Efficient SMP-Aware MPI-Level Broadcast over InfiniBand’s Hardware
Multicast*

Amith R. Mamidala Lei Chai

Hyun-Wook Jin

Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University
Columbus, OH 43210

{mamidala, chail, jinhy, panda} @cse.ohio-state.edu

Abstract

Most of the high-end computing clusters found today fea-
ture multi-way SMP nodes interconnected by an ultra-low
latency and high bandwidth network. InfiniBand is emerg-
ing as a high-speed network for such systems. InfiniBand
provides a scalable and efficient hardware multicast prim-
itive to efficiently implement many MPI collective opera-
tions. However, employing hardware multicast as the com-
munication method may not perform well in all cases. This
is true especially when more than one process is running per
node. In this context, shared memory channel becomes the
desired communication medium within the node as it deliv-
ers latencies which are of an order of magnitude lower than
the inter-node message latencies. Thus, to deliver optimal
collective performance, coupling hardware multicast with
shared memory channel becomes necessary. In this paper
we propose mechanisms to address this issue. On a 16-node
2-way SMP cluster, the Leader-based scheme proposed in
this paper improves the performance of the MPI_Bcast op-
eration by a factor of as much as 2.3 and 1.8 when com-
pared to the point-to-point and original solution employing
only hardware multicast. We have also evaluated our de-
signs on NUMA based system and obtained a performance
improvement of 1.7 using our designs on 2-node 4-way sys-
tem. We also propose a Dynamic Attach Policy as an en-
hancement to this scheme to mitigate the impact of process
skew on the performance of the collective operation.

*This research is supported in part by DOE grant #DE-FC02-
01ER25506, NSF Grants #CNS-0403342 and #CNS-0509452; grants from
Intel, Mellanox, Sun MicroSystems, Cisco Systems, and Linux Networks;
and equipment donations from Intel, Mellanox, AMD, Apple, IBM, Mi-
croway, PathScale, SilverStorm and Sun MircroSystems.

1-4244-0054-6/06/$20.00 ©2006 IEEE

1. Introduction

Clusters built from commodity PCs have become a pop-
ular choice to design high-end computing systems owing to
their high performance-to-price ratios. These high-end sys-
tems are typically equipped with more than one processor
per node such as a 2-way/4-way/8-way SMP or NUMA ar-
chitecture. Also, the next generation systems feature multi-
core support enabling more processes to run per processor.

Message Passing Interface (MPI) [10] has evolved as
the de-facto programming model for writing parallel appli-
cations. MPI provides many point-to-point and collective
primitives which can be leveraged by these applications.
Many parallel applications [8] employ these collective oper-
ations such as MPI_Bcast, MPI_Barrier, etc. To achieve op-
timal performance, these primitives need to be implemented
efficiently by choosing the fastest communication methods
offered by the underlying system and the cluster intercon-
nect.

Most of the modern network interconnects provide ad-
vanced features which can be utilized for efficient inter-
node communication. Recently, InfiniBand has emerged as
one of the leaders in the high performance networking do-
main [3]. A notable feature of InfiniBand is that it provides
hardware multicast. By using this feature, a message can
be sent to several nodes in an efficient and scalable man-
ner. We have shown the benefits of utilizing this feature for
designing collectives such as MPI_Bcast, MPI_Allreduce
and MPI Barrier [5] [4] [9]. Though the proposed solu-
tions scale well for small SMP sizes, they are not bene-
ficial for higher multi-way SMPs. This is because of the
extra I/O bus overhead incurred for each multicast packet
replicated at the NIC. Though the I/O bus speeds have im-
proved, shared memory channel delivers an order of mag-
nitude lower intra-node message latency. Thus, an opti-
mal choice of communication method for such collectives

would be using hardware multicast for distributing the mes-
sages across the nodes and utilizing shared memory for dis-
tribution within the node.

An important merit of hardware multicast based solu-
tions is the tolerance to process skew. Since the forwarding
of the packets is done entirely by the hardware, the pro-
cesses are decoupled from one another. This assumption is
broken while utilizing shared memory channel because pro-
cesses which are not receiving hardware multicast packets
depend on other processes for message forwarding.

