
Seekable Sockets: A Mechanism to Reduce Copy Overheads in TCP-based
Messaging

Chase Douglas and Vijay S. Pai

Purdue University
West Lafayette, IN 47907

{cndougla, vpai}@purdue.edu

Abstract

This paper extends the traditional socket interface to
TCP/IP communication with the ability to seek rather than
simply receive data in order. Seeking on a TCP socket al-
lows a user program to receive data without first receiving
all previous data on the connection. Through repeated use
of seeking, a messaging application or library can treat a
TCP socket as a list of messages with the potential to receive
and remove data from any arbitrary point rather than sim-
ply the head of the socket buffer. Seeking facilitates copy-
avoidance between a messaging library and user code by
eliminating the need to first copy unwanted data into a li-
brary buffer before receiving desired data that appears later
in the socket buffer.

The seekable sockets interface is implemented in the
Linux 2.6.13 kernel. Experimental results are gathered
using a simple microbenchmark that receives data out-of-
order from a given socket, yielding up to a 40% reduction
in processing time. The code for seekable sockets is now
available for patching into existing Linux kernels and for
further development into messaging libraries.

1 Introduction

Cluster computing is often used to perform time consum-
ing calculations which can be divided into portions of work
and assigned to multiple computers. The computers send
messages and data to each other frequently to update status
information or provide other computers with data and in-
formation needed for other parts of the calculation. While a
clustered design allows for many computers to be fully uti-
lized to decrease computation time, clustered systems ex-
perience overheads when the computers need to communi-

This work is supported in part by the National Science Foundation under
Grant Nos. CCF-0532448 and CNS-0532452.

Unexpected messages Desired message

unexpected pool

Socket buffer

Figure 1. Performance impact of receiving
unexpected messages before a desired mes-
sage

cate. The overhead of this communication varies with the
computation being performed, the number of computers,
the libraries used to facilitate the communication, and the
choice of interface between the computers, among others.
Although a variety of proprietary solutions exist for cluster
interconnects, recent studies have shown that efficient mes-
saging library design can allow clusters using commodity
TCP/IP and Ethernet components to achieve performance
comparable to proprietary interconnects [9, 10]. Conse-
quently, this study focuses on TCP/IP-based messaging.

The overheads experienced using TCP/IP-based messag-
ing depend not only on the size and frequency of mes-
sages, but also on whether a message is expected or un-
expected. A message is unexpected if its data arrives at the
receiver before that system has invoked the library call to

1-4244-0054-6/06/$20.00 ©2006 IEEE

receive that message into an application-level buffer. Thus,
unexpected data is typically copied first into a temporary
library buffer [10, 14]. For TCP/IP-based messaging, a
message can be considered to have arrived when the data
appears on the network and the TCP stack places it into
the socket buffer of a connected socket between two hosts.
Figure 1 represents a situation where unexpected messages
have arrived at a system that is waiting on a specific mes-
sage (for example, an MPI message with a specific type of
tag [6]). The operating system socket interface for TCP
receives bytes from a given connection in-order using the
recv or read system call. Thus, accesing the desired mes-
sage first requires emptying the socket of the earlier unex-
pected messages. Since these will most likely be needed
later on, each of these messages should be copied aside into
an unexpected receive pool, incurring substantial overhead.
Later application-level receives will first check the unex-
pected pool before calling the socket-level receive function.

This paper proposes an extension to the operating sys-
tem socket interface to allow random-access receives from
the socket buffer. This new interface, titled seekable sock-
ets, allows the socket buffer to be searched for the desired
content and allows the user program to receive the desired
message without copying prior data. Through repeated use
of seeking, a messaging application or library can treat a
TCP socket as a list of messages with the potential to re-
ceive and remove data from any arbitrary point rather than
simply the head of the socket buffer.

The seekable sockets interface is orthogonal to many
other works that improve the performance of TCP-based
messaging. Examples include those that use more efficient
library design, such as event-driven architectures, or that
use hardware support at the network interface card, such as
TCP splintering [7, 10]. This work differs from both cat-
egories by focusing on the performance impact of an op-
erating system interface: the socket layer. Consequently,
this work should be able to work synergistically with ideas
that focus on NIC support or library architecture to improve
other components of TCP messaging performance.

