
Exploiting Processing Locality through Paging Configurations

in Multitasked Reconfigurable Systems

Mohamed Taher and Tarek El-Ghazawi

The George Washington University, {mtaher, tarek}@gwu.edu

Abstract

FPGA chips in reconfigurable computer systems are used
as malleable coprocessors where components of a
hardware library of functions can be configured as
needed. As the number of hardware functions to be
configured typically exceeds the underlying chip area
during the execution of an application, previous efforts
have introduced configuration caching. Those efforts,
however, have focused on two run-time-reconfiguration
scenarios, which consider a single application running on
the reconfigurable system. In the full reconfiguration
scenario, functions of an application are arranged into
blocks each of which has enough functions to fill the
entire chip. The blocks are configured in a deterministic
sequence needed by the application based on the a priori
knowledge about the application. In the partial
reconfiguration scenario, each function is configured or
replaced on a function-by-function basis, based on the
application needs. In the former technique, spatial
processing locality is well exploited. In the latter, only
temporal processing locality is exploited. In this work,
we propose a technique suitable for multitasking and for
cases of single applications that can change the course of
processing in a non-deterministic fashion based on data.
In order to exploit processing locality, both spatial and
temporal simultaneously, the proposed model groups
hardware functions into hardware configuration blocks
(pages) of fixed size, where multiple pages can be
configured on a chip simultaneously. By grouping only
related functions that are typically requested together,
processing spatial locality can be exploited. Temporal
locality is exploited through page replacement
techniques. Data mining techniques were used to group
related functions into pages. Standard, replacement
algorithms as those found in caching were considered.
Simulations, as well as emulation using the Cray XD1
reconfigurable high-performance computer were used in
the experimental study. The results show a significant
improvement in performance using the proposed paging
technique.

1. Introduction

Reconfigurable Computers (RCs) have recently
evolved from accelerator boards to stand-alone general-
purpose RCs and parallel reconfigurable supercomputers

[1, 2]. Examples of such supercomputers are the Cray
XD1, SRC, and the SGI Altix with FPGA bricks [2].

Although Reconfigurable Computers can leverage the
synergism between conventional processors and FPGAs,
there exist multiple challenges that must be resolved [3].
One of the challenges is that some large circuits require
more hardware resources than what is available, and the
design cannot fit in a single FPGA chip. One solution to
this problem is run-time reconfiguration (RTR). RTR
allows large modular applications to be implemented by
reusing the same configurable resources. Each application
is implemented as a set of hardware functions (modules)
that do not need concurrent execution. Each hardware
function is implemented as a partial configuration which
can be uploaded onto the reconfigurable hardware as it is
needed to implement the application. Partial
reconfiguration allows configuring and executing a task
onto an FPGA without affecting other currently running
tasks, which can increase device utilization. On the other
hand, the problem of the reconfiguration time overhead
has always been a concern in RTR. As configuration time
could be significant, eliminating, reducing, or hiding this
overhead becomes very critical for reconfigurable
systems.

Locality of references has been used to provide high
average memory bandwidths in conventional
microprocessor-based architectures through caching and
memory hierarchy techniques. A parallel concept can be
defined within the context of reconfigurable computing
[3]. Considering applications that are built out of small
reusable functional modules, the use of such modules
can exhibit spatial and temporal localities. In this context,
spatial locality refers to the fact that certain hardware
functions may be correlated in the way they are used by
applications and therefore appear together during
execution. Temporal locality, mainly due to loops, refers
to the fact that functions used in the past may be used
again in the near future. To contrast these from the
standard address-based locality of references, we call
them processing spatial locality, processing temporal
locality, or processing locality in general.

Li and Hauck [4, 5] proposed several techniques to
cache the configuration for different FPGA models, e.g.
single context and partial RTR (PRTR). For the case of
single context FPGAs, their technique groups the
configurations into several groups and configures the
whole FPGA chip with one of these groups as required.