In this paper, we aim to answer the following questions:

e What is the best possible method of coupling hard-
ware multicast with shared memory? Can the exist-
ing shared memory solutions apply directly or are new
designs required?

e What additional mechanisms are needed to break the
dependency on the forwarding of hardware multicast
packets within a node?

We explore different design alternatives to tackle these
issues. As a solution to the above questions, we propose
a Leader-based approach as a suitable method to design
an efficient and scalable SMP-Aware MPI-Level Broadcast.
Further, as an enhancement to this approach we come up
with a Dynamic Attach policy to mitigate the impact of pro-
cess skew on the collective’s performance. We have imple-
mented our designs and integrated them into MVAPICH [6]
which is a popular MPI implementation used by more than
295 organizations in 30 countries. We have evaluated our
designs on both bus-based and NUMA-based systems. On
a 16-node 2-way SMP cluster, our designs show an im-
provement of as much as 2.3 and 1.8 when compared to the
point-to-point and original solution employing only hard-
ware multicast. On a 2-node 4-way NUMA cluster, we ob-
tain a performance gain by a factor of 1.7 using our designs.
On a larger cluster and multi-way SMP system, we expect
the performance benefits to be even higher.

The rest of the paper is organized in the following way.
In Section 2, we provide an overview of the InfiniBand Ar-
chitecture. In Section 3, we explain the motivation for our
scheme. In Section 4, we discuss detailed design issues.
We evaluate our designs in Section 5 and talk about the re-
lated work in Section 6. Conclusions and Future work are
presented in Section 7.

2 Background

2.1 InfiniBand Overview and Hardware Multi-
cast

The InfiniBand Architecture (IBA) [2] defines a switched
network fabric for interconnecting processing nodes and I/O

nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O. In
an InfiniBand network, processing nodes and I/O nodes are
connected to the fabric by Channel Adapters (CA). Channel
Adapters usually have programmable DMA engines with
protection features. Host Channel Adapters (HCAs) sit on
processing nodes. InfiniBand supports different classes of
transport services. In current products, Reliable Connec-
tion (RC) service and Unreliable Datagram (UD) service
are supported.

One of the notable features provided by the InfiniBand
Architecture is hardware supported multicast. It provides
the ability to send a single message to a specific multicast
address and have it delivered to multiple processes which
may be on different end nodes. Although the same effect
can be achieved by using multiple point-to-point communi-
cation operations, hardware multicast provides the follow-
ing benefits:

e With hardware supported multicast, packets are dupli-
cated by the switches only when necessary. Therefore,
network traffic is reduced by eliminating the cases
that multiple identical packets travel through the same
physical link.

e Since the multicast is handled by hardware, it has very
good scalability.

In InfiniBand, before multicast operations can be used,
a multicast group which is identified by a multicast address
must be created. Creating and joining multicast groups can
be achieved through the help of InfiniBand Subnet Manager
and Subnet Administrator.

Another important operation performed by the process
to receive the hardware multicast packet is the Attach oper-
ation for a specified multicast group as indicated in Fig. 1.
It is a way of notifying the NIC that the multicast packet
has to be delivered to a particular process. The opposite of
Attach is the Detach operation which detaches the process
from the multicast group.

In InfiniBand, hardware multicast operation is only
available under the Unreliable Datagram (UD) transport ser-
vice. In UD, a connectionless communication model is
used. Messages can be dropped or arrive out of order. In
our earlier work [5], we have designed schemes to take care
of reliable MPI_Bcast on top of IBA hardware multicast. In
[7], we have taken care of solutions for supporting multiple
multicast groups with IBA hardware multicast. However,
all these solutions can not work with SMP architecture and
hence the current schemes are not SMP-Aware. This is the
focus of our research in this paper.

