
Ant Stigmergy on the Grid: Optimizing the Cooling Process in
Continuous Steel Casting

Peter Korošec1, Jurij Šilc1, Bogdan Filipič2, and Erkki Laitinen3

1Jožef Stefan Institute 2Jožef Stefan Institute
Computer Systems Department Department of Intelligent Systems

Jamova 39, SI-1000 Ljubljana, Slovenia Jamova 39, SI-1000 Ljubljana, Slovenia
{peter.korosec, jurij.silc}@ijs.si bogdan.filipic@ijs.si

3University of Oulu
Department of Mathematical Sciences

P.O. Box 3000, SF-90014 Oulu, Finland
erkki.laitinen@oulu.fi

Abstract

The paper presents a new distributed metaheuristic
algorithm in an optimal control problem related to the
cooling process in the continuous casting of steel. The
optimization task is to tune 18 coolant flows in the
caster secondary cooling system to achieve the target
surface temperatures along the slab. Sequential search
algorithms are proved inefficient for this problem be-
cause they take too much time to compute an appropri-
ate solution. For this reason a new distributed search
algorithm based on stigmergy perceived in ant colony
was developed. The algorithm was run on the Grid that
allows us to solve this optimization problem in much
shorter time. As a matter of fact, the computation
time can be decreased from half a day to a few hours
without any decrease in the solution quality.

1. Introduction

Most of the world steel production is nowadays
based on continuous casting. This is a complex met-
allurgical process in which liquid steel is cooled and
shaped into semi-manufactures. To achieve proper
quality of cast steel, it is essential to control the
metal flow and heat transfer during the casting pro-
cess. They depend on numerous parameters, such as
the casting temperature, casting speed and coolant
flows. Finding optimal values of process parameters

is difficult since different, often conflicting criteria are
involved, the number of possible parameter settings is
high, and parameter tuning through real-world exper-
imentation is not feasible because of costs and safety
risk. Over the last years, however, several computa-
tional techniques have been used to enhance the pro-
cess performance and product characteristics, includ-
ing knowledge-based heuristic search [3], genetic algo-
rithms [1, 10], particle swarm optimization [18], and
evolutionary multiobjective optimization [2].

In this paper we report on numerical experiments in
optimizing secondary coolant flows for a casting ma-
chine of the Ruukki steel plant in Finland using stig-
mergic algorithm on the Grid. Here we meet with
multi-parameter optimization. Multi-parameter opti-
mization is the process of finding a point in a multi-
dimensional parameter space where a cost function is
minimized and constraints satisfied. Most commonly,
the cost function contains information about the prob-
lem goal and the constraints the solution point has to
meet (constrained optimization).

The paper describes the distributed optimization al-
gorithm based on stigmergy and the problem that it
solves, provides the results of numerical experiments,
and discusses their implications for future work.

2. Ants on the Grid

This section describes the basic concept and major
issues pertaining to distributed optimization algorithm

1-4244-0054-6/06/$20.00 ©2006 IEEE

based on stigmergy that will be used on the Grid. Stig-
mergy is a method of communication in decentralized
systems where the individual parts of the system com-
municate with one another by modifying their local en-
vironment. For example, ants communicate by laying
down pheromone along their trails, so an ant colony
is a stigmergic system. The term stigmergy (from the
Greek stigma = sting, and ergon = work) was orig-
inally defined in 1959 by the French biologist Grassé
[12].

Because of the nature of the ant-based algorithms we
first have to discretize a continuous multi-parameter
problem and translate it into a graph representation
(search graph). Then we use a selected optimization
technique to find the cheapest path in the constructed
search graph; this path consists of the values of the
optimized parameters. For this purpose, we use an op-
timization algorithm, the routes of which can be found
in the ant colony optimization (ACO) metaheuristic
[5, 6, 7].

We considered the multilevel approach and its po-
tential to enhance the optimization procedure. The
multilevel approach in its most basic form involves re-
cursive coarsening to create a hierarchy of approxima-
tions to the original problem. An initial solution is
found (sometimes for the original problem, sometimes
at the coarsest level) and then iteratively refined at
each level. As a general solution strategy the multi-
level procedure has been in use for many years and
has been applied to various problem areas [22]. We
merge stigmergy and the multilevel approach into one
method, called the Multilevel Ant Stigmergy Algorithm
(MASA) [14].