1-4244-0054-6/06/$20.00 ©2006 IEEE

This method works well for a single application. A
simulated annealing algorithm was used to create the
groups, out of an application. This method assumes that
the configurations sequence is known in advance
(deterministic behavior). They also proposed a method for
creating the groups based on the statistical behavior of the
applications. However, this method considers pair-wise
function correlations. This guarantees that each newly
added function appears with every function, which has
been pre-selected in the group, individually but does not
place a weight on the probability that all functions of the
same group will appear together. For the case of PRTR
FPGAs, they used the Least-Recently-Used (LRU)
replacement technique to replace the victim function on a
function-by-function basis, according to the application
needs.

In this work, we propose a technique suitable for
multitasking and for cases of single applications that can
change the course of processing in a non-deterministic
fashion based on data. In the proposed model, hardware
functions are grouped into hardware reconfiguration
blocks (pages) of fixed size, where multiple pages can be
configured on a chip simultaneously. By grouping only
related functions that are typically requested together,
processing spatial locality can be exploited. In addition,
temporal locality can consecutively be exploited through
page replacement techniques. Data mining techniques are
used to group related functions into pages. Standard,
replacement algorithms as those found in caching can also
be considered.

Simulation and emulation, using the Cray XD1
reconfigurable high-performance computer, were used for
the experimental study. The results showed a significant
improvement in performance using the proposed paging
technique.

2. Performance Limitations
One limitation of reconfigurable computing is that

some large applications require more hardware resources
than are available, and the complete design cannot fit into
a single FPGA chip. One solution to this problem is run-
time reconfiguration (RTR). RTR is an approach that
divides applications into a number of modules with each
module implemented as a separate circuit. These modules
are uploaded onto the reconfigurable hardware as they
become needed to implement the application. However,
this also increases the reconfiguration latency overhead.

The time needed to download the binary bitstream into
an FPGA introduces a significant overhead for RTR. In
other words, reconfiguration latency as a challenge in
reconfigurable computing can offset the performance
improvement achieved by hardware acceleration when
RTR is considered [3].

Reconfiguration methods in current systems are not

Figure 1. RTR Example.

fully dynamic. Although reconfiguration in these systems
happens at runtime, it follows a fixed (static) schedule
that has been determined off-line.

3. Model Assumptions

In this paper, only partial run-time reconfiguration
(PRTR) is considered. In this scenario, the application is
divided into a set of independent modules that need not to
operate concurrently. Each module is implemented as a
distinct configuration (function) which can be
downloaded into the FPGA as necessary at run-time.

Developing applications for PRTR requires both
hardware and software programming. The application is
written in a sequential high level language like C with
calls to some HW functions (modules) from a predefined
domain-specific hardware library. At the reconfigurable
hardware level, the HW functions library can be
developed using a hardware description language. This
Library contains the fine-grain processing basic building
blocks (e.g. FFT, edge detection, and/or Wavelet
decomposition) independent of the applications.
Applications only deal with the application program
interface (API) for the library. Fig. 1 shows an example
of an image processing application. The application uses
the Fourier theorem to convolve an input image with a
filter image through a combination of Fourier transforms
and matrix multiplication followed by the inverse Fourier
transform. The HW functions FFT, IFFT (Inverse Fast
Fourier Transform), and Matrix-Mull are part of the
hardware library. These hardware functions are uploaded
to the FPGA as needed by the application.

4. Approach

The main idea of the proposed model is to consider the
FPGA as a cache memory of configurations and retains
them in the FPGA itself until they are required again. It
attempts to predict configurations, based on processing
locality principles, that are going to be needed in the near
future and configure them into the FPGA before they are
actually requested. We propose new techniques that
manage the reconfigurable resources at run-time in a
general-purpose multitasked and data-dependent

reconfiguration cases by exploiting processing locality to
provide a virtual-memory-like resource management.
These techniques address aspects such as blocking and
run-time reconfiguration management.