2.2 Shared Memory Channel in MVAPICH

In MVAPICH, the shared memory channel involves each
MPI process on a local node, attaching itself to a shared
memory region at the initialization phase. This shared
memory region can then be used amongst the local pro-
cesses to exchange messages and other control information.
Each pair of the local processes has its own send and receive
queues. Small messages are sent eagerly. The sending pro-
cess copies the message along with other information re-
quired for message matching to the shared memory area.
The receiving process can then match the tags of the posted
receives and accordingly copy over the correct message to
its own buffer. For large messages, redezvous protocol is
used. The sending and receiving processes first exchange
handshaking messages through the shared memory region,
and then the data payload is packetized and sent out in a
pipelined manner. This approach involves minimal setup
overhead for every message exchange and shows better per-
formance than NIC-level message loopback.

3 Why Hardware Multicast is not enough?

As illustrated in Fig. 1, when a multicast packet arrives
at the NIC, it has to be forwarded to the processes attached
to the multicast group specified in the packet header. This
process comprises of three steps. First, the NIC has to look
up the queue-pairs of the processes which are attached to
the multicast group. It then replicates the packets and in
the final step DMAs the data to each process’s buffer. This
cost increases with the increase in the number of processes
attached to the multicast group because these DMA opera-
tions are sequentialized.

NODE 0 NODE 1

(ATTACH) (ATTACH)

NICO

(ATTACH)

INFINIBAND FABRIC
_—

MULTICAST PKT

Figure 1. Operational principle of IBA Hard-
ware Multicast

Fig. 2 compares the latency of the MPI_Bcast over hard-
ware multicast for two configurations, 4x2 (meaning two

processes per node across four nodes) and 8x1. As shown
in the figure, the latency of the former case is significantly
higher than the latter. This is because as explained above,
in the 4x2 case the DMA of the multicast packets is se-
quentialized at the NIC resulting in higher latencies. This
demonstrates that we need a mechanism to handle multicast
based collective efficiently over multi-processor nodes.

Fig. 3 illustrates the difference between the latency of
point-to-point inter-node communication vs the latency of
intra-node communication via shared memory channel. As
indicated in the figure, the latencies of intra-node channels
is an order of magnitude smaller than the inter-node laten-
cies. These two observations lead to the following question:

Can we utilize both shared memory channel and Hard-
ware multicast of InfiniBand to design efficient collectives
while running more than one process per node?

In this paper we propose an efficient approach to lever-
age the shared memory channel for intra-node messages and
hardware multicast for inter-node messages to implement
MPI_Bcast operation.

Latency

100

mést_8x1‘

mcst_4x2 N

Latency (us)

1 4 16 64 256 1024 8192
size

Figure 2. MPI_Bcast Latency with IBA hard-
ware multicast on two system configurations
of 8 nodes

4 Design and Implementation

There are two important design alternatives for imple-
menting collectives utilizing both shared memory channel
and hardware multicast.

e Direct multicast to shared memory: In this approach
the multicast packets can be received directly into the
shared memory regions across the nodes. After detect-
ing the multicast message arrival, the local processes
can copy the message into its own buffer. Though
this approach looks promising, detecting the arrival of

Latency
30 — ; ;
inter_node ——
o5 | intra_node -~

Latency (us)

1 4 16 64 256 1024 8192

size

Figure 3. Comparison between inter-node and
intra-node Point_to_Point Latency

the multicast packet is a tricky and complex operation.
This is because the arrival of the message is notified
only to the processes which are attached to the mul-
ticast group. As discussed in the earlier sections, this
approach does not scale well. Another approach would
be to write a separate flag following the message. This
solution also does not guarantee correctness as there
is no ordering guarantee between the UD-based multi-
cast messages and UD or RC based point-to-point flag
messages.

e [eader-based Approach: In this approach a designated
process receives hardware multicast messages. It can
then distribute the message to the remaining nodes.

We have taken the latter approach in the paper which is
described in the following section.

4.1 Leader-based Approach

In this approach as indicated in Fig. 4, the broadcast
operation occurs in a hierarchical two-step manner:

1. The Root process posts a multicast message to the
multicast group. A set of Leader processes is identi-
fied, one Leader per node which receives the multicast
packets. These leaders have to be attached to the mul-
ticast group at the NIC to receive the packet.

2. The Root after posting the multicast message deliv-
ers the message to the participating local processes via
shared memory channel. The Leaders on each node do
the same after receiving the multicast packet from the
Root.

