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Abstract 

In spite of the high parallelism exhibited by cellular 

automata architectures, most implementations are 

usually run in software. For increasing execution 

parallelism, hardware implementations on FPGAs have 

been proposed, under the cost of being un-flexible, and 

inefficient in terms of resource utilization. In this paper 

we present a platform for evolving CA by exploiting the 

partial re-configurability of current commercial FPGAs. 

Our implementation includes an on-chip soft-processor 

that generates a partial bitstream, reconfigures the 

FPGA, and computes the fitness. After finding a good 

individual, the evolved CA can be used as a peripheral 

for performing useful computation. As case study we 

present CA co-evolution for a random number generator 

and for the firefly synchronization problem.  

1   Introduction

Designing analog and digital electrical circuits is, by 
tradition, a hard engineering task, vulnerable to human 

errors, and no one can guarantee the optimality of a 
solution. Design automation has become a challenge for 

tool designers, and given the increasing complexity of 

circuits, higher description levels are needed. Evolvable 
Hardware (EHW) arises as a promising solution to this 

problem: from a given behavior specification of a circuit, 

an evolutionary algorithm (EA) can find a circuit able to 
satisfy the specification.  

EAs take inspiration from the principles of biological 

evolution decoding a phenotype from a genotype. The 
genotype is a number string, where the genetic 

operations, reproduction and mutation, are applied. 
Reproduction is performed by genome crossing and 

mutation is performed in a probabilistic way. In the case 

of EHW, a phenotype is decoded from this genome for 

obtaining a circuit with a given set of components and 

connectivity. A fitness note is assigned to this individual 

given the performance exhibited. EHW have shown to 
perform well finding solutions from simple Boolean 

functions to complex analog circuits, sometimes 
performing better than engineered solutions. 

The hardware substrate supporting the evolution is one of 

the most important initial decisions to make when 
evolving hardware. The hardware architecture is closely 

related with the type of solution being evolved. Hardware 

platforms have, in most cases, a cellular structure 
composed of uniform or non-uniform components. In 

some cases one can evolve the components functionality, 

in others the connectivity, or, in the most powerful ones, 
both. Field Programmable Gate Arrays (FPGAs) fit well 

for this third category: they are composed of configurable 

logic elements interconnected by configurable switch 
matrices.  

In this paper we present a novel system approach for 
evolving hardware. The main novelty of the proposed 

system consists on the mapping from the genotype to the 

phenotype: the genome directly determines the hardware 
configuration implementing the rule function by partially 

reconfiguring the hardware substrate supporting the CA. 

All this performed by a system on chip, allowing an on-
chip and on-line self-reconfigurable adaptable system.  

2. Evolvable Hardware Platforms 

When evolving hardware, there is a first main issue to 

address: the hardware substrate supporting the evolved 

circuit. Custom evolvable chips use to provide dynamic 
and partial reconfiguration, dispose of multi-context 

configuration memories and can be configured with 

random bitstreams. The commercial options main 
advantage is the absence of non-recurrent engineering, as 

any general purpose architecture, under the cost of 

reduced flexibility and performance.  
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Among commercial options, the obsolete FPGA XC6200 
from Xilinx constituted the perfect platform for intrinsic 

evolvable hardware; it was possible to download any 

arbitrary bitstream without risking contentions. Maybe 
the most known work using these devices is that of 

Adrian Thompson [1]  who evolved analog circuits, by 

exploiting the dynamics inherent to the physical 
properties of the FPGA internal components.  

More recent work on evolvable circuits on commercial 
FPGAs has focused on Virtex architectures from Xilinx. 

The interest on these devices is their partial dynamic 

reconfigurability, with the limitation that no arbitrary 
configuration bitstreams can be loaded. Anyway, in [2] 

there are presented 3 techniques for EHW on Virtex 

families with coarse and fine grained level solutions. 

3. Dynamic Partial Reconfiguration on Xilinx 

FPGAs

FPGAs are programmable logic devices that permit the 

implementation of digital systems. They provide an array 

of logic cells that can be configured to perform a given 
function by means of a configuration bitstream. Some 

FPGAs allow performing partial reconfiguration, where a 

reduced bitstream reconfigures only a given subset of 
internal components. Dynamic partial reconfiguration 

(DPR) is done while the device is active.  

Xilinx FPGAs configuration bitstream is composed by 
frames. A frame constitutes the minimum configuration 

information that can be modified on these devices. For 
Xilinx FPGAs there are two documented flows to 

perform DPR: Module Based and Difference Based [3].  