4.1. Blocking

Virtual memory is the operating system abstraction that
gives the programmer the illusion of an address space
being larger than the physical address space. Virtual
memory can be implemented using either paging or
segmentation. In paging, the task logical address space is
subdivided into fixed-size pages. In segmentation, the
task logical address space is subdivided into logically
related modules, called segments. Segments are of
arbitrary size, each one addressed separately by its
segment number.

 The same concept can be leveraged to adaptive
computing by using blocks. A block is defined as a set of
tasks to be placed at the same time on the device.
Blocking exploits spatial processing locality by arranging
related HW functions into blocks. Spatial processing
locality would arise from functions that are typically used
together in a given application. For example,
morphological operators such as opening and closing in
image processing, and convolution and decimation in
Discrete Wavelet Decomposition can be grouped together
as one block.

Data mining techniques, such as Association Rule
Mining (ARM), are used to derive meaningful rules that
can be useful for creating the blocks. These rules are used
to determine the degree of correlation between the
reconfigurable functions in order to group the highly
related functions together into one block.

 At run-time, when the application requests any HW
function, the system configures the entire block. By
configuring the entire block, the system pre-fetches other
functions that exist in the same block. When the
application requests another function from the same
block, which is likely, the system starts executing it
directly without the need to configure a new bitstream.
This can be facilitated by dividing the FPGA area into N
fixed-size contiguous partitions (pages), segmentation has
not been covered in this study. A single block at any
given point of time can be placed in any partition.
However, blocks are constrained by the page size.

4.1.1. Association Rule Mining (ARM)

Association Rule Mining (ARM) is an advanced data
mining technique that is useful in deriving meaningful
rules from a given data set [7]. It is frequently used in
areas such as databases and data warehouses.

Given a number of transactions of item sets, association
rule discovery finds the set of all subsets of items that
frequently occur in many database records or transactions,
and extracts the rules telling us how a subset of items

correlates to the presence of another subset. One example
is the discovery of items that sell together in a
supermarket from mining the sales transactions at the
point of sale. A management decision based on such
findings could be to shelve these items close to one
another. There are two important basic measures for
association rules, support and confidence. Since the
database is large and users are concerned about only those
frequently purchased items, usually thresholds of support
and confidence are pre-defined by users to drop those
rules that are not as interesting or useful.

A priori Algorithm

The a priori algorithm is an efficient association rule
mining algorithm, developed by Agrawal et al, for finding
all association rules [7]. The principle of this algorithm is
that any subset of a frequent item set must be frequent.

Fig. 2 shows an example of a database with 4
transactions, and it is required to find all rules with
minimum support of 50%.

Figure 2. A priori Algorithm — Example.

Figure 3. Hash Function.

Figure 4. Hash Table.

4.1.2. Blocking Algorithm

The proposed approach exploits spatial processing
localities by grouping the highly correlated functions and
loading them as a single block into the FPGA chip.

The algorithm considers each application as one
transaction, and the executed hardware functions in that
application as the items. A profiler is used to store the
transactions and their items in a table called transaction
table. The a priori algorithm is executed off-line on the
transaction table with a specified support and confidence.
It generates a small table that has the necessary
information (all rules between hardware functions) for the
block generation.
 The blocks generator module generates a set of blocks
and a hash table to be used at run-time. In other words,
when the system needs to execute a function that does not
already exist on the FPGA chip; it uses the hash table to
select the suitable block and then upload it to the FPGA.
 We define our hash matrix as a three-dimensional
array. Each dimension has a length n. A hash function
maps a key to the entry in the hash table that holds the
data item referenced to by the key as shown in Fig. 3.
 The hash function takes the index of the most
recently three hardware functions as input and returns the
block that has highly related functions to these three
functions. Fig. 4 shows a 3D hash table example.
 For each entry of the hash table, the blocks generator
algorithm reads the three corresponding functions (one
function for each index of the hash table), generates a new
empty block, and inserts the first function into this block.
Then, it adds the new block to the blocks table, and points
the corresponding hash table entry to this block. After
that, it searches for rules that contain either three, first and
second, or only the first of these functions, preserving this
search sequence, and adds other functions that appear in
the retrieved rules to the new block. The algorithm stops
adding functions to the block when the block size limit
has reached. If the new block is a subset of an already
created block or an already created block is a subset of the
new block, the algorithm deletes the smaller block and
updates the entries in the hash table to point to the larger
block.
 To illustrate the mechanics of the algorithm, we
consider an Image Processing hardware library that has
10 functions as shown in Table 1, and four applications
written in a sequential high level language with calls to
some HW functions from the library. The first application
performs Image convolution. The 2nd application
performs image registration using exhaustive search
technique while the 3rd one performs wavelet-based
image registration. The 4th one performs hyperspectral
dimension reduction algorithms.
 Table 2 shows the transaction table generated by
profiling these applications. Table 3 shows the generated
rules after applying ARM algorithms to the transaction