ROOT LEADER LEADER

; SHARED-MEM

NODE 0 NODE 1

SHARED-MEM

/' SHARED-MEM /

NODE 2

H/W MULTICAST

H/W MULTICAST

Figure 4. Leader-based design

The leaders are identified using the local IDs which are
initialized during the initialization of the shared memory
channel. In our implementation, the process with local ID
zero is chosen as the Leader which receives the hardware
multicast packets. It forwards the packets to the other pro-
cesses by indexing into the local-to-global rank mapping
table to determine the other local processes running on the
node. This table is also set up during the initialization phase
of the shared memory channel.

It is to be noted that hardware multicast is unreliable in
InfiniBand. In [5] we have already proposed Ack based re-
liability schemes to address the problem. In these schemes,
the processes have to send Acks to confirm the receipt of the
message. In the approach described here, only the Leaders
are required to send the Acks as the other processes receive
intra-node messages over shared memory channel.

4.2 Dynamic Attach Policy

The basic design indicated above does not always de-
liver good performance. This situation occurs when both
the hardware multicast packet and a non-Leader process
have arrived at the collective call but the Leader process did
not arrive. In this case, the non-Leader process has to wait
for the Leader to forward the message. This can hamper
the performance of the application especially if the chosen
Leader always arrives late.

The best possible solution would be for the first process
to arrive at the collective to attach itself to the multicast
group and become the Leader process. We may need to
take care of the race condition of the packet arriving be-
fore the attach operation. And, after the collective opera-
tion is done, the Leader process detaches from the multicast
group. However, the attach and detach overheads measured
on current generation systems, are in the order of 100 us and
are thus prohibitively expensive for this kind of approach.
Hence, we choose an alternative method as described be-
low.

We now describe a Dynamic Attach policy wherein a
non-Leader process attaches to the multicast group based
on certain conditions. The non-Leader process uses the
average wait-time computed across different broadcasts to
make a decision. The average wait-time after a certain num-

case a:

t—packet t—leader t—other
[[[
twait—leader=0 twait—other=0
case b:
t—packet t—other t—leader

twait—other=non—zero twait—leader=0

case c:

t—other t—leader t—packet

twait—leader=non—zero

twait—other=non-zero
case d:

t—other

t—leader t—packet

_—

. twait—other=0
twait—leader=non—zero

Figure 5. Dynamic Attach Policy

ber of broadcasts is the total wait-time accumulated so far
divided by the number of broadcast operations completed.
The wait-time can be easily computed by computing the dif-
ference between the time when the message is received and
the time when the broadcast is invoked.

Fig. 5 illustrates the possible cases of the arrival of the
packet, the Leader and the other process which is not the
leader. We make an assumption that the wait times are much
higher than the intra-node latencies. Under this condition,
the wait-times for both the Leader and the other process are
zero when the packet is unexpected (i.e. arrives before the
receiver) as shown in case a. The wait time for the non-
Leader process is zero or less than that of the Leader in case
d. The only cases for which it has a wait time greater than
that of the Leader are cases b and c.

If we can discount case c, then we can safely say that if
the average wait times of the non-Leader process are higher
than the Leader process, then case b is the most frequently
happening case. In this case, the non-Leader process can
attach itself to the multicast group rather than waiting for
the Leader process to forward the messages. However, if
case ¢ happens more frequently then this assumption would
not hold true as in this case both the leader and the other
process are waiting for the packet to arrive.

We can overcome the above problem by making the non-
Leader process compute the average only when the packet is
expected to the Leader, as in case b. This can be easily im-
plemented by the Leader setting a flag in the shared memory
buffer. The average wait time of the Leader process is also
stored in a shared memory region. The non-Leader process
computes the wait time by starting the timer when it en-
ters the collective and stopping it after receiving the packet.
It recomputes the average wait time when the flag is set. It
chooses to attach to the multicast group when the difference
between its average wait time and that of the Leader’s wait
time crosses a threshold value. Conversely, if this difference
decreases below the threshold, these non-Leader processes
detach from the multicast group. To avoid repeated attach

and detach overhead, the non-Leader processes detach in a
lazy manner, i.e. they wait for some number of iterations
before detaching. Also, the proposed policy comes into ef-
fect only after the number of broadcasts executed cross a
threshold. This is to decrease error margins which can oc-
cur if the average wait time is based on too few broadcasts.