The seekable sockets interface has been imple-
mented in the Linux 2.6.13 kernel and tested using a
simple microbenchmark that receives data out-of-order
from a given socket. Experimental results show up
to a 40% reduction in processing time using seekable
sockets, with the greatest benefits arising from larger
messages or a larger number of out-of-order messages.
The seekable sockets patch is available for download from
http://www.ece.purdue.edu/∼vpai/ssocks/.

For UDP/IP-based messaging, as used in the IP path of LA-MPI, a
single receiver socket could even be shared across multiple senders, and
the desired message could be one from a specific host.

Figure 2. Flowchart of Linux tcp recvmsg
function.

2 Background on Linux TCP

The TCP stack of the linux kernel operates on socket
buffers, known as sk buff’s or skb’s. As packets of data
are received by the network device, the data is placed in a
ring buffer and an sk buff is allocated and associated with
the data. This sk buff holds the metadata for the packet
and the linux TCP/IP stack interacts with the sk buff to
process the packet. Eventually, the sk buff is placed on
the socket buffer queue for a given connection.

To facilitate packet control and reception in the correct
order, each TCP packet has a sequence number, which gives
the number of bytes sent on the connection prior to that par-
ticular packet. This allows for recovery from network-level
reordering of packets on the receiving side and for data re-
trieval from the socket buffers. A user program does not
know or need to know how data is arranged in packets or
how it arrives on the network. An application’s only con-
cerns are the order in which the data elements were sent
from the source and the length of the data.

When a user program invokes the recv(),
recvfrom(), or recvmsg() functions on a TCP
socket, tcp recvmsg() is invoked within the kernel
(net/ipv4/tcp.c). Figure 2 is a flowchart of these
functions. tcp recvmsg() begins copying data from
the sk buff’s in the socket queue which point to the
actual data in the ring buffer. The function inspects the
first skb in the socket buffer and then copies data to the
user-space buffer. If the skb has more data than requested,

tcp recvmsg() leaves the remainder on the socket
buffer queue. If the user has requested more data than the
contents of the first skb, the skb is deallocated along with
its corresponding data on the ring buffer, and the above
steps continue with the next skb in the queue. By default,
tcp recvmsg() returns after reading all the requested
data from the socket buffer, deallocating all the skb’s that
have had their data completely received, and updating the
sequence number of the first byte to read on the socket.

TCP uses sequence numbers to keep track of what has
been read from the socket buffer and what should be read
next. The per-connection copied seq variable holds the
sequence number that should be read next; this value de-
fines what has already been copied and what will be read
next from the receive queue. If copied seq is larger than
the first skb’s base sequence number, then part of the skb
has already been read and the requested length of data will
be copied starting from the sequence number specified by
copied seq. Thus, the use of sequence numbers deter-
mines the data that a receive call will read from the socket.

3 Adding Seek to Sockets

The goal of seekable sockets is to receive data that has
been placed on the socket receive buffer in any order. When
data is copied from the socket, the correspondingskb’s that
hold the data need to be deallocated, and the linked list of
skb’s needs to be patched. Also, since the data at the se-
quence numbers that was read is no longer available, subse-
quent receive calls on the socket need to be aware that this
data is no longer available. This is implemented through a
linked list that holds the starting and ending sequence num-
bers of each “hole” in the socket receive buffer; the creation
of a hole frees up space in the socket buffer (and allows nor-
mal TCP flow control behavior) regardless of the point in
the socket buffer from which data has been removed. When
a receive call begins copying data to the user, it will skip
over any hole that it encounters and continue receiving nor-
mally from the sequence number after the hole. During the
receive, the list of holes grows, coalesces, and is pruned dy-
namically.