Even if only these flows are supported by the FPGA 
vendor, other approaches have been proposed. Self-

reconfigurable platforms generate a special interest on the 

field, given the autonomy they provide. Virtex II FPGAs 
include an Internal Access Configuration Port (ICAP), 

which allows reading and writing the configuration 

bitstream from inside the FPGA. This ICAP allows an 
on-chip processor to self-reconfigure the FPGA 

supporting it. Self-reconfigurable platforms modify the 
system by re-configuring the FPGAs with partial 

bitstreams. The main drawback of these partial bitstreams 

is that they must be pre- placed and routed on a 
workstation, restricting the number of reconfigurable 

systems to a predefined value. 

An attempt for allowing a platform to self-reconfigure 
with a design description conceived on the fly has been 

proposed [4]: XPART (Xilinx Partial Reconfiguration 

Toolkit) is an application program interface (API), for 
Xilinx embedded processors, that provides methods to 

read and modify selected FPGA resources by using the 
ICAP. Anyway, XPART was never released.  

4. Cellular Programming 

Cellular Automata (CA) are discrete time dynamical 
systems, consisting on an array of identical computing 

cells [5]. A cell is defined by a set of discrete states, and a 

rule for determining the transitions between states. On the 
array, states are synchronously updated according to the 

rule, which is function of the current state from the cell 

itself and the states of the surrounding neighbours.  
Non-uniform CA differ from their uniform counterpart in 

the state transition rule diversity exhibited by the non-

uniform ones. Uniform CA constitute a sub-set of non-
uniform CA, making the non-uniform ones a more 

general and powerful platform. On the same way, this 
power improvement is compensated with a higher 

difficulty when designing them. That’s the reason why 

evolutionary techniques have been used for finding non-
uniform CA state transfer rules[6, 7]. Several 

evolutionary algorithms have been used for non-uniform 

CA: mainly genetic algorithms [7] and cellular 
programming [6, 8, 9].

In cellular programming each cell’s state transfer rule is 

coded as a bit-string, most known as a genome. This 
genome implements a rule for computing the next state. 

Each genome is, thus, composed of 8 bits for CA with 
neighborhood radius r = 1. Instead of using a population 

of CA as genetic algorithms, the cellular programming 

approach involves a single, non-uniform CA. This fact 
implies that the final solution would not be an individual 

selected from a population (like on GAs), but the 

population itself. 
When running the algorithm, initial cell rules are 

initialized at random. Then, initial states are equally 

randomly initialized; we let the CA run for M iterations, 
and we repeat it for C=300 different initial states. There 

is not a global fitness, as in genetic algorithms, but a local 
fitness for each automaton. Each cell’s fitness is 

accumulated for the C state initializations, according to a 

performance measure according to the behaviour desired.       
After computing the fitness, the genetic operators 

(reproduction, crossover, and mutation) are applied to 

genomes. In this algorithm, evolutionary operators act on 
a local manner, by limiting the reproduction and 

crossover operators to use genomes from neighbour cells 

(see more details in [8, 9] ). 

5. The evolvable platform 

In this section we present a platform able to self-
reconfiguring non-uniform CA state transitions through 

the ICAP. Our platform consists on a Microblaze soft-

processor running on a Virtex-II FPGA from Xilinx 



5.1. General System Description 

The complete system schematic is depicted in figure 1. A 
Microblaze soft-processor from Xilinx runs an 

evolutionary algorithm. The program is stored on an 

internal BRAM, and an external SRAM is used for data 
storing – i.e. genome storing in this case. The system 

interfaces through an UART peripheral with the external 

world. The one-dimensional (1-D) CA to be evolved can 
be accessed for reading or for writing the states through 

general purpose I/O interfaces, anyway rule modifications 

are exclusively performed by the HWICAP peripheral. 
The HWICAP module allows the Microblaze to read and 

write the FPGA configuration memory through the 
Internal Configuration Access Port (ICAP) at run time, 

enabling our evolutive algorithm to modify the circuit 

structure and functionality during the circuit’s operation. 

Figure 1. System schematic. 

5.2. Cellular Automata Implementation 

In this work we concentrate on 1-D grids, with a number 
of states per cell k=2, denoted 0 and 1. In such CA each 

cell is connected to r local neighbours (cells) on either 
side, as well as to itself. Where r is a parameter referred 

to as the radius (each cell has 2 r  + 1 neighbours). In our 

case, the radius r=1, thus the neighborhood equals 3. 
A 1-D CA composed of 50 automata is included; it can be 

configured for running on free-run mode – i.e. a state 

update at each clock cycle – or on controlled iterative 
mode. An initial state for the CA can be configured 

through the writing interface, while the full state can be 

read by the reading interface.
We have focused our interest on 1-D CA, with k=2 and 

r=1, given their analogy with FPGAs basic elements 
(LUTs and flip-flops). Such automaton implemented in 

hardware would require a flip-flop, for storing the current 

state, and a 3-input LUT. The most basic logic cell of 
Virtex-II FPGAs is a slice, which contains 2 flip-flops 

and 2 4-input LUT, fitting well for implementing two of 

the above described automata.  
Hard macros allow specifying the exact placement of a 

desired component on a design. In [10] hard macros are 

used for instantiating fuzzy rules, which are then evolved 
from a PC. In our case, we design a hard macro 

consisting in a slice containing 2 automata; the 2-CA hard 
macro is depicted in figure 2. Then we instantiated a 1-D 

automata with size 50 – i.e. 25 hard macros .