5 Performance Evaluation

In this section we compare the performance of the new
scheme proposed in the paper with the already existing ap-
proaches. The comparison is made by running the broad-
cast latency micro-benchmark for all the schemes across
different message sizes. To show the benefits of the dy-
namic attach policy, we have modified the broadcast latency
micro-benchmark to add skew within the node.

All the different schemes considered and their abbrevia-
tions are as follows:

e smp_mcst: The new SMP-Aware solution proposed in
the paper.

e nosmp_mcst: The original solution employing hard-
ware multicast but no shared memory channel as pro-
posed in [5]

e ori_bcst: The point-to-point implementation utiliz-
ing network for inter-node communication and shared
memory for intra-node communication

To compare the benefits of the dynamic attach policy we
have run the modified broadcast latency program explained
above with and without the dynamic attach support.

Another important consideration while running the mul-
tiple processes per node is how they are distributed across
the nodes in a cluster. In the cyclic distribution consecu-
tive processes are assigned to different processors while in
block distribution they are not assigned to different proces-
sors until the node has reached its capacity with repect to
the number of processors.

Latency (us)

‘ ‘ ‘ ‘ : 120 : ; . ‘
140 nosmp_mcst_8x2 —+— smp_mcst_8x2_b|oqk —_—
120 + smp_mcst_8x2 ——— | 100 | smp_mcst_8x2_cyclic ———)
ori_bcst_8x2 -~ ori_bcst_8x2_block -
N - ori_bcst_8x2_cyclic —=
100 r & 80 | Yy
=
80 ? co |
60 o)
S 40t
40 I g a o (=3
20 | 20 . %
O | | | | | O I | |
1 4 16 64 256 1024 8192 1 4 16 64 256 1024 8192

size (bytes) size (bytes)

Figure 6. Broadcast Latency, Cluster A: 8x2 Figure 9. Broadcast Latency, Cluster A: 8x2

Latency (us)

200 Hosmp "most 16x2 ‘ smb_mcst‘_16x2‘_block‘ e
— -l o smp_mcst_16x2_cyclic -~ i
smp.fost_1ex2 , 200 ¢ ori_best_16x2_block =
150 | orl_best_1ox . ori_bcst_16x2_cyclic
3 150 ¢
c>>‘ EI/.’
100 | S 100 |
©
-
SO o S0¢ g 5 o g 9s
O O L L L L L
1 4 16 64 256 1024 8192

1 4 16 64 256 1024 8192
size(bytes)

size (bytes)

Figure 7. Broadcast Latency, Cluster A: 16x2 Figure 10. Broadcast Latency, Cluster A: 16x2

Latency (us)

90 ‘ ‘ ‘ \ 12 ‘ ; : ‘
nosmp_mcst_8x2 —+— 0 smp_mcst_8x2_block ——
80 1 smp_mcst_8x2 ——— / 100 | smp_mest_8x2_cyclic - |
70 | ori_best_8x2 - / ori_bcst_8x2_block -
ori_bcst_8x2_cyclic -
1 @ 80
2
] g 60|
2
1 S 40t
O L L L O 1 L L L L
1 4 16 64 256 1024 8192 1 4 16 64 256 1024 8192
size (bytes) size (bytes)
Figure 8. Broadcast Latency, Cluster B: 8x2 Figure 11. Broadcast Latency, Cluster B: 8x2

140 ‘ : ‘ ‘
nosmp_mcst_2x4 ——
120 smp_mcst_2x4 ——— |

100 |
80 t
60
40 |
20

Latency (us)

1 4 16
size (bytes)

Figure 12. Broadcast Latency, Cluster C: 2x4

Latency
300 ; : ‘
10,attach
250 10,noattach - |
50,attach =~
@ 900| 50noattach o]
= 100,attach =
é‘ 150 - 100,noattach ---o---
Q |)
T 100 |
50 | o
0 : w ‘ ‘
4 16 64 256 1024

size

Figure 13. Impact of Dynamic Attach on
Broadcast Latency when Leaders arrives late