table. Each row shows the related functions and the
support of this relation. Fig. 5 shows the contents of both
the blocks table and the hash table during the blocks
creation process. Initially both tables are empty. After
loop starts, it reads the first three functions which
correspond to the fft function. The algorithm creates a
new block (blk1), inserts fft into this block, and points the
entry (0,0,0) of the hash table to blk1. Then, it searches
the rules table for rules that has fft. Rules 3, 4, and 12
have fft. The algorithm adds other functions in these rules
to blk1 if the block can accommodate them. The mat_mul
and ifft functions are added to blk1 as shown in Fig. 5(a).
In the 2nd loop iteration; the algorithm reads ifft, and fft.
The algorithm creates a new block (blk2), inserts ifft into
this block, and points the entry (1,0,0) of the hash table to
blk2. Then, it searches the rules table for rules that has
both ifft, and fft. Rules 4, and 12 have both ifft, and fft.
The algorithm adds other functions in these rules to blk2
if the block can accommodate them. The function
mat_mul is added to blk2 as shown in Fig. 5(b). The
algorithm detects that blk2 is a subset of blk1. As a result,
the algorithm deletes blk2 (the smaller one) and updates
the entry (1,0,0) of the hash table to point to blk1 as
shown in Fig. 5(c). In the 3rd loop iteration; the algorithm
reads mat_mul, and fft. The algorithm creates a new block
(blk2), inserts mat_mul into this block, and points the
entry (2,0,0) of the hash table to blk2. Then, it searches
the rules table for rules that has both mat_mul, and fft.
Rules 3, and 12 has both mat_mul, and fft. The algorithm
adds other functions in these rules to blk2 if the block can
accommodate them. The function ifft is added to blk2 as
shown in Fig. 5(d). Because blk2 is also a subset of blk1,
the algorithm deletes blk2 and updates the entry (2,0,0) of
the hash table to point to blk1 as shown in Fig. 5(e). In the
4th loop iteration, the algorithm reads DWT, and fft. The
algorithm creates a new block (blk2), inserts DWT into
this block, and points the entry (3,0,0) of the hash table to
blk2. Then, it searches the rules table for rules that has
both DWT, and fft. At this point, no rules having both

Table 1. Image Processing Hardware Library
Index Functions Description

0 fft Discrete Fast Fourier Transform

1 Ifft Inverse Discrete Fast Fourier
Transform

2 mat_mul Matrix Multiplication

3 DWT Discrete Wavelet Transform

4 img_rot Image Rotation

5 iDWT Inverse Discrete Wavelet Transform

6 Sobel Sobel edge detection Filter

7 median Median Filter

8 hist Histogram

9 corr Correlation

Table 2. Transaction Table
Application

Convolution fft fft mat_mul ifft

Ex_srch_img_reg Img_rot corr

Wavelet_img_reg DWT DWT Img_rot corr Img_rot corr

Dim-Reduction DWT IDWT corr hist

Table 3. Generated Rules
No Items Supp. No Items Supp.

