently in the
DFG (have many antichains in the DFG).

Our proposed method first finds all the possible pat-
terns and their antichains in the DFG presented in
Section 5.1, and then makes the selection from them
represented in Section 5.2.

5.1 Pattern generation
The pattern generation method finds all antichains

of size C first and then the antichains are classified
according to their patterns as follows:

patternl: antichainll,antichainl2,antichainl3,- - -
pattern2: antichain2l,antichain22 antichain23,- - -
antichain31,antichain32,antichain33,- - -

pattern3:

In the small example shown in Fig. 4, the same as
the example in Fig. 2, the letters “a” and “b” repre-
sent the colors. The classified antichains are listed in
TABLE 4:

Figure 4. A small example for the pattern se-
lection algorithm

Table 4. Patterns and antichains in the DFG in
Fig. 4

ALAP(a24) =4, ASAP(b3) =0 and ALAP(b3) = 0.
Therefore,

max {ASAP(n)} = max{1,0} = 1;

miJr41 {ALAP(n)} = min{0,4} = 0.
ne
The span is

Span(A) =U(1—-0)=1.

Theorem 1 If the nodes of an antichain A are
scheduled in one clock cycle, the total number of clock
cycles of the final schedule will be at least ASAP a0 +
Span(A)+1.

Proof Assume that node nl has the minimal ALAP
level and node n2 has the maximal ASAP level (see Fig.
5). Before n2, there are at least ASAP(n2) clock cycles
and after nl, there are at least ASAP,,q. — ALAP(nl)
clock cycles. If nl and n2 are run at the same clock
cycle, when ASAP(n2) is larger than ALAP(nl) as
is the case in Fig. 5, totally at least ASAP(n2) +
ASAP0 — ALAP(nl) + 1 clock cycles are required
for the whole schedule, where the extra 1 is for the clock
cycle when the nl and n2 are executed. However, the
total number of clock cycles cannot be smaller than
AS AP, + 1, which is the length of the longest path
on the graph. Thus when ASAP(n2) < ALAP(nl),
the length of the schedule is larger than or equal to
ASAP,qr + 1.

patterns antichains
1= {a): | {al).{a2},{a3)
P2 = {b}: | {bd}{b5}

ps = {aa}: | {al,a3},{a2,a3}
pa = {bb}: | {b4,b5}

A
ASAP o

Y .

d LY g
0

o

—ASAP
----ALAP

The number of antichains increases very fast with
the size. The elements of an antichain may haven been
chosen from different levels of the DFG. The concept
span for an antichain A captures the difference in level,
which is defined as follows:

Span(A) = U(E?eai({ASAP(n)} — 1}1612 {ALAP(n)}),

where, U(z) is a function defined as follows:

0 x<0;
U(x):{ z x>0.

Looking at an antichain A = {a24,b3} in Fig.
2, the levels of the nodes are: ASAP(a24) = 1,

/\ _______ I Span
\

-
ns Ny node

Figure 5. Span

Theorem 1 shows that to run the nodes of an A with
too large span in parallel will decrease the performance
of the scheduling. A pattern with many antichains, all
of which are with very large span, is therefore not a
favorable pattern. We will see soon that the antichains
of a pattern will contribute to the preference to take
the pattern. Due to the above analysis, it is not useful
to take antichains of large span into consideration. For

instance, in the graph of Fig. 2 node “al9” and node
“b3” are unlikely to be scheduled to the same clock
cycle although they are parallelizable. The number of
antichains decreases by setting a limitation to the span
of antichains, which, on the other hand, also decreases
the computational complexity (See TABLE 5 for the
number of antichains for the 3DFT satisfying the span
limitation).