Like many other metaheuristic approaches, the
MASA admits direct parallelization schemes and par-
allelism can be exploited on one or more scales [20].
We applied it on the largest scale where entire search
procedures can be performed concurrently. Such imple-
mentation, called Distributed Multilevel Ant Stigmergy
Algorithm (DMASA), is based on parallel interacting
ant colonies [16].

2.1 Search graph construction

Search graph construction consists of translation of
the discrete parameter values of the problem into a
search graph G = (V,E) with a set of vertices V and set
E of edges between the vertices. For each parameter
pd, 1 ≤ d ≤ D, parameter value v〈d,i〉, 1 ≤ i ≤ nd,
nd = |pd|, represents a vertex in a search graph, and
each vertex is connected to all the vertices that belong
to the next parameter pd+1. The so-called start vertex
is also added to the graph. This vertex is connected to

all vertices of the parameter p1 and used as a starting
point for all ants.

This way we transform the multi-parameter opti-
mization problem into a problem of finding the cheap-
est path. Once this is done, we can deploy the initial
pheromone values on all the vertices.

2.2 Multilevel approach

Coarsening of the problem representation is done by
merging two or more neighboring vertices into one ver-
tex; this is done in L iterations (we call them levels � =
1, 2, . . . , L). Let us consider coarsening from level � to
level �+1 at distance d. Here V �

d = {v�
〈d,1〉, . . . , v

�
〈d,n�

d
〉}

is a set of vertices at level � and distance d of the search
graph G, where 1 ≤ d ≤ D. If n1

d is the number of
vertices at the initial level of coarsening and distance
d, then for every level � the equation n�+1

d = �n�
d

s�
d

� is

true, where s�
d is the number of vertices at level � which

merge into one vertex at level �+1. We therefore divide
V �

d into n�+1
d subsets, where

V �
d =

n�+1
d⋃

k=1

V �
〈d,k〉, (1)

∀i, j ∈{1, . . . , n�+1
d } ∧ i �=j : V �

〈d,i〉 ∩ V �
〈d,j〉 =∅.

Each subset is defined as follows:

V �
〈d,1〉 = {v�

〈d,1〉, . . . , v
�
〈d,s�

d
〉}, (2)

V �
〈d,2〉 = {v�

〈d,s�
d
+1〉, . . . , v

�
〈d,2s�

d
〉}, (3)

...

V �

〈d,n�+1
d

〉 = {v�

〈d,(n�+1
d

−1)s�
d
+1〉, . . . , v

�
〈d,n�

d
〉}. (4)

The set

V �+1
d = {v�+1

〈d,1〉, . . . , v
�+1

〈d,n�+1
d

〉} (5)

is a set of vertices at distance d at level � + 1,
where v�+1

〈d,k〉 ∈ V �
〈d,k〉 is selected on some predeter-

mined principle. Examples are random pick, the most
left/right/centred vertex in the subset, etc. The outline
of the coarsening procedure pseudo code is as follows:

for k = 1 to n�+1
d do

v�+1
〈d,k〉 = SelectOneVertex(V �

〈d,k〉)
end for

The goal of optimization is to find the minimum
cost path from start vertex to a ending vertex (one of
the vertices at distance D) in the search graph. There
are a number of ants in a colony that all simultaneously
start from the start vertex. The probability with which

——-
Client:
graph = GraphConstruction(parameters)
for � = 1 to L do

Coarsening(graph[�])
end for
GraphInitialization(initial pheromone amount)

Server: for � = L downto 1 do
StartAllClients() while not current level ending condition do
while not ending condition do for all ants in sub-colony do

if ReceivedEvaluatedPaths(client) then path = FindPath(probability rule)
BroadcastPaths(all other clients) Evaluate(path)

end if end for
end while SendEvaluatedPathsToServer(all ants)
solutions = ReceiveSolutions&StopAllClients() ReceivePathsFromServer(from all other clients)
bestSolution = Best(solutions) UpdatePheromone(all found and received paths vertices)
LocalSearch(bestSolution) DaemonAction(best path)

EvaporatePheromone(all vertices)
end while
Refinement(graph[�])

end for
SendSolution(bestSolution)

——-

Figure 1. Distributed Multilevel Ant Stigmergy Algorithm (DMASA)

they choose the next vertex depends on the amount of
pheromone in the vertices. Ants use a probabilistic rule
to determine which vertex to chose next. Ants repeat
this action until they get to an ending vertex.