The implementation developed creates a new pseudo-
protocol, SOCK SEEK STREAM. This protocol uses the
same tcp stack that normal SOCK STREAM sockets use;
however, the functions have been modified so that a socket
of type SOCK SEEK STREAM may be seeked upon. If a
socket call is on a non-seekable socket, or if the call is not a
seeking receive, then the path through the TCP stack and its
functions is nearly identical to a stock linux kernel. How-
ever, if a seeking call takes place on a seekable socket, then
the path through the TCP stack is the same while the path
through individual functions may vary. The main changes
are in the tcp recvmsg() function. The changes to

this function implement all the modifications necessary to
manage the holes list, sequence numbers, and already read
skb’s. The one notable change to the tcp recvmsg()
function during a seekable socket receive is that the TCP
prequeue mechanism is disabled. The TCP prequeue mech-
anism allows for better management of stream resources
in exchange for a slight decrease in performance. Also,
the prequeue cannot be easily modified to allow for seek-
ing. Therefore, the prequeue mechanism has been disabled
whenever receiving on a seekable socket.

Once a socket has been created as type
SOCK SEEK STREAM, the normal recv() and
recvmsg() functions can be used as usual. A new
function, seek recv(), is implemented as a syscall and
takes the following arguments:

ssize t seek recv(int s, void

*buf, size t len, int flags,
size t offset);

The arguments are identical to the recv() function, with
the offset variable added to specify the number of bytes to
offset into the stream. This offset is always relative to the
first byte which would be received through a recv() call.

Since seek recv() modifies the msghdr structure
and then calls the generic sock recvmsg function, it is
also possible to use the standard recvmsg() library func-
tion for seeking receives. The msg seek variable has been
added to the msghdr to specify the seek offset; by modi-
fying the msghdr structure passed into recvmsg(), it is
possible to do a seeking receive without invoking the new
function.

To be able to seek past large messages, the maximum re-
ceive buffer size must be increased. This is controlled by the
net.core.rmem max system variable (sysctl). This
will set the maximum receive buffer that can be specified us-
ing the setsockopt() function. Therefore, the sysctl
should be set to a reasonably large number of bytes, and the
receive buffer should be increased as necessary within the
user-space program. When the receive buffer becomes full,
normal TCP actions are performed, and the seeking receive
call returns an error. If new packets are received while the
socket buffer is full, they will be dropped and retransmit-
ted by the sender according to normal TCP flow control [1].
The program must respond to the socket buffer full error by
removing some of the data left in the buffer to free up more
space in the kernel.

4 Experimental Results and Discussion

The seekable sockets interface discussed in Section 3 is
implemented on the Linux 2.6.13-rc3 kernel and tested with
a microbenchmark. The microbenchmark uses two hosts:

-20

-10

 0

 10

 20

 30

 40

 10 100 1000 10000

P
er

ce
nt

ag
e

im
pr

ov
em

en
t

Message size (bytes)

N=16
N=8
N=4
N=2

Figure 3. Performance impact of seekable
sockets for varying message sizes (X-axis)
and out-of-order message counts (N value).

a sender and a receiver. The sender repeatedly sends mes-
sages of a constant, configurable size on an established con-
nection. The receiver repeatedly skips past N such mes-
sages, reads the desired message, and then reads the N
skipped messages. The receiver is implemented using a
non-seeking and a seeking approach. In the non-seeking
version, the N skipped messages are first copied from the
socket buffer into application memory. In the seeking ver-
sion, all of the skipping is done using the new seek recv
system call. The performance of the system is evaluated us-
ing the sum of system and user time seen at the receiver sys-
tem. The percentage of this active CPU time reduced by the
seeking version is the metric used to evaluate the effective-
ness of seeking. Each test consists of 100 repetitions of the
following: opening a socket, transferring 1000 messages on
it according to the receive policy described above, and clos-
ing that socket. The system only has one active socket at a
time.

Figure 3 shows the active CPU time reduction achieved
using the seekable sockets interface. The different curves
represent N values ranging from 2 to 16, while the X-axis
of the graph represents the message size in bytes. Note that
the X axis is logarithmically scaled. The Y-axis represents
the percentage of CPU time reduced using seekable sock-
ets: numbers below 0% indicate situations where the new
interface degraded performance. Each data point was tested
10 times; the curves show the average values with standard
error bars to show the experimental variation across tests;
these experimental errors decrease for larger message sizes
because the tests run for longer and are less subject to ran-
dom OS and cache behavior.