Latency
900 \ ‘ ‘
800 200,aﬂaﬁ;§ 777777777777 JRE—
" 200;noattach <
700 1 400,attach -~ 1
@ 00 | 400,noattach —= i
= o0l 800,attach =]
3 800,noattach ---o--
CIC) 400 SO 7
T 300 f
200]
100
O 1 1 1 1
4 16 64 256 1024
size

Figure 14. Impact of Dynamic Attach on
Broadcast Latency when Leaders arrives late

64 256 1024 8192

5.1 Experimental Testbed

We have used three different clusters with varying char-
acteristics to carry out in-depth performance evaluationand
associated benefits of the proposed schemes.

Cluster A: This cluster consists of 16 SuperMicro SU-
PER X5DL8-GG nodes with ServerWorks GC LE chipsets.
Eight of these are Intel Xeon 3.0 GHz processors and the
other are Intel Xeon 2.4 Ghz with , 512 KB L2 cache,
and PCI-X 64-bit 133 MHz bus. We have used InfiniHost
MT23108 DualPort 4x HCAs from Mellanox.

Cluster B: This cluster consists of 8 dual Intel Xeon
3.2GHz EM64T systems. Each node is equipped with
512MB of DDR memory and PCI-Express Interface. These
nodes have MT25128 Mellanox HCAs with firmware ver-
sion 5.1.0. The nodes are connected by an 8-port Mellanox
InfiniBand switch.

Cluster C: This cluster consisting of 2 quad Opteron sys-
tems. Each of the nodes have MT23108 DualPort 4x HCAs
from Mellanox. All nodes are connected to a single Mel-
lanox InfiniScale 24 port switch MTS 2400, which supports
all 24 ports running at full 4x speed.

5.2 Broadcast Latency

Broadcast latency is the time taken for a broadcast mes-
sage to reach every receiver. The test consists of a loop,
in which an MPI_Bcast is issued from a root node and the
receivers take turns to send back an acknowledgment using
MPI_Send. The broadcast latency is derived from time to
finish each iteration and the MPI point-to-point latency.

Figures 6 and 7 show the latency of the broadcast op-
eration for 16 and 32 processes, respectively. The number
of processes per node is equal to two and we use a block
distribution to scatter the processes. The cyclic distribution
is considered separately. As indicated in the figure, the per-
formance of nosmp_mcst is comparable to ori_bcst for 16
and 32 processes. However, in both cases the smp_mcst per-
forms well delivering performance improvement by a factor
of 2.18 and 1.8 when compared to ori_bcst and nosmp_mcst,
respectively for 32 processes. Similar trends are also ob-
served on Cluster B, Fig. 8.

Figures 9 and 10, we compare the broadcast latency
for the cyclic and block distributions. The new design pro-
posed in this paper does equally well both with cyclic and
block distributions. However, the ori_bcst scheme performs
better in the block distribution vs cyclic distribution. This is
because though the messages within a node are transferred
over shared memory, the MPI implementation has no global
knowledge of local and remote processes. As a result, in the
cyclic distribution case the intra-node messages are first de-
livered and then the inter-node messages. This weakens the
hierarchical design which is essential for maximum over-

lap between the inter- and intra-node communication. The
same results are also obtained on Cluster B, as indicated in
Fig. 11. Further, in Fig. 12, the benefits of shared memory
are cleary visible for a 4-way NUMA system. Shared mem-
ory design improves the latency by a factor of as much as
1.7.

In the final tests, we have added skew to the broadcast
latency test by delaying the leaders by variable amounts.
We compare the new design proposed in the paper together
with the Dynamic Attach enhancement. The threshold se-
lected was equal to 500 ps which is the result of multiplying
processors per node and the attach latency which was mea-
sured to be around 250 ps. As shown in Figures 13 and 14,
the latency of the operation increases as the delay is being
added to the leader. The legend indicates the delay added
followed by the scheme selected. As the delay is increased,
the original scheme with no dynamic attach keeps incurring
the cost but where as the scheme with dynamic attach drops
down after crossing the threshold. This occurs for the delay
value of 800 us for the leader.