More specifically, ant k in step t moves from vertex
i to vertex j with a probability given by:

pij,k(t) =

⎧⎪⎨
⎪⎩

τα
j (t)∑

l∈Ni,k
τα

l
(t)

j ∈ Ni,k

0 j �∈ Ni,k

(6)

where α is a parameter that determines the relative
influence of the pheromone trail τj(t) in vertex j, and
Ni,k is the feasible neighbourhood of vertex i.

The parameter values gathered by each ant on its
path are now evaluated. Then each ant returns to the
start vertex and on its way it deposits pheromone in
the vertices according to the evaluation result: the bet-
ter the result, the more pheromone is deposited, and
vice versa. After all the ants return to the start ver-
tex, we perform a so-called daemon action, which in
our case consists of depositing additional pheromone
on currently best path and also some smaller amount
on the left and right neighbor paths. Afterwards the
pheromone evaporates in all vertices, i.e., the amount
of pheromone is decreased by some predetermined per-
centage in each vertex. The whole procedure is re-
peated until some ending condition is met.

Because of the simplicity of the coarsening, the re-
finement itself is very trivial. Let us consider refine-

ment from level � to level � − 1 at distance d. The
outline of the refinement pseudo code is as follows:

for k = 1 to n�
d do

for each v�−1
〈d,i〉 ∈ V �−1

〈d,k〉 do

v�−1
〈d,i〉 = v�

〈d,k〉
end for

end for

2.3 Distributed implementation

The non-distributed MASA approach presented in
[13] is based on a single ant colony. However, in the
distributed approach the colony is split into N sub-
colonies, where N represents the number of processors.
Each sub-colony searches for a solution according to
the DMASA algorithm (see Figure 1).

With the use of SendEvaluatedPathsToServer() func-
tion the paths with updated pheromone amounts are
sent from a client to the server which then with the
use of BroadcastPaths() function broadcasts this infor-
mation to all other clients (sub-colonies). The amount
of updated pheromone is determined by the Evaluate()
function. On the other hand, the information (paths
with updated pheromone amounts) is gathered from
other sub-colonies with the use of ReceivePathsFrom-
Server() function. The function UpdatePheromone() de-
posits pheromone on found and received paths.

Each sub-colony has its own pheromone matrix.
With the use of the function UpdatePheromone() a

——-
bestSolution = {p1, . . . , pi, . . . , pD}
change = True
while change do

change = False
for i = 1 to D do

if Evaluate({p1, . . . , pi + pstep
i , . . . , pD}) < Evaluate(bestSolution) then

change = True
while Evaluate({p1, . . . , pi + pstep

i , . . . , pD}) < Evaluate(bestSolution) do

bestSolution = {p1, . . . , pi + pstep
i , . . . , pD}

pi = pi + pstep
i

end while

else if Evaluate({p1, . . . , pi − pstep
i , . . . , pD}) < Evaluate(bestSolution) then

change = True
while Evaluate({p1, . . . , pi − pstep

i , . . . , pD}) < Evaluate(bestSolution) do

bestSolution = {p1, . . . , pi − pstep
i , . . . , pD}

pi = pi − pstep
i

end while
end if

end for
end while

——-

Figure 2. Function LocalSearch()

mutual consistency between sub-colony matrices is en-
sured.

After the clients are stopped with ReceiveSolu-
tions&StopAllClients() function, they return their cur-
rent best solution and among them the server chooses
the best one. On this best solution the server per-
forms the local search. The LocalSearch() pseudo code
is given in Figure 2.