Seeking sometimes degrades performance for low N val-
ues or small messages because of the greater overhead in
processing the socket buffers (e.g., managing the holes list).

Some degradations arise for 10-byte messages; these are an
unrealistic data point in well-tuned applications but may be
useful for considering applications for which the communi-
cation is difficult to coordinate or for benchmarking the base
latency of a communication channel. In general, however,
the curves indicate better performance benefits from larger
messages or larger N values. These results are not surpris-
ing given the greater amount of copying (and expense of
copying) required in such tests. At best, the results indi-
cate a 40% reduction in CPU execution time after adding
the new interface.

One interesting result is the dip in performance at mes-
sage sizes of around 1000 bytes. This message size is clos-
est in size to the TCP packet payload size (1460 bytes). The
relative overhead of managing the holes list is consequently
greater in this case than in the others.

This work shows that the seekable socket interface is
useful for TCP-based data communication, but does not im-
plement a full-scale messaging library around this interface.
Experience with microbenchmark code suggests that few
changes are required for using seekable sockets. However,
integrating the interface into an MPI library may yield fur-
ther insights on the usability of this interface. For example,
applications will first need to inspect message headers us-
ing traditional receives (possibly peeking) before knowing
the amount required for seeking. The actual performance
will likely vary based on the amount to which messages
are received out-of-order; since our microbenchmark results
only consider computation time (and not its overlap with
communication latencies), these results should be compos-
able to describe overall system performance according to
the methodology of Saavedra and Smith [15]. The results
should also be largely independent of the physical medium
used or the number of sockets since the operating system
changes are confined to the socket layer and are strictly on
a per-socket basis.

Seekable sockets may also yield performance improve-
ments outside of the cluster computing domain. For exam-
ple, modern HTTP implementations pass multiple simul-
taneous requests and responses on a single pipelined per-
sistent connection for more efficient TCP performance [5].
Seekable sockets would allow for parallel processing of a
pipelined persistent connection, with different threads read-
ing, parsing, validating, and rendering content in different
portions of the connection.

5 Related Work

The introduction cites the work that is most closely re-
lated. While Majumder et al. focused on library design
to improve the performance of TCP-based messaging, Gil-
feather and Macabe have used hardware support from the
network interface card to offload critical portions of pro-

tocol processing [7]. Many other works focus on hard-
ware support for message-passing using proprietary in-
terconnects, user-level interfaces, and customized proto-
cols [2, 3, 4, 8, 11, 12, 13, 16, 19]. This work differs from all
of those by focusing on the performance impact of a specific
operating system interface: the socket layer. Consequently,
this work is orthogonal to works that focus on NIC support
or library architecture and should be able to work syner-
gistically with ideas to improve other components of TCP
messaging performance.

SCTP, the Stream Control Transmission Protocol, is a
reliable transport-level protocol under development that is
similar to TCP in that it has a notion of a flow-controlled
connection between two machines [17]. However, unlike
TCP, this connection (called an association) may consist of
several independent message streams. SCTP enforces or-
dering within a message stream, but not across the entire
association. This feature could be used to provide the bene-
fits of seekable sockets for specific circumstances in which
data may be processed out-of-order; for example, tagged
MPI receives could be implemented as separate streams
in an association, as could independent web responses on
a pipelined connection. Seekable sockets are more flexi-
ble, however, because they allow arbitrary out-of-order re-
ceives. Additionally, the user-level API for seekable sock-
ets is only a single receive-side extension to the traditional
sockets interface, while SCTP requires more complex ex-
tensions and modifications to sending, receiving, and con-
nection management functions [18]. SCTP also allows for
multiple IP addresses per machine involved in a given as-
sociation, potentially allowing the use of multiple network
paths for greater reliability; this feature is orthogonal to
seekable sockets.