Table 5. The number of antichains that satisfy
the span limitation for 3DFT

Number of nodes in A | 1 2 3 4 5

Span(A) =4 24 | 224 | 1034 | 2500 | 3104
Span(A) =3 24 | 222 | 1010 | 2404 | 2954
Span(A) =2 21| 208 | 870 | 1026 | 2282
Span(A) =1 24 | 178 | 632 | 1232 | 1364
Span(A) =0 24 | 124 | 304 | 425 | 356

5.2 Pattern selection

The pseudo-code for selecting patterns is given in
Fig. 6. Non-ordered patterns are selected one by one

1 for(i=0;4< Paes; i ++) {

2 Compute the priority function for each pattern;

3 Choose the pattern with the largest priority
function;

4 Delete the subpatterns of the selected pattern.

5}

Figure 6. The pseudo-code for pattern selec-
tion procedure

based on priority functions. The key technique is the
computation of the priority function for each pattern
(line 2 in Fig. 6), which is decisive for the potential use
of the selected pattern. After one pattern is selected,
all its subpatterns are deleted (line 3) because we can
use the selected pattern at the place where a subpattern
is needed.

In the multi-pattern list scheduling algorithm given
in Section 4, a node which forms a pattern with other
parallelizable nodes will be scheduled. If the allowed
patterns for the multi-pattern list scheduling algorithm
cover more antichains including a specific node, it is
easier to schedule the node. The idea now is that the
number of antichains of the selected patterns that cover
a node should be as large as possible, and the number
should be balanced among all nodes because some un-

scheduled nodes might decrease the performance of the
scheduling.

For each pattern p, a node frequency, h(p,n) is de-
fined to represent the number of antichains that include
a node n. The node frequencies of all nodes form an
array:

h(p) = (h(B,m1), h(@,n2), -, h(B,nN)).-

h(p,n) tells how many different ways there are to sched-
ule n by the pattern p, or we can say that h(p,n) in-
dicates the flexibility to schedule the node n by the
pattern p. The vector i_i(ﬁ) indicates not only the num-
ber but also the distribution of the antichains over all
nodes.

Suppose t patterns have been selected and they are
represented by Py, = {p1,p2,---,pt}. The priority
function of the remaining patterns for selecting the
(t + 1)th pattern is defined as:

S\ h’(pjvn)
f(p;) 7%/—2 h(Bn) + ¢

DPi€Ps

+a x |p;|?

for p; ¢ Ps. (8)
We want to choose the pattern that occurs more often

in the DFG. Therefore the priority function is larger
when a node frequency h(p;,n) is larger. To balance
the node frequencies for all nodes, Z h(pi,n) is used,
p; EPs

which is the number of antichainz containing node n
among all the selected patterns. When other patterns
already have many antichains to cover node n, the ef-
fect of the node frequency in the next pattern becomes
less. ¢ is a constant value to avoid that 0 is used as the
divisor. The size of a pattern |p;| means the number
of colors in pattern Dj. « is a parameter. By a x \@»\2
larger patterns are given higher priority than smaller
ones. We will see the reason in the following example.
In our system € = 0.5 and a = 20.

Let us use the example in Fig. 4 to demonstrate the
above mentioned algorithm. The node frequencies are
given in TABLE 6.

)

Table 6. Node frequencies

al | a2 | a3 | b4 | bb
pi=1{a} |1 |1 |1 [0 |0
po = {b} 0 {0 [0 |1 1
ps={aa} |1 |1 [2 |0 |O
Pa={bb} [0 |0 [0 |1 |1

At the very beginning, there is no selected pattern,
ie., Py = o. Z h(pi,n) is therefore always zero. The
pi€Ps

priorities are:

11 1
fP1) = =+ -+-+0+0+20x 1% = 26;
g 5 1>
11
f(p2) = 0+0+0+g+g+20><12:24;
_ 1 1 2 ,
f(3s) = —+-+=-+0+0+20x2°=88
13 g €
11
f(ps) = 0+0+0+g+g+20X22=84;

Obviously ps is the first selected pattern. Correspond-
ingly p; is deleted because it is a subpattern of ps. For
choosing the second pattern, we have

Zﬁie]?s h(pi,al) = 1; ZﬁiEIF’S h(pi,a2) = 1;
ZZZQ]PS I’L(ﬁ“ a’3) = 27 Zﬁleﬂ)s h(plv b4) = 07
ovcp, h(pi,b5) = 0.