2.4 Grid implementation

The DMASA was designed to run on any kind of
Grid that uses the TCP/IP protocol for communica-
tion. One can notice that the DMASA consists of a
parallel part (runs on clients) and a sequential part
(local search – runs on the server). Consequently, the
search process can only be speeded up in the paral-
lel part while the sequential part remains constant.
But we can go further than that. The so-called soft-
ware pipeline can be used. The pipeline consists of
two stages: the first stage is the parallelized part of
the algorithm and the second stage is local search. So
while the server is running local search, the clients can
already search for new solutions. Therefore, new so-
lutions can be acquired as fast as the local search is
performed. Of course, with multiple servers, the time
needed to acquire new solutions would be further de-
creased.

3 Continuous steel casting

3.1 Mathematical model

Figure 3 represents a schematic picture of a continu-
ous casting machine. In the continuous casting process
the molten steel is poured into a bottomless mold which
is cooled with internal water flow. The cooling in the
mold extracts heat from the molten steel and initiates
the formation of the solid shell. The shell formation
is essential for the support of the slab after mold exit.
After the mold the slab enters into the secondary cool-
ing area in which it is cooled by water (mist) sprays.
The secondary cooling region is divided into cooling
zones where the amount of the cooling water can be
controlled separately.

Figure 3. Continuous casting machine

The simulation model calculates the temperature

field of the steel slab as a function of casting parame-
ters. We consider steady state casting conditions, i.e.
the parameters are constants in time. We denote the
3D geometry of the slab by V = Ω × [0, LZ], where
Ω = [0, LX] × [0, LY] is a 2D cross-section of the slab
and LZ is the length of the strand. Moreover we de-
note by LM the length of the mould. We divide the
boundary Γ = ∂V into four parts:

Γ0 = Ω × {0},
ΓN = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × [LM , LZ],

ΓS = {(x, y) ∈ ∂Ω : x �= 0 ∧ y �= 0} × [0, LZ) ∪ Ω × {LZ},
ΓM = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × [0, LM].

(7)

The mathematical model for the temperature field
T = T (x, y, z, t) of the slab can be written as:

∂H(T)
∂t

+ v ∂H(T)
∂z

− ∆K(T) = 0 in V × (0, tf],

T = T0 on Γ0 × (0, tf],

∂K(T)
∂n

+ h(T − Tw) + σε(T 4 − T 4
ext) = 0 on ΓN × (0, tf],

∂K(T)
∂n

= 0 on ΓS × (0, tf],

∂K(T)
∂n

= Q on ΓM × (0, tf],

T (x, y, z, 0) = T 0 in V.
(8)

Here n is the unit vector of outward normal on ∂V,
h is the heat transfer coefficient, v is the casting speed,
and Tw, Text are known temperatures. The σ is the
Stefan-Boltzmann constant and ε is the emissivity. The
cooling efficiency Q in the mould is known constant and
tf is the simulation time. H(T) and K(T) are the tem-
perature dependent enthalpy and Kirchoff functions,
see [15].

The Eq. 8 is discretized by the finite-element method
(FEM) and the corresponding nonlinear set of equa-
tions is solved by relaxation iterative methods [8].
More detailed description of discretization and con-
struction of FEM-matrices is presented in [4]. We note
that in our method it is sufficient to construct only
2D- and 1D-matrices. Therefore, it is obvious that our
model is computationally much more efficient than in
the case of using the ordinary 3D-brick elements.

3.2 The coolant flow optimization

The secondary cooling area of the considered casting
device is divided into nine zones. In each zone, cool-
ing water is dispersed to the slab at the center and
corner positions. Target temperatures are specified
for the slab center and corner in every zone. Water

flows should be tuned in such a way that the result-
ing slab surface temperatures match the target tem-
peratures. Formally, a cost function is introduced to
measure the differences between the actual and target
temperatures. It is defined as

c(T) =
1

2
(

NZ∑
i=1

li(T
center
i − T center∗

i)2 +

+

NZ∑
i=1

li(T
corner
i − T corner∗

i)2) (9)

where Nz denotes the number of zones, li the length
of the i-th zone, T center

i and T corner
i the slab center

and corner temperatures, while T center∗
i and T corner∗

i

the respective target temperatures in zone i. The op-
timization task is to minimize the cost function over
possible cooling patterns (water flow settings). Water
flows cannot be set arbitrarily, but according to the
technological constraints. For each water flow, mini-
mum and maximum values are prescribed.