6 Conclusions

This paper proposes a new extension to the socket
layer that allows for random-access receives from a single
TCP connection. This new seekable socket interface has
been implemented in Linux 2.6.13 and tested using a
simple microbenchmark that receives data out-of-order.
Experimental results show up to a 40% reduction in
processing time, with benefits increasing for larger mes-
sages or a greater number of out-of-order messages. The
seekable sockets patch is available for download from
http://www.ece.purdue.edu/∼vpai/ssocks/
, and may be applied to currently-available Linux kernels.
Experience in using this new interface suggests that few
changes are required in application-level source code,
but this interface will need to be integrated into a fully-
functional messaging or communication library before
further conclusions can be drawn.

References

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. IETF RFC 2581, April 1999.

[2] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local Area Network. IEEE MICRO,
15(1):29–36, 1995.

[3] P. Buonadonna and D. Culler. Queue Pair IP: A Hybrid Ar-
chitecture for System Area Networks. In Proceedings of
the 29th International Symposium on Computer Architec-
ture, pages 247–256, May 2002.

[4] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shu-
bert, F. Berry, A. Merritt, E. Gronke, and C. Dodd. The
Virtual Interface Architecture. IEEE MICRO, 18(2):66–76,
March 1998.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol -
HTTP 1.1. IETF RFC 2616, June 1999.

[6] T. M. P. I. Forum. MPI: A Message-Passing Interface Stan-
dard. International Journal of Supercomputer Applications,
8(3/4), 1994.

[7] P. Gilfeather and A. B. Macabe. Making TCP Viable as a
High Performance Computing Protocol. In Proceedings of
the Third LACSI Symposium, October 2002.

[8] M. Lin, J. Hsieh, D. H. C. Du, and J. A. MacDonald. Perfor-
mance of High-Speed Network I/O Subsystems: Case Study
of a Fibre Channel Network. In Proceedings of the 1994
conference on Supercomputing, pages 174–183. IEEE Com-
puter Society Press, 1994.

[9] S. Majumder and S. Rixner. Comparing Ethernet and
Myrinet for MPI Communication. In Proceedings of the
Seventh Workshop on Languages, Compilers, and Run-time
Support for Scalable Systems (LCR 2004), pages 83–89, Oc-
tober 2004.

[10] S. Majumder, S. Rixner, and V. S. Pai. An Event-driven Ar-
chitecture for MPI Libraries. In Proceedings of the 2004
Los Alamos Computer Science Institute Symposium, Octo-
ber 2004.

[11] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood.
Coherent Network Interfaces for Fine-Grain Communica-
tion. In Proceedings of the 23rd International Symposium
on Computer Architecture, pages 247–258, 1996.

[12] F. Petrini, W.-C. Feng, A. Hoisie, S. Coll, and E. Frachten-
berg. The Quadrics Network: High-Performance Clustering
Technology. IEEE MICRO, 22(1):46–57, January 2002.

[13] I. Pratt and K. Fraser. Arsenic: A User-Accessible Gigabit
Ethernet Interface. In Proceedings of IEEE INFOCOM ’01,
pages 67–76, 2001.

[14] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-
Performance Local Area Communication With Fast Sockets.
In Proceedings of the 1997 USENIX Technical Conference,
pages 257–274, January 1997.

[15] R. H. Saavedra and A. J. Smith. Analysis of Bench-
mark Characteristics and Benchmark Performance Predic-
tion. ACM Transactions on Computer Systems, 14(4):344–
384, November 1996.

[16] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven Gigabit Ethernet Message Passing. In
Proceedings of the 2001 ACM/IEEE Conference on Super-
computing (SC2001), November 2001.

[17] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol.
IETF RFC 2960, October 2000.

[18] R. Stewart, Q. Xie, L. Yarroll, J. Wood, K. Poon,
and M. Tuexen. Sockets API Extensions for Stream
Control Transmission Protocol (SCTP). IETF Internet
Draft (draft-ietf-tsvwg-sctpsocket-11.txt),
September 7 2005.

[19] M. Welsh, A. Basu, and T. von Eicken. ATM and Fast Eth-
ernet Network Interfaces for User-level Communications.
In Proceedings of the Third International Symposium on
High Performance Computer Architecture, pages 332–342,
February 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