The priorities become:

=

bl

N
Il

11
0+0+0+g+g+20><12:243

~
—
3
iy
b
Il

1 1
0+0+O+g+g+20x22:84;

The priority functions for po and py4 keep the old value.
The reason is that pattern ps has antichains that cover
nodes “al”, “a2” and “a3”, while po and py only relate
to “b4” and “b5”. If there were another pattern which
covered node “al”, “a2” or “a3d”, the value of its prior-
ity function would go down because of the increase of
h(pi,al), h(ps,a2) and h(p;, a3). Of course py is chosen
as the second pattern. If o x |p;|? is not part of the
priority function, both f(p2) and f(ps) will be 4, i.e.,
there is no preference to make a choice among these
two. A random one will be taken. However, we can
easily see that py is better than p, in that ps allows
“b4” and “b5” to run in parallel.

Now a problem arises: How about Pgey = 1 in the
above example? That means only one pattern is al-
lowed. Of course we have to use the pattern p = {ab}
to be able to include all colors. Unfortunately there
is no antichain with color set {a, b}, therefore pattern
{ab} is not even a candidate! To solve this problem,
the column number condition is used in the priority
function, which will be explained below. The priority
function is modified as follows:

f(®5)
_ if p satisfies the
h(pj7 TL) — 2 p
~ ——— tax|pj color number
nenN Z h(pi;n) +¢ condition;
Pi€EPs
0 otherwise.

Let the complete color set £ represent all the colors
that appear in the DFG,

L = {l(n)| for all n in DFG}

and let the selected color set L, represent all the colors
that appear in one of already selected patterns, i.e.,

L= {l|l € pj for pj € PS}

The new color set £, (p) of the candidate pattern
p consists of the colors that exist in p but not in the
selected color set Ly, i.e.,

Lo(P)={lll€pandl¢ L}

We say that a candidate pattern satisfies the color
pattern condition if the inequality (9) holds.

1Ln(P)| = [£] = [£s] = C x (Paes — [Ps| = 1) (9)

|£] — |Ls] is the number of colors that have not been
covered by the |L;| patterns. Except for the pat-
tern that is going to be selected, there are another
(Paef — |Ps| — 1) to be selected later, which can cover
at most C' X (Pyep —|Ps| — 1) uncovered different colors.
Therefore the right part of the inequality is the mini-
mum number of new colors that should be covered by
the candidate pattern.

If we use a candidate pattern p which does not sat-
isfy the inequality (9), some colors will not appear in
the final chosen Py.; patterns. For example, after se-
lecting (Pyec5 — 1) patterns, there are still (C'+2) colors
that have never appeared in the selected (Pger —1) pat-
terns. We can put at most C colors in the last pattern.
Therefore the last two colors cannot appear in the pat-
terns. To avoid this, when the inequality (9) is not
satisfied for pattern p, we do not select p by setting its
priority function f(p) to zero. If the priority function
for all candidate patterns are zero, we have to make a
pattern using C colors that have not appeared in the
selected color set Ls. The selection algorithm is modi-
fied and shown in Fig. 7.

Now let us do the example given in Fig. 4 again,
assuming that only one pattern is allowed. In the in-
equality (9), £ = {a,b}, L; = @, Pgey = 1 and Py = ¢.
The right side of the inequality is therefore 2. All the
patterns generated from the graph have only one color.
The new color sets for the four patterns are: £,,(p1) =
{a}, Ln(p2) = {b}, Ln(ps) = {a}, Ln(pa) = {b}. Thus,
|Ln(P1)| = [Ln(P2)] = |£n(P3)| = |Ln(Pa)] = 1. The
inequality does not hold for any of them. Due to the
presented modification a new pattern {ab} is made.

—

for(i = 0; i < Pgef; i+ +) {
Compute the priority function for each pattern.
3 Choose the pattern with the largest nonzero
priority function. If there is no pattern with
nonzero priority function, take C' uncovered col-
ors to make a pattern.
4 Delete the subpatterns of the selected pattern.