6 Related Work

Utilizing shared memory for implementing collective
communication has been a well studied problem in the past.
In [11], the authors proposed to use remote memory op-
erations across the cluster and shared memory within the
cluster to develop efficient collective operations. They ap-
ply their solutions to Reduce, Bcast and Allreduce opera-
tion. Our approach differs from theirs as the inter-node
communication method employed by the authors is based
on point-to-point RDMA operations unlike our current ap-
proach which is based on one-to-many hardware multicast.
In [1], the authors implement collective operations over
Sun systems. In [12], the authors improve the performance
of send and recv operations over shared memory and also
apply the techniques for group data movement.

7 Conclusions and Future Work

In this paper we proposed a Leader-based mechanism
to couple InfiniBand’s hardware multicast communication
with the shared memory channel to deliver optimal perfor-
mance to the MPI collectives. This is especially true for
the modern systems which feature multi-way SMPs allow-
ing more than one process to run on a single node. Our
results show that the scheme proposed in the paper deliv-
ers a performance improvement by a factor of as much as
2.3 and 1.8 when compared to the point-to-point and orig-
inal solution employing only hardware multicast. Also, on
a 4-way NUMA system we observed a performance gain of
1.7 with our designs. We also propose a Dynamic Attach

policy to alleviate the performance bottlenecks caused due
to process skew. As a future work, we plan to extend the
Leader-based approach to other collectives as well such as
Allreduce, Allgather, etc. We also plan to extend the Dy-
namic Attach policy to implement a dynamic Leadership
change protocol. As described in the paper, the high over-
head of attach and detach prohibit this kind of approach to
be taken in the paper. We expect this overhead to reduce
with the upcoming versions of InfiniBand drivers. We also
plan to evaluate the mechanisms proposed in the paper on
multi-way(4-way, 8-way) SMP clusters and by doing appli-
cation level studies.

References

[1] M. Bernaschi and G. Richelli. Mpi collective communica-
tion operations on large shared memory systems. In Parallel
and Distributed Processing, 2001. Proceedings. Ninth Eu-
romicro Workshop, 2001.

[2] InfiniBand Trade Association.
Specification, Release 1.1.
November 2002.

[3] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.1. http://www.infinibandta.org, Oc-
tober 2004.

[4] S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda.
Fast and Scalable Barrier using RDMA and Multicast Mech-
anisms for InfiniBand-Based Clusters. In EuroPVM/MPI,
Oct. 2003.

[5] J. Liu, A. R.Mamidala, and D. K. panda. Fast and Scalable
MPI-Level Broadcast using InfiniBand’s Hardware Multi-
cast Support. In Proceedings of IPDPS, 2004.

[6] J. Liu, J. Wu, S. P. Kinis, D. Buntinas, W. Yu, B. Chan-
drasekaran, R. Noronha, P. Wyckoff, and D. K. Panda. MPI
over InfiniBand: Early Experiences. Technical Report,
OSU-CISRC-10/02-TR25, Computer and Information Sci-
ence, the Ohio State University, January 2003.

[7] A.R.Mamidala, H.-W. Jin, and D. K. Panda. Efficient hard-
ware multicast group management for multiple mpi commu-
nicators over infiniband. In EuroPVM/MPI, 2005.

[8] NASA. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[9] A. R.Mamidala, J. Liu, and D. K. panda. Efficient Barrier
and Allreduce InfiniBand Clusters using Hardware Multi-
cast and Adaptive Algorithms . In Proceedings of Cluster
Computing, 2004.

[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI-The Complete Reference. Volume I - The MPI-1
Core, 2nd edition. The MIT Press, 1998.

[11] V. Tipparaju, J. Nieplocha, and D. K. Panda. Fast collective
operations using shared and remote memory access proto-
cols on clusters. In International Parallel and Distributed
Processing Symposium, 2003, 2003.

[12] M.-S. Wu, R. A. Kendall, and K. Wright. Optimizing collec-
tive communications on smp clusters. In /CPP 2005, 2005.

InfiniBand Architecture
http://www.infinibandta.org,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