Table 1. The target temperatures and water
flow intervals

T ∗ pmin
i pmax

i

Pos. Zone no. [◦C] Parameter [m3/h] [m3/h]

1 1050 p1 7.1 26.1
2 1040 p2 22.8 57.5

c 3 980 p3 13.3 39.9
e 4 970 p4 1.5 7.9
n 5 960 p5 2.7 10.0
t 6 950 p6 0.8 6.5
e 7 940 p7 0.7 5.9
r 8 930 p8 1.0 5.8

9 920 p9 1.2 6.2

1 880 p10 7.1 26.1
2 870 p11 22.8 57.5

c 3 810 p12 13.3 39.9
o 4 800 p13 1.2 3.5
r 5 790 p14 2.4 4.4
n 6 780 p15 2.4 2.9
e 7 770 p16 0.7 5.9
r 8 760 p17 1.0 5.8

9 750 p18 1.2 6.2

Table 1 shows an example of the prescribed target
temperatures T ∗ and water flow intervals for contin-
uous casting of a selected steel grade analyzed in this
study. The slab cross-section (LX×LY) in this case was
1.70 m × 0.21 m and the casting speed v = 0.23m/s.

4 Experiments and results

4.1 Experimental environment

Evaluation of cooling patterns and their assessment
with respect to the cost function (Eq. 9) was done by
means of a numerical simulator [15]. Its principal task
is to dynamically track the temperature field in the
slab as a function of process parameters. It involves
a 3D model of the slab and finite element numerical
approximation. In this study it was applied under the
assumption of steady-state caster operation, and the
search for optimal cooling patterns performed in the
off-line manner. A single simulator run takes about 25
seconds on a 1.8 GHz AMD Opteron computer.

Table 2. Parameter discretizations
Pos. Zone no. Parameter pstep

i [m3/h] si

1 p1 0.1 191
2 p2 0.1 348

c 3 p3 0.1 267
e 4 p4 0.1 65
n 5 p5 0.1 74
t 6 p6 0.1 58
e 7 p7 0.1 53
r 8 p8 0.1 49

9 p9 0.1 51

1 p10 0.1 191
2 p11 0.1 348

c 3 p12 0.1 267
o 4 p13 0.1 24
r 5 p14 0.1 21
n 6 p15 0.1 6
e 7 p16 0.1 53
r 8 p17 0.1 49

9 p18 0.1 51

Note that the parameter discretization is important
part of the optimization process. According to experi-
mental analyze of different discretizations [9], the uni-
form step size was chosen (see Table 2). The number of
possible parameter settings can be obtained as follows.
For a parameter pi from the interval [pmin

i , pmax
i] with

step size pstep
i , there are si = �(pmax

i − pmin
i)/pstep

i �+ 1
values possible, and the total number of settings is s =∏D

i=1 si, where D is the number of parameters. This
results in s = 4.7 · 1033 for step size pstep

i = 0.1m3/h.
The computer platform used to perform the exper-

iments was an eight-node Grid connected via Giga-bit
switch, each node consisted of two AMD OpteronTM

1.8 GHz processors and 2 GB of RAM. We used a ho-
mogeneous Grid, so we could estimate the speed-up.
But this is not a requirement for a real-life applications.

Clients and server used a standard TCP/IP protocol to
communicate between each other.

In the experiments, the stopping criterion for the
DMASA was given by the number of solution evalua-
tions. It was set to 768 (eight ants × eight levels ×
12 climb-downs per level) evaluations per run and this
value was chosen considering the computational com-
plexity of the optimization procedure. Other algorithm
parameters were set as follows. The DMASA operated
with eight levels, at each level ants in sub-colony climbs
down the graph until the “level ending condition” is
not met (96 evaluations per level in all sub-colonies
together). Total number of ants in all sub-colonies is
eight, while the number of ants in each sub-colony de-
pends on the number of nodes in the Grid as shown in
Table 3.