5}

(V]

Figure 7. The pseudo-code for modified pat-
tern selection procedure

Table 7. Experimental result of the pattern se-
lection algorithm.

3DFT 5DFT
Pyey | Random | Selected || Random | Selected
1 12.4 8 23.4 19
2 10.5 7 22 16
3 8.7 7 20.4 16
4 7.9 7 15.8 15
5 6.5 6 15.8 15

6 Experiment

We ran the multi-pattern scheduling algorithm on
the 3- and 5- Fast Fourier Transform (3DFT and
5DFT) algorithms. The experimental results are given
in Table 7, where the number indicates the number of
clock cycles needed. The data in the columns “Ran-
dom” are computed by using the randomly generated
patterns, while the columns “Selected” are computed
using the patterns selected by the presented algorithm.
Random patterns are tested ten times and the average
of the results is put into the table. From the simulation
results we have the following observations:

1. As more patterns are allowed the number of
needed clock cycles gets smaller. This is the benefit
achieved by using reconfiguration.

2. The patterns selected by the presented algorithm
lead to better scheduling result than randomly gener-
ated patterns.

7 Conclusions

This paper presents an algorithm to select a set
of patterns for a multi-pattern scheduling algorithm,
which is designed to schedule a graph to a coarse-
grained reconfigurable architecture — Montium. An
heuristic approach is adopted in the algorithm, which
chooses the most frequently appearing patterns by us-

ing a priority function. The experiments show that the
patterns selected by the algorithm will lead to better
scheduling results. The proposed approach makes the
further improvement very simple: by just modifying
the priority function. In our future work we will go on
working on the priority function to improve the perfor-
mance.

References

[1] Yuanging Guo, Cornelis Hoede, and Gerard J.M. Smit,
“A Multi-Pattern Scheduling Algorithm” to appear in
the Final Edition of the proceeding of ERSA 2005,
June 27-30, 2005, Monte Carlo Resort, Las Vegas,
Nevada, USA.

[2] Paul M. Heysters, Gerard J.M. Smit, E. Molenkamp:
“A Flexible and Energy-Efficient Coarse-Grained Re-
configurable Architecture for Mobile Systems”, The
Journal of Supercomputing, Vol 26, No. 3, Kluwer
Academic Publishers, Boston, U.S.A., November 2003,
ISSN 0920-8542.

[3] Yuanging Guo, Gerard J.M. Smit, Hajo Broersma,
Michel A.J. Rosien, Paul M. Heysters, “Mapping Ap-
plications to a Coarse Grain Reconfigurable System”,
In Proceedings of 8th Asia-Pacific Conference (AC-
SAC 2003), Aizu-Wakamatsu, Japan, September 23-
26, 2003, 221-235.

[4] Robert A. Walker and Samit Chaudhuri, “High-Level
Synthesis: Introduction to the Scheduling Problem”,
IEEE Design and Test 12(2):60-69, Summer 1995.

[5] D. Bernstein, M. Rodeh, and I. Gertner, “On
the Complexity of Scheduling Problems for Paral-
lel/Pipelined Machines”, IEEE Transactions on Com-
puters, 38(9):130813, September 1989.

[6] B.M. Pangrle and D.D. Gajski, “Design Tools for In-
tellegent Compilation,” IEEE Trans. Computer-Aided
Design, Vol. CAD-6, No. 6, Nov.1987, pp. 1098-1112.

[7] T.C. Hu, “Parallel Sequencing and Assembly Line
Problems,” Operations Research, Vol.9, No.6,
Nov.1961. pp. 841-848.

[8] P.G. Paulin and J.P. Knight, “Algorithms for High-
Level Synthesis,” IEEE Design and Test of Computers,
Vol.6, No.4, Dec. 1989, pp.18-31.

[9] Eric Ww. Weisstein. “Antichain.” From
MathWorld-A Wolfram Web Resource.
http://mathworld.wolfram.com/Antichain.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