1 img_rot, corr 50 11 DWT , img_rot 25

2 DWT , corr 50 12 Ifft, fft, mat_mul 25

3 fft , mat_mul 25 13 DWT , iDWT, hist 25

4 fft , ifft 25 14 iDWT , hist, DWT 25

5 ifft , mat_mul 25 15 hist , iDWT, corr 25

6 iDWT , hist 25 16 DWT , iDWT, corr 25

7 DWT , iDWT 25 17 corr , hist, DWT 25

8 iDWT , corr 25 18 corr , img_rot, DWT 25

9 DWT , hist 25 19 img_rot , DWT, corr 25

10 hist , corr 25 20 corr , iDWT, hist, DWT 25

(a)1
st
 Loop Iteration

(b) 2
nd

 Loop Iteration

(c) Modified 2
nd

 Loop Iteration

(d) 3
rd

 Loop Iteration

(e) Modified 3
rd

 Loop Iteration

(f) 4
th

 Loop Iteration

Figure 5. Blocks Table and Hash Table Contents

During Algorithms Execution.

DWT and fft exist. The algorithm leaves blk2 as is and
proceeds with the next iteration. The algorithm continues
iterating till it completes filling the hash table. All
grouped functions (blocks) in the hash table are then
compiled into final usable binary bitstream files.

4.2. Run-Time Reconfiguration Management
The Run-Time Reconfiguration Management module

(RTRM) is responsible for receiving the incoming tasks
(HW function calls) and making the reconfiguration and
scheduling decisions. Fig. 6 shows a simplified flow chart
of RTRM algorithm. Upon receiving a request for a HW
function from an application, the system checks whether
this function already exists on the chip. When the
function does exist and is not executing a task the system
starts executing this particular function. If the function in
not present on the FPGA or it is currently executing a
task, the system faces a function fault. In this case, the
system uses the requested function and the two previous
executed functions from the same application as indexes
to the hash table and retrieves the suitable block. This
block has the group of functions that most likely appear

Fetch HW Function

Function Exists

on Chip

Function is

Currently used

All Uploaded

blocke are busy

Use chache replacemnet techniques

to replaces pne block with New_Blk

Execute Function

yes

yes

No

No

No

yes

fn1 = fetched function
fn2 = previuos executed function
fn3 = previous previous function

Start

End

New_Blk = Hash_Function (fn1, fn2, fn3)

Configure New_Blk

Add the fetched function
to task queue

Wait for any task to finish
execution

Figure 6. Run-Time Reconfiguration Manager

Algorithm.

with this sequence of functions. After that, the system has
to choose a block (victim page) to remove from FPGA to
make room for the block that has to be brought in. While
it would be possible, using page replacement algorithms,
to pick a random page to evict at each page fault, the
overall system performance is much enhanced if a page
that is not heavily used is chosen. If a heavily used page is
removed, it will probably have to be brought back in
quickly, resulting in extra overhead (re-configuration
time). The RTRM as suggested by most of the page
replacement algorithms try to predict which page will be
referenced aftermost in future. The knowledge of past
and/or the present behavior of the program is used to
choose the victim page. After choosing the victim page,
those algorithms dictate that the system configures this
page with the new block and starts executing the function.
 If all of the current uploaded blocks are currently
executing other tasks, the system adds the requested
function to the task queue and waits for any task to finish
its execution.

5. Experimental Results

 The experimental verification of the proposed
approaches has been performed by first implementing an

Figure 7. Cray XD1 System Architecture.

Figure 8. Virtual FPGA Model.

image processing library. This hardware library has been
realized for Xilinx Virtex device. Each function in the
library operates at an execution rate of 100 MHz. Table 1
lists some of the implemented library functions.
Simulation and emulation, using the Cray XD1
reconfigurable high-performance computer, were used to
verify our algorithms.
The Cray XD1 machine [10, 11] is a multi-chassis
system. Each chassis contains up to six nodes (blades).
Each blade consists of two 64-bit AMD Opterons
processors at 2.2 GHz, one Rapid Array Processor (RAP)
that handles the communication, an optional second RAP,
and an optional Application Accelerator Processor (AAP).
The AAP consists of a single Xilinx Virtex-II Pro
XC2VP50-7 FPGA with a local memory of 16MB QDR-
II SRAM. The application acceleration subsystem acts as
a coprocessor to the AMD Opteron processors, handling
the computationally intensive and highly repetitive
algorithms that can be significantly accelerated through
parallel execution. Fig. 7 shows Cray XD1 system
architecture.