Table 3. Distribution of ants

Num. of nodes in the Grid
1 2 4 8

Number of sub-colonies 1 2 4 8
Ants per sub-colony 8 4 2 1

Table 4. The optimized coolant flows
Pos. Zone no. T [◦C] Parameter p′

i [m3/h]

1 1048.5 p1 17.2
2 1039.3 p2 33.0

c 3 978.3 p3 20.9
e 4 977.6 p4 7.9
n 5 960.3 p5 9.2
t 6 950.0 p6 5.8
e 7 940.0 p7 3.1
r 8 930.1 p8 3.2

9 919.8 p9 2.1

1 880.5 p10 8.4
2 863.3 p11 22.8

c 3 803.5 p12 15.6
o 4 836.0 p13 3.5
r 5 804.7 p14 4.4
n 6 783.0 p15 2.8
e 7 773.8 p16 1.3
r 8 760.9 p17 1.0

9 720.6 p18 1.2

The cost of this solution is 9070.4.

For each distribution (N = 1, 2, 4 or 8), we ran the
algorithm 30 times and compared the solution quality
and computational time.

4.2 Results

In this section we present and discuss the results of
the experimental evaluation of the DMASA algorithm
employed with different degrees of distribution (num-
ber of nodes used in the Grid).

Table 4 shows the best parameter setting p′ found
so far [9]. This is the solution obtained in every run
regardless of the degree of distribution. For this rea-
son we further concentrate only on the time needed to
compute the solution and not on the solution quality.

Table 5. Computation time T [hours:minutes]
needed by the DMASA and average speed-up

Num. of nodes in the Grid
1 2 4 8

Tmin 8:43 5:06 3:57 3:02
Tmax 10:55 7:56 6:36 5:15
Tavg 9:40 6:30 4:54 4:05
Std 0:34 0:33 0:33 0:38

speed-up 1.00 1.49 1.97 2.37

In Table 5 one can see the computational times
needed by the DMASA on different number of nodes in
the Grid. It is shown that we managed to decrease time
quite noticeably from almost ten hours on one node to
under four hours on the Grid with eight nodes. The
standard deviation remained almost the same through
all evaluations, between 33 and 41 minutes.

0

20000

40000

60000

80000

100000

0 2 4 6 8 10

time [h]

c(
T

)

c(T') = 9070.4 N=1 N=2 N=4 N=8

Figure 4. Convergence of the DMASA

Figures 4 and 5 show the convergence and speed-up

1.49

1.97

2.37

1

1.5

2

2.5

1 2 3 4 5 6 7 8

N (nodes in the Grid)

sp
ee

d
-u

p

Figure 5. Speed-up of the DMASA

of the DMASA that was achieved with different number
of nodes. We can see that the convergence is improved
with higher number of nodes and the speed-up is not
linear but still quite evident.

5 Conclusions

Optimization of coolant flow settings in continuous
casting of steel is a key to higher product quality. It
is nowadays to a high degree performed through vir-
tual experimentation involving numerical process sim-
ulators and advanced optimization techniques.

In this study of optimizing 18 cooling water flows
for a Ruukki casting machine under steady-state con-
ditions, a new distributed search algorithm based on
stigmergy perceived in ant colony was applied and its
performance evaluated. The results indicate the im-
portance of the applied search space discretization [9]
and suggest the construction of a hybrid algorithm to
find near-optimal solutions in smaller number of solu-
tion evaluations.

We have shown that with the Grid computing the
computation time can be drastically decreased (from
half a day to a few hours) without any decrease in the
solution quality.

It is our interest to further investigate the perfor-
mance of the proposed DMASA algorithm under dif-
ferent scenarios. The work can be extended with Grid
middleware [19], such as the Globus Toolkit [11], Con-
dor [21], or UNICORE (Uniform Interface to Computer
Resources) [17].

References

[1] N. Chakraborti, R. Kumar, D. Jain. A study
of the continuous casting mold using a Pareto-

converging genetic algorithm. Applied Mathemat-
ical Modelling, 25(4):287–297, Mar. 2001.

[2] N. Chakraborti, R. S. P. Gupta, T. K. Tiwari.
Optimisation of continuous casting process using
genetic algorithms: studies of spray and radia-
tion cooling regions. Ironmaking and Steelmaking,
30(4):273–278, Aug. 2003.