Figure 2. 2-CA hard macro. 

As described in [2], one can access the LUT 

configuration of a whole column of slices in a single 
configuration frame. That’s the reason why we dispose 

the set of 25 hard macros on a single column. Then, just 

by reading and writing a single frame one can evolve the 
configuration bitstream containing the LUTs’ functions. 

By using this approach on an FPGA Virtex-II 1000 we 
can evolve a CA with up to 160 cells by just modifying a 

single frame.  

6. Experimental Setup and Results 

Two problems were chosen for validating our platform: 

firefly synchronization [8] and a random number 

generator [9]. In both cases we used the same cellular 
programming algorithm described in section 4.  

6.1. Firefly synchronization 

In CA, the firefly synchronization problem consists on 

synchronizing the firing of a set of 2-state automata. CA 

are initialized at a random configuration, and after a 
number of iterations each automaton must swap its state 

synchronizing with its neighbors.  

For the cellular programming approach, we initialize the 
genome for every cell in a random way, and through the 

HWICAP peripheral we map the genome contents on the 

frame containing the LUT contents.  
Once the frame is re-configured, one can test the CA 

through the reading and writing interfaces. A random 
initial state is loaded on the CA, and we let it run for 54 

iterations. The fitness is computed by the Microblaze 

soft-processor, by reading the CA state. For computing 
the fitness we let it execute four more iterations: if the 

sequence is 0-1-0-1 the fitness is 1, otherwise it is 0. The 

total fitness is the accumulation of the fitness of 300 runs. 



 Then a new genome for each cell is generated as 
described in section 4. Our platform achieves to 

successfully finding genomes able to synchronize the 

switching of the states, as well as described in [8]. 

6.2. Pseudo-random number generator 

Good random number generators are mainly consequence 
of natural physical processes. Pseudo-random number 

generators are commonly used by information systems: 

starting from a seed value, a non-linear transformation is 
applied for simulating real random number generators. 

Measuring the quality of a given transformation function 

is difficult; however, a simple and effective way of doing 
it is to use the entropy of the generated sequence [11].  

For the pseudo-random number generator we use the CA 

described in the previous section, as well as the same 
cellular programming algorithm (excepting the fitness 

function). In [9], Sipper and Tomassini evolved a random 
number generator in a 1-D 50-cell CA using cellular 

programming. We implement the same algorithm, with 

the difference that we do not read a value at each CA 
update, but we let the CA running in free-run mode. 

The fitness computation consists on: 

- Partial configuring the FPGA with a given CA,  
- Random initialization of states and sampling of 4096 

consecutive values.  

- Compute entropy of the system as the mean entropy 
for each bit subsequence, with the expression: 
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 Being n the number of cells, h the subsequence 

length, and Eh
i the entropy for the cell i considering a 

subsequence length h, phj
i is the probability of 

obtaining a given subsequence j on the cell i when the 

subsequence length is h.

- Repeat, from the initialization, 300 experiences; the 
fitness is computed as the average value.  

In our experiments we considered a subsequent length 

value h=4 allowing a maximal theoretical value of 
entropy Eh=4. In [9] it is reported a maximum fitness of 

3.997; However they do not specify how many evolutions 
were performed before arriving to such solution. The 

maximum fitness obtained by our platform after running 

20 evolutions is 3.963.  

7. Conclusions 

The methodology proposed in this paper deals with useful 

issues when evolving hardware in a general way. 
Performing on-chip evolution on reconfigurable 

platforms has always been an important challenge, and 
this paper describes how to do it, in an efficient way, on 

nowadays commercial devices. 

We have presented a novel system approach for evolving 
hardware. Our platform has shown to be suitable for 

evolving non-uniform CA, and the same approach can be 

easily extended to other cellular structures – like artificial 
neurons or fuzzy rules – just by defining their respective 

hard macro. The system on chip supporting these 
reconfiguration capabilities provides the hardware 

platform to support the previously called on-chip and on-

line self-reconfigurable adaptable systems, by providing 
the flexibility needed by a real phenotype modification on 

the evolved hard individual.  
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