 As mentioned earlier, our proposed system assumes
the FPGAs permit partial reconfiguration. Although
recent generations of FPGAs support partial
reconfiguration, current RCs vendors allow only full
FPGA reconfiguration and don’t use the partial
reconfiguration feature. In order to overcome this
problem, we have implemented an emulation model on
Cray-XD1 machine. Cray-XD1 has six compute nodes,
and each node has an FPGA. We considered the six
FPGAs as one FPGA device, and each FPGA can hold
only one block as shown in Fig. 8. This allows us to

emulate partial reconfiguration, where we can reconfigure
one FPGA (block) while other FPGAs (blocks) are
executing other tasks. We have removed all MPI
communication overheads from the measured
performance. We have performed our experiments using
different number of pages each time, and we have
measured the performance for all cases.

 A random job generator was implemented to fire jobs
to the RTRM and job arrival was Poisson distributed. It
randomly selects an image processing application from
the applications list. Each application requires on the
average a few hardware functions as we saw earlier. The
average execution time for each hardware function is 7
ms. We have measured the average Speedup against
classical hardware implementation ,function-by-function
basis without caching,. Throughput, mean response time,
turn-around time, and average hit rate have been reported.
LRU has been used as replacement technique for page
replacement.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 1 2 3 4 5 6 7

of Pages

S
p

e
e
d

u
p

Figure 9. Speedup.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0 1 2 3 4 5 6 7

of Pages

T
h

ro
u

g
h

p
u

t
(A

p
p

/s
e

c
)

Figure 10. Throughput.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

0 1 2 3 4 5 6 7

of Pages

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Figure 11. Mean Response Time.

Fig. 9 shows the speedup when using our technique. We
have achieved a maximum speedup of 33x against the
classical hardware implementation, function-by-function
basis without caching, and a speedup of 2x against the full
reconfiguration scenario. Figs. 10, 11, 12 show the
throughput, the mean response time and the average turn-
around time of the application verses the number of pages
on the FPGA. The throughput, mean response time, and

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

0 1 2 3 4 5 6 7

of Pages

T
u

rn
 A

ro
u

n
d

 T
im

e
 (

m
s

)

Figure 12. Turn-around Time.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 1 2 3 4 5 6 7

of Pages

H
it

 R
a

te
 %

Figure 13. Hit Rate.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

Submission Delay(ms)

S
p

e
e
d

u
p

Figure 14. Speedup vs. Submission delay.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80

Task Size %

S
p

e
e
d

u
p

Figure 15. Speedup vs. Task Size ratio.

the average turn-around time of the same experiment
using the function-by-function technique are 4
applications /sec, 28.5 sec, and 28.7 sec respectively.
This shows that performance has been dramatically
improved by using our paging technique.
 Fig. 13 shows the average hit rate verses the number of
pages. In our case hit rate can be defined as the ratio of
finding the requested function on the FPGA to the total
number of requests. This shows that a maximum of 98%
of the configuration latency overhead has been
eliminated. Hit rate is strongly depends on the grouping
algorithm. If the grouping algorithm managed to group
the highly correlated functions in the same group, this
will improve the hit rate.