[3] N. Cheung and A. Garcia. The use of a heuris-
tic search technique for the optimization of qual-
ity of steel billets produced by continuous casting.
Engineering Applications of Artificial Intelligence,
14(2):229-238, Apr. 2001.

[4] R. Dautov, R. Kadyrov, E. Laitinen, A. Lapin,
J. Pieskä, V. Toivonen. On 3D dynamic control
of secondary cooling in continuous casting pro-
cess. Lobachevskii Journal of Mathematics, 13:3–
13, 2003.

[5] M. Dorigo. Optimization, Learning and Natural
Algorithms. PhD Thesis, Dipartimento di Elet-
tronica, Politecnico di Milano, Milan, Italy, 1992.

[6] M. Dorigo, G. Di Caro, L. M. Gambardella.
Ant algorithms for discrete optimization. Artifi-
cial Life, 5(2):137–172, Spring 1999.

[7] M. Dorigo and T. Stützle. Ant Colony Optimiza-
tion. Cambridbe, MA, MIT Press, 2004.

[8] C. M. Elliot and J. R. Ockendon. Weak and Vari-
ational Methods for Moving Boundary Problems.
Boston, Pitman Advanced Publishing Program,
1982.

[9] B. Filipič and E. Laitinen. Model-based tuning of
process parameters for steady-state stell casting.
Informatica, 29(4):491–496, Nov. 2005.

[10] B. Filipič and B. Šarler. Evolving parameter set-
tings for continuous casting of steel. Proc. 6th Eu-
ropean Conference on Intelligent Techniques and
Soft Computing, vol. 1, pages 444–449, Sep. 1998.

[11] I. Foster and C.Kesselman. Globus project: a sta-
tus report. Future Generation Computer Systems,
15(5):607–621, Oct. 1999.

[12] P.-P. Grassé. La reconstruction du nid et les co-
ordinations inter-individuelle chez Bellicositermes
natalensis et Cubitermes sp. La théorie de la stig-
mergie: Essai d’interprétation du comportement
des termites constructeurs. Insectes Sociaux, 6:41–
81, 1959.

[13] P. Korošec and J. Šilc. The multilevel ant stig-
mergy algorithm: An industrial case study. In
Proc. 8th Joint Conference on Information Sci-
ences, pages 475–478, July 2005.

[14] P. Korošec and J. Šilc. Using stigmergy to solve
numerical optimization problems. International
Journal of Computational Intelligence Research,
submitted, 2006.

[15] E. Laitinen. Online control of secondary cooling
in steel continuous casting process. In Proc. COST
526: Automatic Process Optimization in Materials
Technology: First Invited Conference, pages 174–
182, May 2005.

[16] M. Randall and A. Lewis. A parallel implementa-
tion of ant colony optimization. Journal of Parallel
and Distributed Computing, 62(9):1421–1432, Sep.
2002.

[17] M. Romberg. The UNICORE grid infrastructure.
Scientific Programming, 10(2):149–157, 2002.

[18] W. Rongyang, M. Guohui, M. Hongji, C. Ying, X.
Zhi. Optimization of the wather rate in secondary
cooling zone of continuous casting billet by parti-
cle swarm optimization algorithm. In Proc. Mate-
rials Science & Technology 2004, pages 211, 2004.

[19] B. Schulze, R. Nandkumar, T. Magedanz. Mid-
dleware for Grid computing. Special Issue. Con-
currency Computation Practice and Experience,
16(5):399–400, Apr. 2004.

[20] T. Stützle. Parallelization strategies for ant colony
optimization. In Proc. 5th International Confer-
ence Parallel Problem Solving from Nature, pages
722–741, Sep. 1998.

[21] D. Thain, T. Tannenbaum, M. Livny. Distributed
computing in practice: The Condor experience.
Concurrency Computation Practice and Experi-
ence, 17(2-4):323–356, Feb. 2005.

[22] C. Walshaw. Multilevel refinement for combinato-
rial optimisation problems. Annals of Operations
Research, 131(1-4):325–372, Oct. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