The results show the best performance can be achieved
when the FPGA is divided into three pages. When the
number of pages is small, we have larger page sizes that
can accommodate more functions. In this case, the system
takes advantage of only the spatial locality characteristic.
On the other hand when the number of pages is large, the
page sizes are very small, and cannot accommodate a
reasonable number of functions In this case, the system
takes advantage of only the temporal locality
characteristic. The case in between can be observed when
the number of pages are chosen such that they allow for
the accommodation of decent number of functions. In this
case, the system can take advantage of both temporal and
spatial locality. This number depends on the FPGA size,
hardware functions size, average task execution time, and
tasks arrival rate. In our case, the average task size is 15%
of the FPGA chip area, and the average task execution
time is 7 ms, and the average applications submission
delay is 15 ms.

In order to study the effect of the task size and
submission delay on the performance, we have repeated
the experiments with different task sizes and different
submission delays. Fig. 14 shows the speed up vs. the
average applications submission delay and Fig. 15 shows
the speed up vs. the task size ratio (Avg. task size/ chip
size). This shows that the performance improves when the
task size is getting smaller, where pages can
accommodate more tasks and more parallelism can be
exploited.

6. Conclusions

 Although Reconfigurable Computers (RCs) can
leverage the synergism between conventional processors
and FPGAs by combining the flexibility of traditional
microprocessors with the parallelism of hardware and
reconfigurability of FPGAs, there exist multiple
challenges that must be resolved to develop efficient and
viable solutions of reconfigurable computing applications.
Resource limitation, high reconfiguration latency, and the

lack of efficient run-time reconfiguration management are
examples of these challenges.

 This paper has developed techniques for exploiting
spatial and temporal processing locality for RCs through
paging configurations and augmented them with other
concepts such as data mining using association rule
mining (ARM). We have demonstrated the applicability
and the effectiveness of the proposed concepts by
applying them to representative image processing
applications. Simulations, as well as emulation using the
Cray XD1 reconfigurable high-performance computer
were used for the experimental study.

The results show a significant improvement in
performance using the proposed paging technique. This
improvement can be assessed by computing the speedup.
This speedup shows that the proposed paging technique is
3-44x faster than the function-by-function scenario and 1-
3x faster than the full reconfiguration scenario depending
on the working conditions.

References
[1] K. Compton and S. Hauck, "Reconfigurable computing: a

survey of systems and software," ACM Computing
Surveys, vol. 34, pp. 171-210, 2002

[2] Tarek El-Ghazawi, Duncan Buell, Maya Gokhale, Kris
Gaj, "Reconfigurable Supercomputing", SuperComputing
Tutorials (SC2004), Pittsburgh, PA, USA, November 2004.

[3] Tarek El-Ghazawi, “A Scalable Heterogeneous
Architecture for Reconfigurable Processing (SHARP)”,
Unpublished manuscript, 1996

[4] Z.Li, K. Compton, Scott Hauck. Configuration Caching
Management Techniques for Reconfigurable Computing”.
IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 87-96, 2000.

[5] Zhiyuan Li, Scott Hauck: Configuration prefetching
techniques for partial reconfigurable coprocessor with
relocation and defragmentation. FPGA 2002: 187-195

[6] M.J. Wirthlin, B. L. Hutchings. "DISC: The dynamic
instruction set computer", in Field Programmable Gate
Arrays (FPGAs) for Fast Board Development and
Reconfigurable Computing, John Schewel, Editor, Proc.
SPIE 2607, pp. 92-103 (1995).

[7] R. Agarwal, R. Srikanth, “Fast Algorithm for Mining
Association Rules”, Proceedings of 20th International
Conference on Very large Databases, Santiago, Chile,
September 1994.

[8] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and
B. Schmidt. Dynamic scheduling of tasks on partially
reconfigurable FPGAs. IEE Proceedings Comput. Digital
Technology, 147(3):181–188, 2000.

[9] H. Walder and M. Platzner. Reconfigurable Hardware
Operating Systems: From Concepts to Realizations. In Int’l
Conf. on Engineering of Reconfigurable Systems and
Architectures (ERSA), 2003.

[10] Van der Steen, Aad J. and Jack Dongarra, “Overview of
Recent Supercomputers,” 2004.

[11] Cray Inc, Seattle WA, "Cray XD1 Datasheet", 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

